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ABSTRACT

The Ricci tensor field, φ-Ricci tensor field and the characteristic Jacobi operator on almost
Kenmotsu 3-manifolds are investigated. We give a classification of locally symmetric almost
Kenmotsu 3-manifolds.
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Characteristic Jacobi Operator on Almost Kenmotsu 3-manifolds

1. Introduction

This article is the third one in our series [26, 54] on the study of characteristic Jacobi operators on almost
contact 3-manifolds.

Tanno [103] classified complete almost contact Riemannian manifolds with automorphism group of
maximum dimension. Those almost contact Riemannian manifolds are classified as (1) Sasakian space forms,
(2) cosymplectic space forms and (3) warped products of the form R×cet Cn (see Example 5.1). Kenmotsu
clarified the almost contact Riemannian structures of R×cet Cn (the warped product model of the hyperbolic
space H2n+1 = H2n+1(−1) of constant curvature −1). Kenmotsu introduce a class of almost contact Riemannian
structure modeled on R×cet Cn [69]. The structure introduced in [69] is named as "Kenmotsu structure" by
Janssens and Vanhecke [68]. Janssens and Vanhecke introduced the notion of almost Kenmotsu manifold
in [68]. Kenmotsu manifolds are characterized as normal almost Kenmotsu manifolds. Here we recall that
Sasakian manifolds (resp. cosymplectic manifolds) are characterized as normal contact Riemannian manifolds
(resp. normal almost cosymplectic manifolds). In this sense, almost Kenmotsu manifolds constitute a class of
almost contact Riemannian manifolds which should be compared with contact Riemannian manifolds and
almost cosymplectic manifolds.

After the publication of the seminal paper [69], a huge number of articles concerning on Kenmotsu manifolds
have been published. As is well known the unit sphere S2n+1 = S2n+1(1) is the standard model of Sasakian
manifolds. In other words, the notion of Sasakian manifold is modeled on S2n+1. Thus Kenmotsu manifolds
are regarded as "opposite correspondents" of Sasakian manifolds.

In our previous papers [26, 54], we studied characteristic flow invariance of the characteristic Jacobi operator
ℓ on contact Riemannian 3-manifolds and cosymplectic 3-manifolds.

The present work has three aspects. The first aspect is to give an expository article on 3-dimensional almost
Kenmotsu geometry (Section 2–Section 9).

Next, the second aspect is the classification of locally symmetric almost Kenmotsu 3-manifolds. Some
literature claimed that locally symmetric almost Kenmotsu 3-manifolds are locally isomorphic to either
hyperbolic 3-space H3 = H3(−1) of curvature −1 equipped with a homogeneous Kenmotsu structure or
the product space H2(−4)×R equipped with a non-normal homogeneous Kenmotsu structure [22, 109].
Unfortunately, this claim has remained unverified and has been used as the correct classification in other
studies. In this paper, we point out that this claim is incorrect. More precisely, this claim is correct under the
assumption the characteristic vector field is an eigenvector field. There exit locally symmetric almost Kenmotsu
3-manifolds whose characteristic vector fields are not eigenvector fields of Ricci operators. Those examples are
discovered by Perrone [93, Theorem 1.2 Case (IV)].

We give the correct classification theorem of locally symmetric almost Kenmotsu 3-manifolds (Theorem 10.1).
The third aspect concerns characteristic Jacobi operator. As a continuation of previous works [26, 54],

we study almost Kenmotsu 3-manifolds whose characteristic Jacobi operator is invariant under the flows
generated by the characteristic vector field. In addition we propose some unsolved problems.

Differential geometry of curves in almost Kenmotsu 3-manifolds is a very active research area. We do not
discuss curves in almost Kenmotsu 3-manifolds in this article. For interested readers we refer to [59, 60, 61, 62].

This paper is organized as follows. Section 2 to Section 9 are devoted to the first aspect of this article.
In Section 2 we recall basic facts on local symmetry and semi-symmetry of Riemannian manifolds. The

next section devotes to discuss fundamental properties of pseudo-symmetry of Riemannian manifolds. In
addition we recall fundamental theory of harmonic maps (Section 3.3). One can consider the harmonicity of
unit vector fields on a Riemannian manifold as maps into the unit tangent sphere bundles. The harmonicity
of unit vector fields will be used to introduce the notion of H-almost Kenmotsu manifold (Definition 5.10).
We prepare fundamental structure theory of 3-dimensional Lie groups in Section 4. We start our discussion
on almost contact Riemannian manifolds from Section 5. We specialize our discussion to almost Kenmotsu
3-manifolds in Section 6. The H-almost Kenmotsu property is characterized by certain nullity condition. We
discuss the generalized almost Kenmotsu (κ, µ, ν)-nullity condition in 7. We exhibit some explicit examples of
generalized almost Kenmotsu (κ, µ, ν)-spaces. We also discuss φ-Einstein condition in 8. In Section 9 we study
homogeneous almost Kenmotsu 3-manifolds. We give explicit models for all homogeneous almost Kenmotsu
3-manifolds.

The second aspect of this article is developed in Section 10. We study the system of local symmetry in Section
10.2. We give the correct classification theorem of locally symmetric almost Kenmotsu 3-manifolds (Theorem
10.1). In addition, we discuss (strong) η-parallelism (Section 10.4) and the characteristic flow invariance (Section
10.5) of the Ricci operator of almost Kenmotsu 3-manifolds.
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As the third aspect of this article, in Section 11, we give our new results on characteristic Jacobi operator.
In the final section, we discuss relationship between harmonic maps and Ricci operator in almost Kenmotsu

geometry.

Conventions

In this paper we use the following definition for exterior differentiation of differential forms:

• Let M be a manifold and η a 1-form on M . Then the exterior derivative dη is defined by

2dη(X,Y ) = X(η(Y ))− Y (η(X))− η([X,Y ]), X, Y ∈ X(M).

Here X(M) denotes the Lie algebra of all smooth vector fields on M .
• The exterior derivative dΦ of a 2-form Φ is defined by

dΦ = X(Φ(Y, Z) ) + Y (Φ(Z,X) ) + Z(Φ(X,Y ) )− Φ([X,Y ], Z)− Φ([Y,Z], X)− Φ([Z,X], Y ).

• On an oriented Riemannian manifold (M, g), dη and dΦ are rewritten as

dη(X,Y ) =
1

2
((∇Xη)Y − (∇Y η)X) , dΦ(X,Y, Z) =

1

3
SX,Y,Z(∇XΦ)(Y,Z)

in terms of Levi-Civita connection ∇.
• The codifferential δgη and δgΦ are given respectively by

δgη = −tr(∇η), (δgΦ)X = −tr(∇·Φ)(·, X).

• The Lie differential operator by a vector field X is denoted by £X .
• Throughout this paper we denote the space of all smooth sections of a vector bundle E by Γ (E).

2. The local symmetry and semi-symmetry

2.1. The Riemannian curvature

Let (M, g) be a Riemannian manifold with its Levi-Civita connection ∇. Then the curvature tensor field R of
∇ is called the Riemannian curvature of M = (M, g). In this article we use the sign convention:

R(X,Y ) = [∇X ,∇Y ]−∇[X,Y ].

Throughout this article we denote by R1 the curvature-like tensor field defined by

R1(X,Y )Z = (X ∧ Y )Z = g(Y,Z)X − g(Z,X)Y.

On a Riemannian manifold (M, g), the sectional curvature K of a tangent plane Π = X ∧ Y is measured by the
formula

K(Π) =
g(R(X,Y )Y,X)

g(R1(X,Y )Y,X)
,

As is well known, sectional curvature functions determine the Riemannian curvature. In other words, the
knowledge of the full curvature tensor R is equivalent to the knowledge of the sectional curvatures K. For
instance M is of constant curvature c if and only if R = cR1.

2.2. The Ricci tensor field and the tidal force

The Ricci tensor field ρ of (M, g) is a symmetric tensor field defined by

ρ(X,Y ) = tr (Z 7−→ R(Z, Y )X).

