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Abstract

In this paper, the concept of the (p, h)-convex function is introduced, which generalizes
the p-convex function and the h-convex function, and Hermite-Hadamard type inequalities
for (p, h)-convex functions on R™ are established. Furthermore, some mappings related to
the above inequalities are studied and some known results are generalized.
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1. Introduction

Let p € (0,1]. We say that a set D C R™ is p-convez if, for all x,y € D and A\, u € (0,1)
with AP 4+ pP =1,

Ax +py € D. (1.1)

One can see that p—convex sets are just convex with p = 1 and are star-shaped convex sets
as p — 0. The proceeding definition shows that there is a big gap between p—convex sets
and convex sets for 0 < p < 1. It is easy to see that R, Ry :=[0,00) and [0,a) C R(a > 0)
are all p-convex sets, and we can check that if D; C R are p-convex sets, i = 1,2,...,n,
then the Cartesian product of Dy x --- x Dy, is also a p-convex set. More applications of
p-convex sets can be found in [16, 23] and their references.

Definition 1.1. Let 0 < p < 1, D be a p-convex set and h : [0,1] — Ry be a given
function. A function f: D — R is called (p, h)-convex on D if

x4 py) < h(N)f(x) + h(p) f(y) (1.2)
holds for any x,y € D and A\, € (0,1) with AP + p? = 1.
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The notation of the (p, h)-convex function generalizes some known classes of the usual p-
convex function and the h-convex function, which are obtained by putting in (1.2) h(t) =t
[24] and p = 1 [10], respectively. The h-convex function was introduced by Varosanec [24]
and unifies the convex function, the s-convex function (in the second sense) [3], the P-
function [21] and the Godunova-Levin function [12]. Lots of properties and applications
of them can be found in literatures, see e.g. [4,8,11,13,15,19,20,25]. In particular, if f
satisfies (1.2) with h(t) =t, h(t) =t*(s € (0,1)),h(t) =1 and h(t) =1/t (0 <t < 1), then
f is said to be a p-convex function, (p,s)-convex function (in the second sense), (p, P)-
function and a p-Godunova-Levin function, respectively. Moreover, it is not difficult to see
that h (2*1/ p) > 0 if f is a nonnegative and nontrivial (p, h)-convex function. Throughout

the paper, we assume that the function h in Definition 1.1 is always (Lebesgue) integrable
on the interval [0, 1].

Convex type functions are important in both pure and applied mathematics. The
famous Hermite-Hadamard inequality for the convex function is stated as follows:

Theorem 1.2. Let f : [a,b] C R — R be an integrable convez function. Then

f(a;b) < bia/abf(a:)dmgf(a)‘;f(b)‘

Dragomier, Pecari¢ and Persson [9] extended it for Godunova-Levin functions and P-
functions in 1995. Dragomir and Fitzpatrick[7] obtained an analogue inequalities for s-
convex functions (in the second sense) in 1999. Sarikaya, Saglam and Yildririm extended
it to h—convex functions in 2008.

Theorem 1.3 ([22]). Let f : [a,b] C R — R be an integral h—convex function on [a,b]
with h(1/2) > 0. Then

1
2h(

1)f<a;b) S bia/abf(x)d:cﬁ [f(a)+f(b)]/01h(x)dx.
2

For any «, 5 > 0, we define the Beta function by

B(a, p) = /1 2271 — )’ .
0
It is well known that
B(a,f) = B(50). Bla+1,6)=_“B(f).

In 2021, Ekem, Kemali, Tnaztepe and Adilov [10] established the Hermite-Hadamard
inequality for p-convex functions as follows.

Theorem 1.4. If f : Ry — Ry is an integrable p-convex function, then, for any [a,b] C
R4, we have

b
251f (“I ) < o [ J@
20 b—a a
1 b 11 a 11
= 20-a) { [a TP (p’ pﬂ fla)+ [b+ o (p’p)] f(b)} '

Comparing Theorem 1.2 and Theorem 1.4, the former is better than the latter at the
end point p = 1 (i.e. the function is convex). Therefore, we are more interested in the
case of 0 < p < 1 in the next.