The Ricci operator S is a self-adjoint endomorphism field metrically equivalent to ρ, that is

ρ(X,Y ) = g(SX, Y ) = g(X,SY ).

The smooth function s = tr ρ = tr S is called the scalar curvature of (M, g).
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Example 2.1. Let M = (M, ḡ) be a Riemannian 2-manifold of constant curvature c̄. Consider the Riemannian
product M =M ×R equipped with the product metric g = π∗ḡ + dt2. Here π :M →M is the projection. Then
the Riemannian curvature R of M has the form

R(X,Y )Z = c̄R1(X,Y )Z − c̄{dt(Z)R1(X,Y )∂t + dt(X)g(Y,Z)∂t − dt(Y )g(Z,X)∂t}.

The Ricci operator is represented as
S = c̄ I− c̄ dt⊗ ∂t.

A Riemannian manifold (M, g) of dimension dimM ≥ 3 is said to be Einstein if ρ = c g for some constant
c. One can see that on an Einstein manifold, ρ = (s/n)g and s is constant. Riemannian manifolds of constant
curvature are Einstein.

Let (M, g) be a Riemannian manifold. For a nonzero tangent vector v ∈ TpM at a point p, the tidal force operator
Fv associated to v is a linear endomorphism on (Rv)⊥ defined by Fv(w) := −R(w, v)v for w ⊥ v ([83, p. 219]).
One can see that Fv is self-adjoint on (Rv)⊥ and has the trace tr Fv = −ρ(v, v). For a geodesic γ in (M, g), a
vector field X along γ is said to be a Jacobi field along γ if it satisfies the Jacobi equation:

∇γ′∇γ′X = −Fγ′(X).

2.3. The semi-parallelism

Every curvature-like tensor field acts on the space T 1
r (M) = Γ (⊗rT ∗M ⊗ TM) of tensor fields of type (1, r)

as a derivation. For instance, the derivative F · P of P ∈ T 1
1 (M) = Γ (End(TM)) by a curvature-like tensor filed

F is given by
(F · P )(Z;Y,X) = F (X,Y )(PZ)− P (F (X,Y )Z), X, Y, Z ∈ X(M).

The derivative F ·R of the Riemannian curvature R by F is given by

(F ·R)(U, V,W ;Y,X) = (F (X,Y )R)(U, V,W )

= F (X,Y )R(U, V )W −R(F (X,Y )U, V )W

−R(U,F (X,Y )V )W −R(U, V )F (X,Y )W.

As is well known, Riemannian manifolds with parallel Riemannian curvature are called locally symmetric spaces.
Riemannian manifolds of constant curvature are locally symmetric.

As generalizations of parallelism, semi-parallelism and pseudo-parallelism are introduced. In this section
we discuss the semi-parallelism. The pseudo-parallelism will be discussed in the next section.

Definition 2.1. Let (M, g) be a Riemannian manifold. A tensor field P on M of type (1, r) is said to be semi-
parallel if it satisfies

R · P = 0.

A tensor field P of type (1, r) is said to be properly semi-parallel if it is semi-parallel but not parallel.
A Riemannian manifold (M, g) is said to be semi-symmetric if R ·R = 0. The tensorial equation R ·R = 0

has a clear differential geometric meaning. At a point p ∈M of a Riemannian manifold M , denote by hp the
linear subspace of so(TpM) spanned by the set {Rp(X,Y ) | X,Y ∈ TpM}. Then the semi-symmetry condition
R ·R = 0 is equivalent to that hp is a Lie subalgebra of so(TpM). The connected Lie group Hp with Lie algebra
hp is called the primitive holonomy group at p.

The semi-symmetry condition R ·R = 0 for Riemannian manifolds was recognized by E. Cartan [17, p. 265].
At the time of Cartan, the only known examples of semi-symmetric spaces are locally symmetric spaces and
Riemannian 2-manifolds. The name "semi-symmetric space" was introduced by Sinjukov.

On a semi-symmetric Riemannian manifold M , at each point p, the Riemannian curvature Rp is the same as
the Riemannian curvature of a Riemannian symmetric space which may vary with the point. For instance,
every Riemannian 2-manifolds are semi-symmetric. Szabo clarified the local structure of semi-symmetric
spaces [100] . Kowalski made a systematic study of foliated semi-symmetric 3-manifolds [76]. For more
information on semi-symmetric spaces, we refer to [9].

The semi-symmetric Riemannian manifolds are precisely the Riemannian manifolds for which, up to second
order, all the sectional curvatures are invariant under their parallel transports fully around all infinitesimal
coordinate parallelograms.
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Definition 2.2. Let (M, g) be a Riemannian manifold. The nullity vector space of the Riemannian curvature R at
a point p ∈M is a linear subspace

T 0
pM = {X ∈ TpM |R(X,Y )Z = 0, ∀Y,Z ∈ TpM }

of TpM . The index of nullity at p is nM (p) := dimT 0
pM . The index of conullity at p is uM (p) := dimM − nM (p).

Example 2.2. On a Riemannian product M =M ×R, where M is a Riemannian 2-manifold of constant
curvature c̄. Then its tangent space TpM at p = (p̄, t) ∈M is decomposed as

TpM = HpM ⊕ VpM,

where HpM [resp. VpM ] is called the horizontal space [resp. vertical space] at p. Denote by π1 :M → M̄ and
π2 :M → R the projections, then

π1∗p : HpM → Tp̄M, π2∗p : VpM → TtR

are linear isomorphisms. Thus we may identify TpM with the direct sum Tp̄M ⊕ TtR.
The nullity space T 0

pM is VpM and hence identified with Tπ2(p)R. The index of nullity is nM = 1 on M . The
index of conullity is uM = 2 on M .

2.4. Three dimensional semi-symmetric spaces

On a Riemannian 3-manifold (M, g), the Riemannian curvature R is described by the Ricci tensor field ρ and
corresponding Ricci operator S by

R(X,Y )Z = ρ(Y, Z)X − ρ(Z,X)Y + g(Y,Z)SX − g(Z,X)SY − s

2
R1(X,Y )Z (2.1)

for all vector fieldsX , Y and Z onM . It should be remarked that for Riemannian 3-manifolds, Einstein property
is equivalent to constancy of sectional curvature.

The covariant derivative ∇R is computed as

(∇WR)(X,Y )Z = (∇W ρ)(Y, Z)X − (∇W ρ)(Z,X)Y (2.2)

+ g(Y, Z)(∇WS)X − g(Z,X)(∇WS)Y − ds

2
(W )R1(X,Y )Z.

Hence the covariant derivative ∇R satisfies the following formula:

g((∇WR)(X,Y )Z, V ) = g((∇WS)Y, Z)g(X,V )− g((∇WS)Z,X)g(Y, V ) (2.3)
+ g(Y,Z)g((∇WS)X,V )− g(Z,X)g((∇WS)Y, V )

− ds

2
(W )g(R1(X,Y )Z, V ).

We know that the local symmetry (∇R = 0) implies the constancy of the scalar curvature, thus we confirm the
following well-known fact:

Proposition 2.1. A Riemannian 3-manifold M is locally symmetric if and only if its Ricci operator is parallel.

Take a local orthonormal frame field {e1, e2, e3} and express the Riemannian cuvature as

R(ei, ej)ek =

3∑
l=1

Rlijk el.

Next we denote the sectional curvature functions of the plane section field ei ∧ ej spanned by ei and ej by

Kij = K(ei ∧ ej).

Then
Kij = Rijij , i ̸= j.
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The components ρij = ρ(ei, ej) of the Ricci tensor field ρ are related to the components of R by

K12 =
1

2
(ρ11 + ρ22 − ρ33), K13 =

1

2
(ρ11 − ρ22 + ρ33), K23 =

1

2
(−ρ11 + ρ22 + ρ33),

R1213 =ρ23, R1223 = −ρ13, R1323 = ρ12.

Now let (M3, g) be a Riemannian 3-manifold with principal Ricci curvatures ρ1, ρ2 and ρ3 (eigenvalues of the
Ricci tensor field ). Then the nullity vector space of R at p is rewritten as

T 0
pM = {X ∈ TpM | SpX = 0}.

A Riemannian 3-manifold M is is semi-symmetric if and only if [99]:

(ρi − ρj){2(ρi + ρj)− s} = 0, i, j = 1, 2, 3, i ̸= j.

Thus at each point p ∈M , there are three possibilities

1. ρ1 = ρ2 = ρ3 ̸= 0.

2. ρ1 = ρ2 ̸= 0 and ρ3 = 0 up to numeration.

3. ρ1 = ρ2 = ρ3 = 0.

If ρ1 = ρ2 = ρ3 ̸= 0 at p, then this relation holds on a neighborhood U of p. On U , all of principal Ricci curvatures
are non-zero constant, hence U is of constant nonzero curvature. In particular, U is locally symmetric.

Next, assume that S is of rank ≤ 2 on M and put U = {p ∈M | rankSp = 2}.

Theorem 2.1. Let (M3, g) be a Riemannian 3-manifold. Then at each point p ∈M , the index of nullity is either
nM (p) = 0, 1 or 3.

Since we are interested in non-symmetric semi-symmetric spaces, we concentrate our attention to semi-
symmetric 3-manifolds with nM = 1 on M .

Denote by T 1
pM the orthogonal complement of T 0

pM in TpM . Then the correspondences T 0M : p 7−→ T 0
pM

and T 1M : p 7−→ T 1
pM define distributions on M . The former distribution is called the nullity distribution of M .

The Riemannian curvature R satisfies:

R(X,Y )Z = ρ1(p)(X ∧ Y )Z, X, Y, Z ∈ T 1
pM,

R(X,Y )Z = 0, X ∈ T 0
pM, Y,Z ∈ TpM.

For any vector field V tangent to T 0M , the integral curves of V are geodesics.
Moreover one can check that R has the same form of the Riemannian curvature of the product space M ×R

of a Riemannian 2-manifold M of constant curvature and the real line. In deed, the Riemannian curvature R of
the Riemannian product M =M ×R where M is a Riemannian 2-manifold of constant curvature c̄ satisfies

R(X,Y )Z = c̄(X ∧ Y ), X, Y, Z ∈ T 1
pM,

R(X,Y )Z = 0, X ∈ T 0
pM, Y,Z ∈ TpM.

Example 2.3 (Real cones). Let (M, ḡ) be a Riemannian (n− 1)-manifold (n ≥ 3). Set m(t) := (t+m−1
0 )−1

and Rm0
:= {t ∈ R | t > −1/m0}, where m0 is a positive constant. Then the warped product Mn(M ;m0) :=

Rm0 ×1/m M is called the real cone over M . The unit vector field T = ∂t is regarded as a unit normal vector
field to each fiber. Then the shape operator B0 of a fiber derived from −T is given explicitly by

B0(X) = ∇XT = m(X − g(X,T )T ).

We extend B0 to whole TM .
Let us denote by π the projection of the second factor. Then the Riemannian curvature R is described as:

R(X,Y )Z = g(B0(X), Z)B0Y − g(B0(Y ), Z)B0(X) + (π∗R)(X,Y )Z.
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Any semi-symmetric real cone is locally isometric to some maximal coneMc̄(M ;m0) over a Riemannian (n− 1)-
manifold M of constant curvature c̄. Note that if the real cone is irreducible and c̄ ̸= 0, then at each point p, the
index of nullity is 1 and index of conullity is n− 1.

The real cone Mc̄(M ;m0) is conformally flat. The Ricci tensor field and the scalar curvature are given by

ρ(X,Y ) = (n− 2)(c̄−m2){g(X,Y )− g(X,T )g(Y, T )}, s = (n− 1)(n− 2)(c̄−m2).

Hence Mc̄(M ;m0) is never locally symmetric.

Remark 2.1. The above scalar curvature formula corrects that in [13, 14].

A real coneMc̄(M ;m0) is said to be a Euclidean cone, elliptic cone or hyperbolic cone according as c̄ = 0, c̄ > 0 and
c̄ < 0, respectively [9, §2.2.1]. The Riemannian curvature R of a semi-symmetric real cone Mc̄(M ;m0) satisfies

R(X,Y ) = (c̄−m2)(X ∧ Y ), X, Y ∈ T 1
pM,

R(X,Z) = 0, X ∈ T 0
pM, Z ∈ T 1

pM.

When dimM = 2, then the principal Ricci curvatures of the semi-symmetric real cone Mc̄(M ;m0) are

c̄−m(t)2, c̄−m(t)2, 0.

Example 2.4. A Riemannian (n+ 2)-manifold is said to be of conullity two if the index of nullity is n on M . Each
tangent space of a Riemannian manifold of conullity two has splitting

TpM = T 0
pM + T 1

pM, dimT 1
pM = 2.

Decompose tangent vectors X , Y and Z ∈ TpM as X = X0 +X1, Y = Y0 + Y1 and Z = Z0 + Z1 along this
spliiting, then we have

R(X,Y )Z = k(p)(gp(Y1, Z1)X1 − gp(Z1, X1)Y1),

where k(p) = K(T 1
pM) is the sectional curvature of T 1

pM . Hence R satisfies

R(X,Y )Z = k(p)(X ∧ Y )Z, X, Y, Z ∈ T 1
pM,

R(X,Y )Z = 0, X ∈ T 0
pM, Y,Z ∈ TpM.

Every Riemannian manifold of conullity two is semi-symmetric and foliated by Euclidean and totally geodesic
leaves of codimension 2 ([9, Theorem 2.11]). Those semi-symmetric spaces are called foliated semi-symmetric
spaces [9, p. 20].

Let M be a Riemannian 2-manifold of constant curvature c̄, then the direct product space M ×R and a
semi-symmetric real cone Mc̄(M ;m0) are Riemannian 3-manifolds of conullity two.

On a semi-symmetric space M , every tangent space TpM has the irreducible and pairwise orthogonal
decomposition (V -decomposition in the sense of Szabó [100])

TpM = T 0
pM + V (1)

p + · · ·+ V (r)
p

under the action of primitive holonomy group at p. The primitive holonomy group at p acts trivially on T 0
pM

and irreducibly on V (i)
p for i > 0.

A semi-symmetric space M is called a simple leaf if its V -decomposition has the form

TpM = T 0
pM + V (1)

p

at every point p ∈M . In addition, a simple semi-symmetric leaf is said to be infinitesimally irreducible if at least
one point the infinitesimal holonomy group acts irreducibly. Those semi-symmetric spaces are classified as
follows (see e.g. [9, Theorem 2.8]).

Theorem 2.2. Let M be an infinitesimally irreducible simple semi-symmetric leaf and p ∈M . Then one of the following
cases occurs:

1. a Riemannian symmetric space when nM = 0 on M , or
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2. a real cone when nM = 1 and uM = dimM − 1 > 2 on M , or

3. a Kähler cone when nM = 2 and uM = dimM − 2 > 2 on M , or

4. a Riemannian manifold foliated by Euclidean leaves of codimesnion two when nM = dimM − 2 and uM = 2 at
each point p of an open dense subset U of M .

The following local structure theorem is due to Szabó [100] (see also [9, Theorem 2.6]).

Theorem 2.3. For every semi-symmetric spaceM , there exists an open dense subset U ⊂M such that around any points
of U , the semi-symmetric space is locally a Riemannian product of the form

Rk ×M1 × · · ·Mr, k ≥ 0, r ≥ 0

where M1, . . .Mr are infinitesimally irreducible simple semi-symmetric leaves or Riemannian 2-manifolds.

Note that the direct product decomposition may vary in the different connnected components of U .
Special attention should be paid for semi-symmetric 3-spaces. Indeed, as pointed out in [13, p. 29], 3-

dimensional semi-symmetric real cones exist as cones over Riemannian 2-manifolds of constant curvature.
Those semi-symmetric spaces are not appeared explicitly in the classification due to Szabó, since those are
special examples of foliated semi-symmetric 3-spaces.