Meanwhile, there are many literatures dedicated to develop the Hermite-Hadamard type
inequalities to multidimensions. In the sequel, unless otherwise specified, we denote that
R! =R, ]R}r = R4, R" is the Euclidean space of dimension n and R’} is the usual n times
Cartesian product of Ry. [a,b] C R™ denotes by [a,b] = [a1,b1] X [az,b2] X -+ X [ap, by]
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and the Lebesgue measure of it by |[a,b]| = [[j=;(b; — a;). Denote by L(E) the set
of (Lebesgue) integrable functions on the measurable set £ C R™. For any points x =
(1,22, .., Tpn), ¥ = (Y1,Y2,...,Yn) € R™, define the product of vectors by

X0y = ($1y17x2y27 cee 7$nyn) P
the quotient of vectors by
X X X X
:<1727"'7n)ayi#07i:1727"‘7n7
y Y1 Y2 Yn

the linear combination of vectors by
ax + by = (ax1 + by, axs + bya, ..., ax, + by,), a,b R,
and the power of vectors by
= ("), 1<e< oo

Definition 1.5. Let 0 < p < 1, h : [0,1] — [0,00) be a given function and D; C R
be p-convex sets, i = 1,2,...,n. A function f : D := Dy x --- x D, C R* = R is
called coordinated (p, h)-convex if for every i € {1,2,...,n} the partial mapping f; : D; —
R, fi(u) = f(z1,...,%i—1,4,ZTit1, ..., Tp) is (p, h)-convex for all given x; € D;, j # 1.

In particular, at the point p = 1, the corresponding function f is said to be coordinated
h-convex on D.

If h(t) =t, h(t) =t°(s € (0,1)),h(t) =1 and h(t) = 1/t (0 < t < 1) in Definition 1.5,
then the function f is called a coordinated p-convex function, coordinated (p,s)-conver
function (in the second sense), coordinated (p, P)-function and a coordinated p-Godunova-
Levin function, respectively, and, furthermore, if p = 1, then f is called a coordinated con-
vex function, coordinated s-convex function (in the second sense), coordinated P-function
and a coordinated Godunova-Levin function, respectively.

In 2001, Dragomir [6] proved the following Hermite-Hadamard type inequality for co-
ordinated convex functions on the plane.

Theorem 1.6. Let f : [a,b] C R? — R be coordinated convex on [a,b] and f € L([a,b]).
Then

aj + by a2+b2> 1 /b2 b1
< dxid
f ( 2 ) 2 = (bl — al)(bQ — a2) 0 Jas f (1’17$2) L10T2
fla1,a2) + f(a1, b2) + f (b1, az) + f (b1, b2)
J— 4 .
Thereafter, Alomari and Darus [1] extended similar results for coordinated s-convex
functions. Latif and Alomari [17] considered the case of coordinated h-convex functions.

Theorem 1.7 ([17]). Let h: [0,1] — Ry with h(1/2) > 0 and h € L([0, 1]). Suppose that
f:[a,b] C R? = R be a coordinated h-convexr function on [a,b] and f € L([a,b]). Then
1 f<a1+bl a2+b2>
4h%(1/2) 2 72
< 1
= (b —a1) (b2 — a2

< Uflan,aa) + Flan,b) + 0, 02) + 5(on,ta)) ([ i)

Another interesting topic is to give some applications of the Hermite-Hadamard in-
equalities for convex type functions. Let f : [a,b] € R™ — R. Define the mappings
$H:[0,1] =[0,1]" CR* - Rand J:[0,1] =[0,1]" C R" - R by

1

a+b
56 = g [a7b}f(tox+(1—t)o : >dx, (1.3)

bo b1
/ f (.1’1, .TUQ) d:Cld.TUQ
) az Jai

2
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3 = # oxX —t)o X
) = g /[ab] /[ab] Fltox+(1—t)oy)dxdy, (1.4)

respectively. Clearly,

5(0)i=5(0....0) = £ (*12).

8(1) = 9(1,...,1) = Halb” f o

1
|[a, b]| Jiab]
3(1/2) == 3(1/2,...,1/2) = ![81,110]\2/[a,b] /[a,b] f (X;y) dxdy.

In 1992, Dragomir [5] studied some properties of ) and J for n = 1. In 2021, the authors
[10] obtained the following conclusions for p-convex functions.

=
=

N—
I

3(1) =3(1,...,1) = F(x)dx,

Theorem 1.8 ([10]). Let f : Ry — Ry be an integrable p-convex function. For any
[a,b] C Ry , define the mappings $ and T by (1.3) and (1.4) for n = 1, respectively.

(i) If f is a decreasing function, then $)(t) and J(t) are both p-convez functions on the
interval [0, 1].

(ii) For anyt € (0,1], we have

H(t) > 2%_1f <a+b> ,

1
2p

-1 1 borb (x+y
2 pJ(t)Z(b—a)Q/a /a f( 2% )dﬂ?dy

In 2001, Dragomir [6] extended his previous results [5] to coordinated convex functions
on R2.
Theorem 1.9 ([6]). Let f : [a,b] C R? — R be integrable coordinated conver on [a,b].

The mappings $ and J are as in (1.3) and (1.4) with n = 2, respectively. Then
(i) the mappings $ and J are both coordinated convex on [0,1]%.

(i)

and

sup H(t) =H(1), inf H(t) =H(0).
t€[0,1]2 t€[0,1]2
(i)
sup J(t) =3J(0) =3(1), inf J(t) =3(1/2).
t€[0,1]2 t€[0,1)2

It is notable that Theorem 1.9 reduces to Theorem 1 and Theorem 2 in [5] with n = 1.
In 2008, Alomari and Darus [2] extended the properties of the mapping $) in Theorem 1.9
to coordinated s-convex functions on R?. In 2013, Matlok [18] obtained similar results for
coordinated h—convex functions.

Theorem 1.10 ([18]). Let hy, ho : (0,1) — [0, 00) with hy, hy € L((0,1)) and hi(1/2)ha(1/2)
> 0. Suppose that the function f : [a,b] C R? = R, f € L([a,b]) and its partial map-
pings f(-,x2) and f(x1,) are hy—convex on [a1,b1] and ho—convex on [as, ba] respectively.
$:10,1] =[0,1]? — R is defined by (1.3) with n = 2. Then

(i) the partial mappings $H(-,t2) and $H(t1,-) are hi-convex and ha-convex on [0,1]
respectively.
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(i)
1
4h1(1/2)ha(1/2)

9H(0) < H(t)

holds for all t € [0, 1].

Recently, the authors [14] extended the above inequalities and mappings to more general
case—-coordinated strongly h-convex functions on R".

With these motivations, the main purpose of the present paper is to establish Hermite-
Hadamard type inequalities for the new convex type functions—(p, h)-convex functions.
Furthermore, some mappings related to the above inequalities are studied.

2. Hermite-Hadamard’s inequalities for (p, h)-convex functions

In this section, we fist establish the Hermite-Hadamard type inequalities to (p, h)-convex
functions on the real line.

Theorem 2.1. Let f : Ry — Ry be an integrable (p, h)-convex function. Then, for all
[a,b] C Ry, we have

2h(;;>f<“2+;b> = bla/abf(x)dx

L {70 [ oat + st) [ -5t o),
o[ @ [ wwyat s 50) [ w0 -t o]}

s {[o [ nares [ a - et s

IN

IN

1 1
+ {b/ h(t)dt+a/ h(t) (1 —tp)iltpldt} f(b)}.
0 0
Proof. First, we prove the later two inequalities. Without loss of generality, we may
_p_
suppose that 0 < a <b<ooand 0 <p < 1. Let M = (g) "7 By changing the variable
z=1tvb+ (1-— t)%a, there is some ty € [ﬁ) such that
b 1 ! 1 1 1, 1
/ flz)dz = 7/ f (tpb—i— (1 —t)Pa) {btp —a(l—1t)r } dt
a D Jto

1/1 1 1 1
< - trb+ (1 —t)ra)-btr “dt
S (ero(=nra)

1 1t 1 1 1_4
< = trb+ (1 —t)va) - btr Ldt,
| (e a-nia)
which, combing the (p, h)-convexity and nonnegativity of f, means that
b b 1 1
/ flxyde < ° {f(b)/ h(t%)t%—ldt+f(a)/ h((1—t)i)ti—1dt] 2.1)
a p 0 0