3. The pseudo-symmetry

3.1. The pseudo-parallelism

The derivativeR1 ·R is called the Tachibana tensor field. Take two tangent planes Π1 = X ∧ Y and Π2 = U ∧ V ,
the Deszcz-sectional curvature L(Π1,Π2) is defined by (see [45, 46]):

L(Π1,Π2) =
(R ·R)(X,Y, Y,X;U, V )

(R1 ·R)(X,Y, Y,X;U, V )
.

One can see that L(Π1,Π2) is independent of the choice of basis of Π1 and Π2.
As like the determination of R through the sectional curvatures, one can show that at any point of M , R ·R

is completely determined by the knowledge of Deszcz sectional curvatures. Motivated by these observations,
the notion of pseudo-parallelism was introduced in the following mannar.

Definition 3.1. Let (M, g) be a Riemannian manifold. A tensor field P on M of type (1, r) is said to be pseudo-
parallel if there exits a smooth function L such that

R · P = LR1 · P.

More precisely,
R(X,Y ) · P = L(X ∧ Y ) · P

holds for all vector fields X and Y on M .

A tensor field P of type (1, r) is said to be properly pseudo-parallel if it is pseudo-parallel but not semi-parallel.
The notion of pseudo-symmetry is introduced by Deszcz as follows:

Definition 3.2. A Riemannian manifold (M, g) is said to be pseudo-symmetric if there exists a function L such
that

R ·R = LR1 ·R.

In particular, a pseudo-symmetric Riemannian manifold is called a pseudo-symmetric space of constant type if L
is constant [77].

In particular, pseudo-symmetric Riemannian manifolds of constant type with L = 0 are called semi-symmetric
Riemannian manifolds.

Obviously, locally symmetric Riemannian manifolds are pseudo-symmetric. A Riemannian manifold is said
to be a proper pseudo-symmetric space if its Riemannian curvature is properly pseudo-parallel. Deszcz initiated
studies on pseudo-symmetric Riemannian manifolds [2, 28]. Note that the tensor field R1 ·R is called the
Tachibana tensor field [101].
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3.2. Three dimensional pseudo-symmetry

The pseudo-symmetry is introduced as a generalization of local symmetry as well as semi-symmetry. The
following characterization of pseudo-symmetry for Riemannian 3-manifolds is deduced.

Proposition 3.1. A Riemannian 3-manifold (M3, g) is a pseudo-symmetric space with R ·R = LR1 ·R if and only if
the principal Ricci curvatures (eigenvalues of the Ricci tensor) locally satisfy the following relations (up to numeration):

ρ1 = ρ2, ρ3 = 2L.

Note that when ρ1 = ρ2 = ρ3, (M3, g) is Einstein, i.e., it is of constant curvature.

Corollary 3.1. A Riemannian 3-manifold (M3, g) of non-constant curvature is semi-symmetric if and only if the
principal Ricci curvatures locally satisfy the following relations (up to numeration):

ρ1 = ρ2, ρ3 = 0.

3.3. Harmonic maps

Let (M, g) and (N, gN ) be Riemannian manifolds and f :M → N a smooth map. We denote by f∗TN the
pull-back bundle of TN by f , that is,

f∗TN =
⋃
p∈M

Tf(p)N.

A section of f∗TN is called a vector field along f . The Levi-Civita connection N∇ induces a connection ∇f on
f∗TN .

The second fundamental form ∇df of f is defined by

(∇df)(Y ;X) = ∇f
Xdf(Y )− df(∇XY ), X, Y ∈ Γ (TM).

The tension field τ(f) of f is a vector field along f defined by

τ(f) = trg (∇df) ∈ Γ (f∗TN).

Let {ei}mi=1 be a local orthonormal frame field of M (m = dimM ) and trg is the metrical trace operator with
respect to g. Namely the tension field τ(f) is computed as

τ(f) =

m∑
i=1

(∇df)(ei; ei) =

m∑
i=1

{
N∇df(ei)(df(ei))− df(∇eiei)

}
. (3.1)

Definition 3.3. A smooth map f :M → N between Riemannian manifolds is said to be a harmonic map if it is a
critical point of the Dirichlet energy

E(f ;D) =

∫
D

e(f) dvg, e(f) :=
1

2
||df ||2 =

1

2

m∑
i=1

gN (df(ei),df(ei))

over any compact region D of M . Here dvg is the volume element of M .

As is well known a smooth map f is harmonic if and only if its tension field vanishes.

3.4. Harmonic and minimal vector fields

Let (M, g) be a Riemannianm-manifold with unit tangent sphere bundle UM . We equip the Sasaki-lift metric
gs on UM . Denote by X1(M) the space of all smooth unit vector fields on M . Every unit vector field V ∈ X1(M)
is regarded as an immersion of M into UM .

A unit vector field V ∈ X1(M) is said to be minimal if it is a critical point of the volume functional on X1(M).
It is known that V is a minimal unit vector field if and only if it is a minimal immersion with respect to the
pull-backed metric V ∗gs.

On the other hand, one can consider the Dirichlet energy

E(X;D) =

∫
D

1

2
||dX||2 dvg
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of a unit vector field X over a compact region D of M . When M is compact we have

E(X;M) =
m

2
Vol(M) +

∫
M

1

2
||∇X||2dvg.

A unit vector field is said to be a harmonic unit vector field if it is a critical point of the Dirichlet energy through
compactly supported variations. The corresponding critical point condition is (cf. [38]):

∆g X = ||∇X||2X,

where ∆g is the rough Laplacian defined by

∆g = −
m∑
i=1

(
∇ei∇ei −∇∇ei

ei

)
.

Here {e1, e2, . . . , em} is a local orthonormal frame field of M as before.
A harmonic unit vector field is a harmonic map if is satisfies, in addition,

trgR(∇X,X) =

m∑
i=1

R(∇eiX,X)ei = 0. (3.2)

For more information on harmonic unit vector fields, see [38].

4. Three dimensional Lie groups

4.1. Unimodularity

Let G be a Lie group with a Lie algebra g and a left invariant Riemannian metric ⟨·, ·⟩. Then the Levi-Civita
connection ∇ of (G, ⟨·, ·⟩) is described by the Koszul formula:

2⟨∇XY,Z⟩ = −⟨X, [Y,Z]⟩+ ⟨Y, [Z,X]⟩+ ⟨Z, [X,Y ]⟩, X, Y, Z ∈ g.

A Lie group G is said to be unimodular if its left invariant Haar measure is right invariant. Milnor gave an
infinitesimal reformulation of unimodularity for 3-dimensional Lie groups. We recall it briefly here.

Let g be a 3-dimensional oriented Lie algebra with an inner product ⟨·, ·⟩. Denote by × the vector product
operation of the oriented inner product space (g, ⟨·, ·⟩). The vector product operation is a skew-symmetric
bilinear map × : g× g → g which is uniquely determined by the following conditions:

(i) ⟨X,X × Y ⟩ = ⟨Y,X × Y ⟩ = 0,
(ii) ⟨X × Y,X × Y ⟩ = ⟨X,X⟩⟨Y, Y ⟩ − ⟨X,Y ⟩2,

(iii) if X and Y are linearly independent, then det(X,Y,X × Y ) > 0

for all X,Y ∈ g. On the other hand, the Lie-bracket [·, ·] : g× g → g is a skew-symmetric bilinear map.
Comparing these two operations, we get a linear endomorphism Lg which is uniquely determined by the
formula

[X,Y ] = Lg(X × Y ), X, Y ∈ g.

Now let G be an oriented 3-dimensional Lie group equipped with a left invariant Riemannian metric. Then the
metric induces an inner product on the Lie algebra g. With respect to the orientation on g induced from G, the
endomorphism field Lg is uniquely determined. The unimodularity of G is characterized as follows.