And, with some simple changing of variables, we have
1

/01 h (t%) trLdt = p/o h(t)dt, (2.2)

and

/01 h((1- t)%) 5 dt = p/o1 h(t) (1 — 7)o~ = Lat. (2.3)
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Then it follows from (2.1), (2.2) and (2.3) that

[ s@de < o[s) [ nie+ st) [Tr -t ta] @

By a similar argument, changing the variable x = (1 — t)5b + tra yields that
1

/abf(a:)dx < Z[f(a)/olh(t;)t;_ldwrf(b)/o h((l—t)zln)t;_ldt} (2.5)
~ q {f(a) /1 h(t)dt + £ (b) /1 h(t) (1—tp)i—1tp—1dt}.

Then it follows from (2.4) and (2.5) that

/abf(az)dm < min{ { /h )dt + f(a /h lftp p_ldt},
a[f(a)/o h(t)dt+f(b)/0 h(t)(1—tp)p1tpldt]},

and the third inequality is easily obtained by it.
Next we prove the first inequality. The (p, h)-convexity of f shows that, for all x,w > 0,

f(x;w> h(277) () + flw)).
Let x =ta+ (1 —t)b, w= (1 —t)a+tband t € (0,1). Then,

f (x;w> <h (2_%> [f(ta+ (1 —t)b) + f((1 —t)a + tb)].

Integrating both side on [0, 1], we achieve that

1 +0b 1 b
2h (2’1’)f <a2$ ) - b—“/a foyds

which completes the proof of Theorem 2.1. O
If taking h(t) = ¢°(0 < s < 1) in Theorem 2.1, then
1 1 1
/ h(#) (1 — )5~ L1 :/ (-t lgy—>p (3> (2.6)
0 0 p pp

which, combing Theorem 2.1, implies the following result.

Corollary 2.2. Let f : Ry — Ry be an integrable (p, s)-convex function. Then, for all
[a,b] C Ry, we have

s _ a+b
()
2p
1 b
(x)dz

et bl 1 ) o] o (32 0]
s {0 [ vl o)

Remark 2.3. In particular, Corollary 2.2 improves Theorem 1.4 directly with s = 1.

Especially, if A = 1 on [0, 1], then [} A(t)dt = [ h(t) (1 —t)» " ldt =1 (0 < p < 1)
and we have:
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Corollary 2.4. Let f : Ry — Ry be an integrable (p, P)- convex function. Then, for all
[CL, b] - R-i—;

a+b
f( Qp )_b_a/ fladz < " (f(a) + S0

Next, we will extend the above inequalities to high-dimensions.
Theorem 2.5. Let f :R? — Ry and f € L (R"). If the partial mappings f; are (p;, hi)-

convex functions on Ry for i = 1,2,--- ,n, respectively, then, for all [a, b] C R}, we
have

1

b
20 [Ty by (2> ! (a; )

1
< bl F(x)dx
= Qn[;b” > H[ /h dt+cz/h — Piyp P | f ().

ci,Gi=a; or b;, i=1
ci#€;, i=1,...,n

Proof. By Fubini’s theorem and the third inequality of Theorem 2.1, an induction argu-
ment shows that

., {)ax

bn b1
:/ Fz1,... xp) dar ... dz,

bn b
< / /2{{(11/ ]’Ll dt+b1/ hl 1—tp Pl tPr— 1dt:|f(a1,$2,..., )

+ [bl/ hl(t)dt+a1/ ha () (1 — ¢2)7 ! tm—ldt} f(bl,xg,...,a:n)}dxg...da:n

1
= 5 [Cl/ h1 dt—i—cl/ h1 1—tp tplldt:| X

c1,61=aj or by,

c1#¢1
bn b2
/ fcl,xg,...,xn)dxg...dxn

bn, b3
= 272 |:01/ ha(t dt—i—Cl/ hi(t l—tpl) 1 tpl_ldt:|/ /
c1,61= a1 or by, an as
c17#C1
1 1 1y
> {02/ h2(t)dt+52/ ha(t) (1 —tP2) P2 tm_ldt] flei,co,ms,. .. mp)
c2,62=a2 or bz, 0 0
co#C2 ’
dxs...dz,

1

= 5 2 H[ /h dt+cz/h (1—tP)wi tpildt}

ci,éi=a; or b;,1=1
;i #éE;, 1=1,2

bn, b3
/ f (c1,¢2,23,...,2p)dxs ... dxy,

IN
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= o > H{ /h dt+c,/h 1—tpi)i~*1tpi*1dt flei,ea,. o ).

cl,cb—aZ or bZ7 i=1
ci#Cy, i=1,...,n

This finishes the second inequality in Theorem 2.5.
On the other hand, by induction again, the Fubini’s theorem and the first inequality in
Theorem 2.1 tell us that

/[a b] f(x)dx

by ba b
> / / <a1+ ! $2,...,xn>dm2...d:cn
2h, (2 101) an 27
bn b b b
> - / / <a1+ ! a2+ 2,$2,...,$n>d$3...dl'n
22hy <2_P1> ( _> 271 25
> ...
Z 1 1 f (al _}Ibl PR ] w) )
2 Iy i (ﬂ-) 271 20
which completes the proof of the theorem. O
Taking py =po=---=p, =pand hy =--- = h, = h in Theorem 2.5 implies that

Corollary 2.6. Let f : R} — Ry be an integrable coordinated (p,h)-convex function.
Then , for all [a, b] C R7,

1 a+b
onpn (2‘)f< 2% )

T
1

=

= Tabll S
# & N p%—l p—1 c
< 2o bl] > H[ /h Ydt + Z/ h(t) (1 —tP)»— P~ 1adt| f(c).

c;,Gi=a; or by, i=1
c;#¢Ei, i=1,..,n

And if h; =% on (0,1), 4 =1,...,n in Theorem 2.5, we have:

Corollary 2.7. Let f : R} — Ry and f € L (R%). If the partial mappings f; are (p;,s;)-

convex functions on Ry for i = 1,2,--- ,n, respectively, then, for any [a, b] C R}, we
have
2p

< ;/ f(x)dx

~ la,b][ Jiap)

< 1 Z H{ n sZ (sz 1)]f(c)

n ¢ + Gi— .
22 (1 +si) |[a, b pi  \pi pi

ci,éi=a; or b27 i=1
ci#Ci,i=1,2,..,n

If taking py = po=---=p, =pand s = s9 =--+ = 5, = s, we obtain
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Corollary 2.8. Let f : R — Ry be an integrable coordinated (p,s)-convex functions.
Then, for all [a, b] C R, we have

2”(§*1)f <a+1b> < 1 f(x)dx

2% (&, b][ Jab)

[2(s+1)1]n|[a,b]y 2 H[Cz+cz (;;)]f(c).

ci,C;=a; or bl, =1
ciF#¢;,i=1,2,..,n

Especially, if s = 1, we have

Corollary 2.9. Let f: R} — Ry be an integrable coordinated p-conver functions. Then,
for [a, b] C R, we have

gn(i—l)f<a+lb> < ! Hf(x)dx
a,b

2% |[a, b]|
1

11
_ o5+ Em ( )} f(e).
an Ha’b” cz,cl—gor b;, 11_[1 |: ' Z p p
;i #£Ci,i=1,2,...n

3. Some properties of mappings related to Hermite-Hadamard’s inequal-
ities
In this section, we mainly study some properties of the mappings defined in the first
section.

Theorem 3.1. Let f: Ry — Ry be an integrable (p, h)-convex function and the mapping
$:[0,1] € Ry — Ry be defined by (1.3) for n = 1.

(i) If f is a decreasing function, then $(t) is a (p, h)-convex function in [0,1].

(ii) For anyt € (0,1], the following inequalities holds:

“+b> . (3.1)

1

1 f ( 1
2h(277) \ 2v
Furthermore, if f is a decreasing function on Ry, then, for anyt € (0, 1],

%(;_;)5(0) <) < [h (1) + 20 (277 ) h((1-1)7)] 5. (3.2)

H(t) >

Proof. (i) Let z,y € [0,1] and A, u > 0 with AP + pP = 1. Using A+ p < 1, monotonicity
and (p, h)-convexity of f, for allty, ty € [0, 1], we have

(At + pta)