Proposition 4.1. ([78]) Let G be an oriented 3-dimensional Lie group with a left invariant Riemannian metric. Then G
is unimodular if and only if the endomorphism Lg is self-adjoint with respect to the metric.

Let G be a Lie group with Lie algebra g. Denote by ad the adjoint representation of g,

ad : g → End(g); ad(X)Y = [X,Y ].

Then one can see that tr ad;
X 7−→ tr ad(X)
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is a Lie algebra homomorphism into the commutative Lie algebra R. The kernel

u = {X ∈ g | tr ad(X) = 0}

of tr ad is an ideal of g which contains the ideal [g, g].
Now we equip a left invariant Riemannian metric ⟨·, ·⟩ on G. Denote by u⊥ the orthogonal complement of u

in g with respect to ⟨·, ·⟩. Then the homomorphism theorem implies that dim u⊥ = dim g/u ≤ 1.
The following criterion for unimodularity is known (see [78, p. 317]).

Lemma 4.1. A Lie group G with a left invariant metric is unimodular if and only if u = g.

Based on this criterion, the ideal u is called the unimodular kernel of g.

4.2. Non-unimodular Lie groups

For a 3-dimensional non-unimodular Lie group G, its unimodular kernel u is commutative and of 2-
dimension. On a non-unimodular Lie algebra g, we can take an orthonormal basis {E1, E2, E3} such that E3 is
orthogonal to u. The representation matrix A of ad(E3) : u → u relative to the basis {E1, E2} is expressed as

A =

(
a11 a12
a21 a22

)
̸= O.

Then the commutation relations of the basis are given by

[E3, E1] = a11E1 + a21E2, [E3, E2] = a12E1 + a22E2, [E1, E2] = 0

with trA = a11 + a22 ̸= 0. These commutation relations imply that g is solvable.

Remark 4.1. Milnor [78] chose the following orthonormal basis {E1, E2, E3} for a non-unimodular Lie group G
with left invariant Riemannian metric.

E3 ∈ u⊥, ⟨ad(E3)E1, ad(E3)E2⟩ = 0.

Under this choice, the representation matrix A = (aij) satisfies

trA = a11 + a22 ̸= 0, a11a12 + a21a22 = 0.

Moreover {E1, E2, E3} diagonalises the Ricci operator (cf. [49]). In this paper we do not assume this
orthogonality condition ⟨ad(E3)E1, ad(E3)E2⟩ = 0 (cf. [50]).

Non-unimodular Lie algebras g = gA are classified by the Milnor invariant D := detA. More precisely we
know the following result (see [78, Lemma 4.10, p.320]).

Proposition 4.2 ([78]). For any pair of real 2 by 2 matrices A and A′ which are not scalar matrices, the non-unimodular
Lie algebras gA and gA′ are isomorphic if and only if trA = trA′ and their Milnor invariants D and D′ agree.

Corollary 4.1. Let GA and GA′ be 3-dimensional non-unimodular Lie groups equipped with left invariant Riemannian
metrics. Assume that both A and A′ are not scalar matrices. Then GA and GA′ are isometric and isomorphic as Lie groups
each other if and only if trA = trA′, D = D′ and the sets of principal Ricci curvatures are coincide.

Remark 4.2. In [105] Tasaki and Umehara introduced an invariant of 3-dimensional Lie algebras equipped with
inner products. Their invariant χ(gA) for the non-unimodular Lie algebra gA is 4/D. Note that in case D = 0,
χ(gA) is regarded as ∞.

The Levi-Civita connection ∇ is described as

∇E1
E1 = a11E3, ∇E1

E2 =
a12 + a21

2
E3, ∇E1

E3 = −a11E1 −
a12 + a21

2
E2,

∇E2E1 =
a12 + a21

2
E3, ∇E2E2 = a22E3, ∇E2E3 = −a12 + a21

2
E1 − a22E2, (4.1)

∇E3
E1 =

a21 − a12
2

E2, ∇E3
E2 =

a12 − a21
2

E1, ∇E3
E3 = 0.
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The Riemannian curvature R is described as

R(E1, E2)E1 =−K12E2, R(E1, E2)E2 = K12E2, , R(E1, E2)E3 = 0,

R(E2, E3)E1 =(a11a12 + a21a22)E3, R(E2, E3)E2 = −K23E3,

R(E2, E3)E3 =− (a11a12 + a21a22)E1 +K23E2,

R(E3, E1)E1 =K13E3, R(E3, E1)E2 = −(a11a12 + a21a22)E3,

R(E3, E1)E3 =−K13E1 + (a11a12 + a21a22)E2,

where

K12 = K(E1 ∧ E2) =− a11a22 +
1

4
(a12 + a21)

2,

K13 = K(E1 ∧ E3) =− a211 +
1

4
(a212 − a221)−

a21
2

(a12 + a21),

K23 = K(E1 ∧ E3) =− a222 −
1

4
(a212 − a222)−

a12
2

(a12 + a21).

The Ricci tensor field ρ has components ρij = ρ(Ei, Ej);

ρ11 =− a11(a11 + a22) +
1

2
(a212 − a221), ρ12 = −a11a12 + a21a22, ρ13 = 0,

ρ22 =− a22(a11 + a22)−
1

2
(a212 − a221), ρ23 = 0,

ρ33 =− (a211 + a222)−
1

2
(a12 + a21)

2.

Remark 4.3. If we choose {E1, E2, E3} satisfying the orthogonality condition ⟨ad(E1)E1, ad(E1)E2⟩ = 0, then the
Ricci operator S is diagonalized by {E1, E2, E3}.

The Lie algebra gA is realized as a Lie subalgebra of gl3R spanned by the basis

E1 =

 0 0 1
0 0 0
0 0 0

 , E2 =

 0 0 0
0 0 1
0 0 0

 , E3 =

 a11 a12 0
a21 a22 0
0 0 0

 .

The simply connected Lie group G̃A corresponding to the non-unimodular Lie algebra gA is given explicitly by

G̃A =


 α11(z) α12(z) x

α21(z) α22(z) y
0 0 1

 ∣∣∣∣∣∣ x, y, z ∈ R

 , (4.2)

where αij(z) is the (i, j)-entry of exp(zA). This shows that G̃A is the semi-direct product R2 ⋊R with
multiplication

(x, y, z) · (x′, y′, z′) = (x+ α11(z)x
′ + α12(z)y

′, y + α21(z)x
′ + α22(z)y

′, z + z′). (4.3)

These vectors E1, E2 and E3 are regarded as left invariant vector fields

E1 = α11(z)
∂

∂x
+ α21(z)

∂

∂y
, E2 = α12(z)

∂

∂x
+ α22(z)

∂

∂y
, E1 =

∂

∂z
.

The normal subgroup U = R2 ⋊ {0} of G̃A with Lie algebra u will be called the canonical normal subgroup of G̃A

[67].
Let us choose E3 as a unit normal vector field of U in G̃A. Then the shape operator AU derived from E3 has

components

AU =

(
a11 (a12 + a21)/2

(a12 + a21)/2 a22

)
relative {E1, E2}. The extrinsic curvature Kext(U) of U is

Kext(U) = detAU = a11a22 − (a12 + a21)
2/4 = D− 1

4
(a12 − a21)

2 ≤ D.

Hence the Gauß curvature KU is 0. The canonical normal subgroup U is a flat surface with constant mean
curvature trA/2.
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Example 4.1 (Hyperbolic 3-space). When A is a nonzero scalar matrix A = kI , then G̃A is isometric to the
hyperbolic 3-space of curvature −k2. The matrix A has trA = 2k and D = k2 > 0. The Lie group A = −I will be
appeared as G̃(0, 0) in Example 9.1 and Example 9.2 and S(−1) in Example 9.5.

On the other hand, when a11 = a22 = k and a21 = −a12 = β, then trA = 2k and D = k2 + β2 > 0. The Lie
group GA is also isometric to hyperbolic 3-space of curvature −k2. This Lie group with k = −1 will appear in
Example 9.1 as G̃(β, β). The canonical normal subgroup of the hyperbolic 3-space H3(−1) is nothing but the
horosphere.