1 b a+b
= m/@f(()ufl—i-utg)x—i—[l—()\tl—i-,utg)] 5 )dl‘

1 b a+b a+b a+b
= /f()\tlx—)\tl S htaw — pty =+ )da

1 b a+b a-+b a+b
< b—a/a )\tlaz—)\tl 5 + ptox — pto 5 + A+ p) 5 )dw

1 b b b
= /f( |:t1$+ 1*751) @t }+M|:t21}+(1t2)a+ :|)d$

b—a l, 2
b +b +b

< b a/{ [ (t1x+(1—t1)a2 )]+h(u)[f(t2x+(l—t2)a2 )]}dm

= h(N$H(t1) + h(p)H(t2).
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(ii) Changing variable u =tz + (1 — ¢)%tL, then
atb

th+(1—t) 222 n
20 = [ fwde=—— [y,

t(b—a) Jrar(1—t)ett m—n Jm

Q.l\::

where m = tb + ((1 — t)%2),n = ta + (1 — t)2t. By virtue of Theorem 1, we obtain

1 n 1 m+n 1 a+b
[ fdu > _1f< : >= _1f< )
m—nJm 2h(277)" \ 27 2h(277) \ 2v
This finishes the proof of (3.1).
On the other hand, the monotonicity and nonnegativity of f show that

1(5) 2 (5) -0

H(1) ! /abf<t;x+(1—t)a—2|_b>d:c
bia/abf(x)dx—l—h((l—t);)f(a;_b>
) 5(1) +h((1-1)7) f (atb>

and

IN

IA
>
~

N—

IN
>
o /~

2p
< h (7)) +2h (277) A ((1-1)7) H(1)
1 _1 1
= [p(t) +2n (277 ) h (1= 1)7)] (1),
the last inequality is obtained by Theorem 2.1. Thus we finish the proof of the theorem. [

Theorem 3.2. Let f: Ry — Ry be an integrable (p, h)-convex function and the mapping
J(t) :[0,1] € Ry — R be defined by (1.4) forn = 1.

(i) If f is a decreasing function, then J(t) is a (p, h)-convex function in [0, 1].

(ii) For anyt € (0,1], we have

3(t) > 2h(2p - // <$+y>dwdy (3.3)

Furthermore, if f is a decreasing function, then
1 1 1 1
— 7 <2) <3(t) < [h(t7) +h (A -1)7)]300). (3.4)
2h (277)

Proof. (i) Let t1,ta, A, p € [0,1] and AP+ pP = 1. For any z,y € [a, b], similar to the proof
of Theorem 3.1, the monotonicity, (p, h)—convexity of f and the basic fact of A+ pu <1
show that

300+t = o [ O0 + pta)e + 1= O+ oy
< (12 / b / S O+ (1 )]+ pltae+ (1~ 1)) dody
< ftz+ (1 —t)y) + h(p)f (t2z + (1 — t2)y)] dady

= (A) A)b(ta).
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(ii) It is not difficult to see that

f (;y> <h(277) [tz + (L= t)y) + fty + (1 - t)a)]

holds for all t € [0,1] and =,y € [a,b]. Integrating the both sides of the above inequality
on [a, b]?, the Fubini theorem means that

= // <m+y>d$dy<2h( 7)a(t)

holds for all ¢ € (0, 1], which gives the desire result.
Furthermore, the monotone decreasing and nonnegativity of f yield that

o () a1 (57)asan=3(3)

and, for any t € (0,1],

Jit) < (_1a2/b/bf t%x—i—(l—t)%y)dxdy

< h //af dxdy+h((1t))(b1) /b/abf(y)dxdy
= [h (tp) +h ((1 - t)%)} 3(0) = [h (tp) +h((1 —t)p)} 3(1).
Thus we complete the proof. O

As a consequence of Theorem 3.1 and Theorem 3.2, we have:

Corollary 3.3. Let f : Ry — Ry be an integrable (p, s)-convez function and the mappings
$ and J are defined by (1.3) and (1.4) with n = 1, respectively.

(i) If f is a decreasing function, then $(t) and J(t) are both (p, s)-convex functions on
[0,1].

(ii) For anyt € (0,1], the following inequalities holds:

,S’j(t) 2 22,1f (a—kb)’

) > 2! // (Y dady.

Furthermore, if f is a decreasmg functzon on Ry, then, for any t € (0,1],
20719(0) < A1) < [th +275 (1 - 1)7] H(1),
s_ ]. s 3
25713 (2> < J() < [tp +(1 —t)p} J(1).

In particular, taking s = 1 in Corollary 3.3, it extends Theorem 1.8.
Next we will generalize the proceeding results to multi-dimensions.

Theorem 3.4. Let f: R} — Ry be integrable and f; be (p;, h;)—convex fori=1,...,n,
respectively. The mapping $(t) : [0,1] C R — R is defined by (1.3), then

(i) If fi is monotone decreasing on Ry, i =1,...,n, then the partial function $; is a
(pi, hi)-convex function on [0,1], i=1,...,n
(ii) For any t € (0,1] C R, the following inequalities holds:

() > L f(”f’). (3.5)
on H?:1 hi (2171) 2p
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Furthermore, if f; is monotone decreasing on Ry, ¢ =1,...,n, respectively, we have

L 50 <H() < 11 o (257) 20 (2750 ) b (1= )7 )| 500). (36)

20 TTiy b (2_’”)

Proof. (i) Without loss of generality, we just prove that $1(-) is a (p1, h1)-convex func-
tion on [0,1]. For any &,m,u,v € [0,1] and &' + nP* = 1, the Fubini theorem and the
monotonicity of f; imply that that

H1(Eu + o)
bn bo b1 +b
= ek L L (e e 52
]1 2
b n bn
tzmg—&-(l—tz)ag;— 2,...,tnmn+(1—tn)a + )dwldacg...da:n
ba b1 +b +b
S SO W
]1 — aj) 2 2
n bn
toxa+ (1 —to) a2—2|—1)2 g ooy tn@p+ (1 —1p) Ot > dxidzs. . .dx,

< ha(©Mm(w) + hi(m)H1(v).
(ii) It follows from (3.1) and Fubini’s theorem that

H(t)
1

> 1
2%, (2‘5) I (b — a;)

bn b2

+b +b +b

/ /f(‘” L t2x2+(1—t2)a22 2,...,tnxn+(1—tn)“"2 ”)dxg...dwn
21’1

1 bn b3
oy A g FARA
22h1 (2 pl) hg (2 T’2> b — a,

b b b b
f alt 17a2—i1 2,t3$3+(1—t3)a3+ 2 .,tnxn+(1—tn)an+ n)dxg...dacn
2p1 2v2 2 2

(e )

T () sk
On the other hand, the monotonicity of f;, i =1,...,n, and (3.2) show that
f<a1—i:b1"“’an4;bn> >f<a1+b1 a2+b2,“"an—tbn> >f<a+b>

951 2pn 2 22 2n
= H(O)’
and
1 1
[h1 (tfl) + 2hy (2_1“) ha ( (1—t1)P )} b fbn ba
t) <
o(t) < (b — a;) / / /
b n+ bn
f (J;l,tgxg +(1- tg)a2 _2|_ 2,...,tna:n +(1- tn)a + ) dxs . ..dx,dz
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) 2, [hi (tfl) + 2h; (2;1_) h; ((1 — ti)pliﬂ

(b —ay)

=1

by b1 b3
/ / / / <x1,x2,x3, coytnxn + (1= tn)an ;_ bn) dxs...dz,dz1dzs

X

1 1 1
" [hi <t> L oh, (2) hi ((1 - t))} b by
< T /---/f(xl,...,xn)dxl...dwn
an al
n L _1 Bl
= H |:h7, <tfl) + 2hz (2 pi) hl ((1 — ti)pi>:| .6(1)
i=1
Therefore, we obtain the desired results. ]

Theorem 3.5. Let f : R} — Ry be integrable and f; be (p;, hi)—conver i =1,2,--- ,n,
respectively. Define the mapping J(t) : [0,1] C RY — Ry by (1.4), then

(i) If fi is monotone decreasing, i = 1,2,...,n, then J; is a (p;, h;)-convex function on
0,1],i=1,2,--,n

(ii) For any t € (0,1], the following inequality holds:

I(t) > 1i (2—51-) ab|2 /ab/ab] ( 2,, )dxdy (3.7)