Example 4.2 (Product space). IfA is a diagonal matrix of the form a11 = −k ̸= 0 and a22 = 0, thenK12 = K23 = 0

and K13 = −k2 < 0. The Lie group G̃A is isometric to the product space H2(−k2)×R. Analogously if A is a
diagonal matrix of the form a11 = 0 and a22 = −k ̸= 0, then K12 = K13 = 0 and K23 = −k2 < 0. The Lie group
G̃A is isometric to the product space H2(−k2)×R. In these cases, trA = −k ̸= 0, D = 0 and principal Ricci
curvatures are −k2, −k2 and 0. Note that H2(−k2)×R is locally symmetric.

5. Almost contact Riemannian manifolds

In this section we recall fundamental ingredients of almost contact Riemannian geometry. In addition we
recall some curvatures of our interest. For general information on almost contact Riemannian geometry, we
refer to [6].

5.1. Almost contact structures

An almost contact Riemannian structure of a (2n+ 1)-manifold M is a quartet (φ, ξ, η, g) of structure tensor
fields which satisfies:

η(ξ) = 1, (5.1)

φ2 = −I + η ⊗ ξ, φξ = 0, (5.2)

g(φX,φY ) = g(X,Y )− η(X)η(Y ). (5.3)

A (2n+ 1)-manifold M = (M,φ, ξ, η, g) equipped with an almost contact Riemannian structure is called an
almost contact Riemannian manifold. The vector field ξ is called the characteristic vector field of M .

The 2-form
Φ(X,Y ) = g(X,φY )

is called the fundamental 2-form of M .
The foliation defined by the characteristic vector field ξ is called the characteristic foliation. The following

result is known (see e.g. [12, p. 196], [15]).

Proposition 5.1. On an almost contact Riemannian manifold M = (M,φ, ξ, η, g), the following properties are mutually
equivalent:

• The characteristic foliation is taut.
• ∇ξξ = 0, where ∇ is the Levi-Civita connection of g.
• £ξη = 0, where £ξ is the Lie-differentiation by ξ.
• dη(ξ, ·) = 0.

Definition 5.1. An almost contact Riemannian manifold M is said to be weakly η-Einstein if its Ricci operator S
has the form

S = A I + Bη ⊗ ξ

for some functions A and B. When both A and B are constant, M is said to be η-Einstein.

Here we recall an auxiliary endomorphism fields h and ℓ which are highly useful for the study of almost
contact Riemannian manifolds. The endomorphism field h is defined by h = £ξφ/2. Next, we introduce a self-
adjoint endomorphism field ℓ by

ℓ(X) = R(X, ξ)ξ, X ∈ X(M).

One can see that ℓ = −Fξ on the distribution D. The self-adjoint operator ℓ is called the characteristic Jacobi
operator of M .
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5.2. Normality and CR-structures

On an almost contact Riemannian manifold M , we define a complex vector subbundle S of the complexified
tangent bundle TCM by

S = {X −
√
−1φX |X ∈ Γ (D)},

where D is the hyperplane field
D = {X ∈ TM | η(X) = 0}.

The complex vector bundle S is called an almost CR-structure associated to M . If S satisfies the integrability
condition

[Γ (S), Γ (S)] ⊂ Γ (S),

then M is said to be integrable. To avoid the confusion with "integrability of D" , we often say that M is CR-
integrable if S is integrable. It is known that M is CR-integrable if and only if

[φ,φ](X,Y ) + 2dη(X,Y )ξ = 0

for all X , Y ∈ Γ (D). Here [φ,φ] is the Nijenhuis torsion of φ.
More strongly, an almost contact Riemannian manifold M is said to be normal if

N(X,Y ) := [φ,φ](X,Y ) + 2dη(X,Y )ξ = 0

for all X , Y ∈ Γ (TM).

5.3. Some curvature tensor fields

Definition 5.2. Let (M,φ, ξ, η, g) be an almost contact Riemannian manifold. A tangent plane Πp at p ∈M is
said to be holomorphic if it is invariant under φp.

It is easy to see that a tangent plane Πp is holomorphic if and only if ξp is orthogonal to Πx.
In case dimM = 3, the only holomorphic plane at p is Dp = {X ∈ TpM | η(X) = 0}. Hence we obtain a smooth

function H on M defined by Hp = K(Dp). The smooth function H is called the holomorphic sectional curvature of
M .

Next, we define a tensor field ρ∗ on M by (cf. [81]):

ρ∗(X,Y ) :=
1

2
trR(X,φY )φ.

One can see that ρ∗(X, ξ) = 0 for all X ∈ X(M). It should be remarked that ρ∗ is not symmetric, in general. Next
we denote by ρφ the symmetric part of ρ∗, that is,

ρφ(X,Y ) =
1

2
{ρ∗(X,Y ) + ρ∗(Y,X)}.

We call ρφ the φ-Ricci tensor field of M [24].

Definition 5.3. An almost contact Riemannian manifold M is said to be a weakly φ-Einstein manifold if

ρφ(X,Y ) = λgφ(X,Y ), X, Y ∈ X(M)

for some function λ. Here the symmetric tensor field gφ is defined by

gφ(X,Y ) = g(φX,φY ), X, Y ∈ X(M).

When λ is a constant, then M is said to be a φ-Einstein manifold. The function sφ = tr ρφ is called the φ-scalar
curvature of M .

When M is weakly φ-Einstein, then we have ρφ = {sφ/(2n)}gφ.
Remark 5.1. An almost contact Riemannian manifold M is said to be weakly ∗-Einstein if

ρ∗(X,Y ) = λg(X,Y ), X, Y ∈ Γ (D)

for some function λ. The function s∗ = tr ρ∗ is called the ∗-scalar curvature of M . A weakly ∗-Einstein manifold
of constant ∗-scalar curvature is called a ∗-Einstein manifold. Clearly sφ = s∗.

dergipark.org.tr/en/pub/iejg 478

https://dergipark.org.tr/en/pub/iejg


J. Inoguchi

To close this subsection we recall the following definition (cf. Kimura-Maeda [72]):

Definition 5.4. Let M be an almost contact Riemannian manifold. A tensor field P on M of type (1, r) is said
to be η-parallel if

g((∇XP )(Y1, Y2, · · · , Yr), Z) = 0

for all vector fields X , Y1, Y2 · · · , Yr, Z ∈ Γ (D).

The following notion was introduced by the present author [53] (see also Kon [75]).

Definition 5.5 ([53]). Let M be an almost contact Riemannian manifold. A tensor field P on M of type (1, r) is
said to be strongly η-parallel if

g((∇XP )(Y1, Y2, · · · , Yr), Z) = 0

for all vector fields X ∈ Γ (TM) and Y1, Y2 · · · , Yr, Z ∈ Γ (D).

In addition we introduce the following notion:

Definition 5.6 ([65]). Let M be an almost contact Riemannian manifold. A tensor field P on M of type (1, r) is
said to be dominantly η-parallel if

g((∇XP )(Y1, Y2, · · · , Yr), Z) = 0

for all vector fields X , Y1, Y2 · · · , Yr ∈ Γ (TM) and Z ∈ Γ (D).

We extend the notion of η-parallelism to scalar fields:

Definition 5.7 ([65]). A scalar field f on an almost contact Riemannian manifold M is said to be η-parallel if

df(X) = 0

for all vector field X ∈ Γ (D).

Here we introduce the η-parallelism for endomorphism fields and scalar fields:

Definition 5.8. An endomorphism field F on an almost contact metric manifold M is said to be

• η-parallel if it satisfies g((∇XF )Y,Z) = 0 for all vector fields X , Y and Z on M orthogonal to ξ.
• strongly η-parallel if it satisfies g((∇XF )Y,Z) = 0 for all vector field X on M and any vector fields Y and
Z on M orthogonal to ξ.

• dominantly η-parallel if it satisfies g((∇XF )Y, Z) = 0 for all vector fields X and Y on M and any vector
field Z on M orthogonal to ξ.

Here we mention a notion which is related to the η-parallelism. According to Blair [5], an endomorphism
field F on an almost contact Riemannian manifold M is said to be Killing if it satisfies (∇XF )X = 0 for all
vector fields on M . More generally F is said to be transversally Killing if (∇XF )X = 0 for all vector field X
on M orthogonal to ξ [23]. In [87, Remark 1.2], the authors claimed that the transversal Killing property for
the Ricci operator S of an almost contact Riemannian 3-manifold is much weaker than the η-parallelism of S.
However from the table (10.1)–(10.18) given in Section 10.2, "transversal-Killing S" is stronger than "η-parallel
S".

5.4. The local φ-symmetry

An almost contract Riemannian manifold M = (M,φ, ξ, η, g) is said to be a contact Riemannian manifold if
Φ = dη. On a contact Riemannian manifold M , the 1-form η is a contact form.

Remark 5.2. A 1-form η on a (2n+ 1)-manifold M is called a contact form if it satisfies (dη)n ∧ η ̸= 0 on whole
M . A (2n+ 1)-manifold M equipped with a contact form η is called a contact manifold (in the strict sense). On a
contact manifold (M,η), there exits a unique vector field ξ satisfying η(ξ) = 1 and dη(ξ, ·) = 0. The vector field ξ
is called the Reeb vector field of (M,η). Moreover there exist an endomorphism field φ and a Riemannian metric
g so that the quartet (M,φ, ξ, η, g) is a contact Riemannian manifold.

A contact Riemannian manifoldM is said to be aK-contact manifold if its Reeb vector field ξ is a Killing vector
field. A Sasakian manifold is a normal contact Riemannian manifold. One can see that Sasakian manifolds are
K-contact. Only in dimension 3, the converse holds.
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The η-parallelism of the Riemannian curvature was investigated first by Takahashi [102] for Sasakian
manifolds. Buken and Vanhecke pointed out that if a K-contact manifold M has η-parallel Riemannian
curvature, then M is Sasakian [11]. A K-contact manifold M is said to be a (Sasakian) φ-symmetric space (in the
sense of Takahashi) if its Riemannian curvature R is η-parallel. A K-contact manifold M is locally φ-symmetric
if and only if all the characteristic reflections are isometric [11, 102]. There are two directions to generalize
the local φ-symmetry to general almost contact Riemannian manifolds. Blair, Koufogiorgos and Sharma [7]
introduced the notion of local φ-symmetry for general contact Riemannian manifolds by the η-parallelism ofR.
On the other hand, Boeckx and Vanhecke [10] defined the local φ-symmetry of contact Riemannian manifolds
by the property "all the characteristic reflections are isometric". To distinguish these two classes, Boeckx, Buken
and Vanhecke [8] proposed the terminologies "strongly locally φ-symmetric space" and "weakly locally φ-
symmetric space". According to [8], a contact Riemannian manifold is said to be a weakly locally φ-symmetric
space if its Riemannian curvature R is η-parallel. On the other hand, a contact Riemannian manifold is said
to be a strongly locally φ-symmetric space if all the characteristic reflections are isometric. They showed that
strongly locally φ-symmetric spaces are weakly locally φ-symmetric. For more information on weakly locally
φ-symmetric contact Riemannian 3-manifolds, we refer to [89].

Now let us consider almost contact Riemannian 3-manifolds. From the formula of ∇R, we deduce the
following facts:

Proposition 5.2. On an almost contact Riemannian 3-manifold M , if the Ricci operator S and scalar curvature s are
η-parallel, then so is the Riemannian curvature R.

Conversely, if the Riemannian curvature R is η-parallel, then the Ricci operator S is η-parallel if and only if

η((∇WR)(ξ,X)Y ) = 0 (5.4)

holds for all vector fields W , X and Y orthogonal to ξ.

Proof. (⇒): Assume that both S and s are η-parallel, then from (2.2) R is η-parallel.
(⇐): Conversely, take a local orthonormal frame field of the form {e1, e2 = φe1, e3 = ξ}, then under the

assumption R is η-parallel, from (2.3), we obtain

g((∇WS)X,Y ) = η((∇WR)(ξ,X)Y )

for all W , X and Y orthogonal to ξ. Thus the η-parallelism of S is equivalent to (5.4).

Remark 5.3. Obviously, η-parallelism of R together with the η-parallelism of S implies that of s.

While the local symmetry is equivalent to the parallelism of the Ricci operator on arbitrary Riemannian 3-
manifolds, especially almost contact metric 3-manifolds, the η-parallelism of R is not equivalent to that of S on
almost contact metric 3-manifolds.

Remark 5.4. In [29, 30], De and Pathak defined local φ-symmetry and φ-symmetry in the following manner:

• An almost contact Riemannian manifold M is said to be locally φ-symmetric if

φ2((∇WR)(X,Y )Z) = 0

for all vector fields X , Y , Z and W orthogonal to M .
• An almost contact Riemannian manifold M is said to be φ-symmetric if

φ2((∇WR)(X,Y )Z) = 0

for all vector fields X , Y , Z and W on M .

Obviously the local φ-symmetry in the sense of [29, 30] coincides with the η-parallelism of R, i.e., the weak
local φ-symmetry.

On the other hand, the φ-symmetry in the sense of [29, 30] is equivalent to

g((∇WR)(X,Y )Z, V ) = 0

for all vector fields X , Y , Z and W on M and vector field V orthogonal to ξ. This is equivalent to the dominant
η-parallelism of R.
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5.5. Almost Kenmotsu manifolds

Now we turn our attention to almost Kenmotsu manifolds.

Definition 5.9 ([68]). An almost contact Riemannian manifold M is said to be almost Kenmotsu if dη = 0 and
dΦ = 2η ∧ Φ. An almost Kenmotsu manifold is said to be Kenmotsu if it is normal.

A non-normal almost Kenmotsu manifold is called a strictly almost Kenmotsu manifold.
Remark 5.5. An almost contact Riemannian manifold M is said to be almost α-Kenmotsu if dη = 0 and dΦ =
2αη ∧ Φ for some non-zero constant α [71]. On the other hand, M is said to be an α-cosymplectic manifold (or
α-coKähler manifold) if dη = 0 and dΦ = 2αη ∧ Φ for some constant α.
Remark 5.6. Let M be an almost contact Riemannian manifold. Consider the Riemannian product M ×R of M
and the real line. Then one can extend the almost contact structure to an almost complex structure J on M ×R.
Then the normality of M is equivalent to the integrability of J (see [6]). In particular if M is Kenmotsu, then
M ×R is a locally conformal Kähler manifold with parallel anti Lee field (see [55]).

It should be remarked that every almost Kenmotsu manifold satisfies div ξ = 2n. Hence almost Kenmotsu
manifolds can not be compact. On an almost Kenmotsu manifold, we have [34, 36]:

φ ◦ ℓ ◦ φ− ℓ = 2(h2 − φ2), ∇ξh = −φ− 2h− φ ◦ h2 − φ ◦ ℓ, tr ℓ = −2n− tr(h2).

Since dη = 0 on an almost Kenmotsu manifold M , we have £ξη = 0 (cf. Proposition 5.1). In addition, the
hyperplane field D satisfies [D, ξ] ⊂ D. The Levi-Civita connection ∇ satisfies [71]:

∇ξξ = 0, ∇ξφ = 0, ∇ξD ⊂ D.

The distribution D on an almost Kenmotsu manifold M is integrable and hence it defines a foliation F on M .
This foliation is called the canonical foliation of M [71].

Let us consider a leaf L of the canonical foliation of an almost Kenmotsu manifold M . Then we choose ξ as
a unit normal vector field of L in M . The shape operator A of L derived from ξ is introduced by the Weingarten
formula

AX = −∇Xξ = −X + φhX

for any vector field X tangents to L. We extend A to an endomorphism field on M by AX = −∇Xξ for all
X ∈ X(M).