2n [y b

Furthermore, if f; is monotone decreasing, i = 1,2,...,n, we have

2”H?:1hli (2‘51-)3(;) ﬁ{ (tm> Z(“‘ti)"liﬂﬁ(l). (3.8)

Proof. Similar to the proof of Theorem 3.4 (i), Theorem 3.5 (i) is easily achieved by
Theorem 3.2 (i). Now we turn to prove the second part of Theorem 3.5. It follows from
(3.3) and the Fubini theorem that

J(t)
1 bn bn b2 b2
sl A
2h1 (2131) H:L:]- (b’L — ai)2 an an az ao
1 —I—y1
f s t2rs + (1 - t2) Y2, tnTp + (1 - tn) Yn | dridyy ... dz,dy,
2p1
> — — / / / /
22h1 (2 p1) ho (2 p2> ;?:1([% _ CLZ')Q an Jan as Jas
T+ T —|—
f ( 1 yl, 2 T Y2 staws + (1 —13) Y3, ..., tozn + (1 — tn)yn> deidy; ... depdy,
2P1 2p2
>
>

2n H?:l hz

f ( sty ) dXdy
. <2plz> |[a7b”2 [a,b] /[a,b] 2% Qﬁ



430 Y. Cao, J. Ruan

Furthermore, similar to the proof of the first part of (3.6), the monotonicity of f; tell

us that
1 L/ L/ 1+ Y1 Tn + Yn
— f ( by dxdy (3.9)
[a, b2 Jiab] Jia,b) opr 29m

1 X+y> ~<1>
o W2 dxdy =7 (= ).
Haa b”2 /[a,b] /[a,b] f < 2 xay 2

On the other hand, the right-hand side of (3.6) and the Fubini theorem imply that
(t)

< | (“) e (=07 (b —m)H;;Q(bi )

b1 brn bn b2 b2 x _|_ T, +
[ [ (et 2 s
2102 2pn

=1l Q¢ ) e (07| CEDCE aim?;:g(bi EPREL

ba by bp b3 b3

=
=

f (a:l, 9, L%;yg’ een In _tyn> dxsdys ... dr,dy,dridzs
2173 2Pn

al a2 an an a3 as

ﬁ[ () (0 ot)] e [

i_ﬁl [h (t) s ((1 — 1) 1)] 3(1),

which, combing with (3.9), finishes the proof of Theorem 3.5. O

IN

| A

Corollary 3.6. Let f : R} — Ry be integrable and coordinated (p, h)—convex. Suppose
that the mappings $H(t) : [0,1] C R} — Ry and 3(t) : [0,1] C RY — Ry are defined by
(1.3) and (1.4), respectively.

(i) If fi are monotone decreasing on Ry, i =1,...,n, then the functions $ and J are
both coordinated (p, h)—convezx on [0, 1].

(ii) For any t € (0,1] C R, the following inequalities holds:

1 a+b
o) 2 2nhn(2*%) ( >
1

X—|—y
t) > / / dxdy.
( ) onpn (2*%) a, b ’2 [a,b] J[a,b] ( 25 >

Furthermore, if f; is monotone decreasing on Ry, ¢ =1,...,n, respectively, we have

i ® = 20 =TT (F) o200

(3) < 2T p() - o-wh) e

onpn (2

(SR

IN

Corollary 3.7. Let f : Rl — Ry be integrable and f; be (p;, s;)—convex fori=1,...,n.
Suppose that the mappings $H(t) : [0,1] C R? — Ry and I(t) : [0,1] C R} — Ry are
defined by (1.3) and (1.4), respectively.
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(i) If fi is monotone decreasing on Ry, i =1,...,n, then the partial functions $; and
J; are both (p;, s;)-convex on [0,1], i=1,...,n
(ii) For any t € (0,1] C R, the following inequalities holds:

H(t) > 2w f<a+ )
R A"y +y
) > 22w / / x dxdy.
® = ab|2 a,b] J[a,b] (23 Y
Furthermore, if f; is monotone decreasing on Ry, ¢ =1,...,n, we have
2 i H T (0) < H [tm bl —t) 2}5(1),

92 im1 7" G) < <ﬁ{t;z (-t )} 3(1).
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