Kim and Park showed the following fact:

Proposition 5.3 ([71]). The leaves of the canonical foliation are almost Kähler manifolds with mean curvature vector
field −ξ. Those leaves are totally umbilical if and only if h = 0.

An almost Kenmotsu manifold M is said to be an almost Kenmotsu manifold with Kähler leaves if leaves of the
canonical foliation are Kähler manifolds.

Theorem 5.1 ([71, 36]). An almost Kenmotsu manifold M has Kähler leaves if and only if

(∇Xφ)Y = g((φ+ h)X,Y )ξ − η(Y )(φ+ h)X. (5.5)

In such a case we have
∇Xξ = (I + hφ)X − η(X)ξ.

Dileo and Pastore obtained the following result.

Proposition 5.4 ([34]). Let M be an almost Kenmotsu manifold with Kähler leaves. Then M is Kenmotsu if and only if
∇ξ = −φ2.

Remark 5.7 (para-Sasakian structure). The Kenmotsu structure is closely related to the para-Sasakian structure.
A quintet (ψ, ξ, η, g) of tensor fields on a manifold M is said to be an almost paracontact Riemannian structure if it
satisfies

ψ2 = I− η ⊗ ξ, η(ξ) = 1, g(ψX,ψY ) = g(X,Y )− η(X)η(Y ), η = g(ξ, ·).
One can see that g(ψX, Y ) = g(X,ψY ). The type (p, q) is the signature of the symmetric tensor field Ψ(X,Y ) =
g(ψX, Y ).

A manifold M equipped with an almost paracontact Riemannian structure is called an almost paracontact
Riemannian manifold.

An almost paracontact Riemannian manifold M is said to be para-Sasakian if ψ = ∇ξ and satisfies

(∇Xψ)Y = −g(X,Y )ξ − η(Y )X + 2η(X)η(Y )ξ.
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Corollary 5.1 ([56]). LetM = (M,φ, ξ, η, g) be a Kenmotsu manifold. Then (M,∇ξ, ξ, η, g) is a para-Sasakian manifold
of type (2n, 0).

To rewrite Proposition 5.4 here we recall the operator h′ := h ◦ φ.

Proposition 5.5 (cf. [71]). The operator h′ on an almost Kenmotsu manifold M satisfies

h′ = ∇ξ + φ2, h′ = −φ ◦ h, h′ ◦ φ+ φ ◦ h′ = 0, h′ξ = 0, tr h′ = 0.

Thus h′ = 0 if and only if ∇ξ = −φ2. The Kenmotsu property is characterized as follows:

Proposition 5.6. Let M be an almost Kenmotsu manifold with Kähler leaves. Then M is Kenmotsu if and only if h′ = 0.

Example 5.1 (Warped products). Let (M, ḡ, J) be an almost Kähler manifold of dimension 2n ≥ 2. We consider
the warped product manifold M = R×cet M with structure

g = dt2 + c2e2tḡ, ξ = ∂t, η = dt,

where c is a positive constant. Then we introduce an endomorphism field φ by

φX = JX, φξ = 0, X ∈ Γ (TM).

Then one can check that (M,φ, ξ, η, g) is an almost Kenmotsu manifold satisfying h = h′ = 0. Moreover M is
Kenmotsu if and only if M is Kähler.

In particular the warped product model

H2n+1(−1) = R×cet Cn

of the hyperbolic space H2n+1(−1) of curvature −1 is a Kenmotsu manifold.

Local structure of almost Kenmotsu manifolds with h = 0 is described as follows:

Proposition 5.7 ([34]). If an almost Kenmotsu manifold M satisfies h = 0, then M is locally isomorphic to the warped
product I ×f M , where I is an interval, M is an almost Kähler manifold and f(t) = cet for some positive constant c.

Example 5.2 (Product manifold). Let us consider the upper half plane model

H2(−k2) = ({(u, v) ∈ R2 | v > 0}, ḡ), ḡ =
du2 + dv2

k2v2

of the hyperbolic plane of curvature −k2 < 0. On the Riemannian product M = H2(−k2)×R, we introduce a
strictly almost Kenmotsu structure on M . The product manifold M is realized as the following linear Lie group

G =


 v u 0

0 1 0
0 0 w

 ∣∣∣∣∣∣ u, v, w ∈ R, v > 0

 .

The Lie algebra g is spanned by the basis

ϵ1 =

 0 k 0
0 0 0
0 0 0

 , ϵ2 =

 k 0 0
0 0 0
0 0 0

 ϵ3 =

 0 0 0
0 0 0
0 0 1

 .

The left invariant vector fileds induced from this basis are

ϵ1 = (kv)
∂

∂u
, ϵ2 = (kv)

∂

∂v
, ϵ3 =

∂

∂t
.

The Levi-Civita connection ∇ is described as

∇ϵ1ϵ1 = k ϵ2, ∇ϵ1ϵ2 = −k ϵ1, ∇ϵiϵj = 0 for other i, j.

The Riemannian curvature R is given by

R(ϵ1, ϵ2)ϵ1 = k2ϵ2, R(ϵ1, ϵ2)ϵ2 = −k2ϵ1, R(ϵi, ϵj)ϵk = 0 for other i, j, k.
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Hence the sectional curvatures K(ϵi ∧ ϵj) are computed as

K(ϵ1 ∧ ϵ2) = −k2, K(ϵ1 ∧ ϵ3) = K(ϵ2 ∧ ϵ3) = 0.

Here we compare G with G̃A given in (4.2). Set

E1 = ϵ1, E2 = ϵ3, E3 = −ϵ2.

Then the unimodular kenel u is spanned by {E1, E2}. Then the representation matrix A of ad(E3) is

A =

(
−k 0
0 0

)
. (5.6)

Hence G is isometric and isomorphic to the non-unimodular Lie group

G̃A =


 e−kz 0 x

0 1 y
0 0 1

 ∣∣∣∣∣∣ x, y, z ∈ R


with representation matrix (5.6). The left invariant metric is expressed as

e2kzdx2 + dy2 + dz2.

In fact G and G̃A are isometric under the isometry

u := kx, v := e−kz, t := y. (5.7)

Define a left invariant almost contact structure (φ, ξ, η) compatible to the product metric g = ḡ + dt2 by

ξ = −ϵ2, η = −dv

kv
, φϵ1 = −ϵ3, φϵ2 = 0, φϵ3 = ϵ1.

Then we obtain
dΦ = k η ∧ Φ.

Hence if we choose k = 2, M is a strictly almost Kenmotsu 3-manifold. This example will appear in Example
9.7.

Every almost Kenmotsu manifold satisfies

2g((∇Xφ)Y,Z) = 2η(Z)g(φX, Y )− 2η(Y )g(φX,Z) + g(N(Y,Z), φX).

From this we can deduce that M is CR-integrable if and only if φ is η-parallel, that is

g((∇Xφ)Y,Z) = 0

for all X , Y and Z ∈ Γ (D).
Thus we arrive at the following fundamental facts (see e.g., [32, 36]).

Theorem 5.2. Let M be an almost Kenmotsu manifold. Then the following properties are mutually equivalent:

• M has Kähler leaves.
• The associated almost CR-structure is integrable.
• The endomorphism field φ is η-parallel.
• The covariant derivatie ∇φ is given by (5.5).

Theorem 5.3. Let M be an almost Kenmotsu manifold. Then the following properties are mutually equivalent:

• h = 0.
• h′ = 0.
• The canonical foliation is totally umbilical.
• M is locally isomorphic to a warped product of a real line and an almost Kähler manifold.
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Proposition 5.8 ([34]). An almost Kenmotsu manifold is of constant curvature, then it is a Kenmotsu manifold of
constant curvature −1.

On the other hand, Dileo and Pastore [35, Proposition 4] showed the following fact:

Proposition 5.9. Let M be an almost Kenmotsu manifold. If h′ is η-parallel and 0 is a simple eigenvalue of it, then the
associated almost CR-structure is integrable.

Dileo and Pastore obtained a local classification of almost Kenmotsu manifolds with η-parallel h′ and
satisfying ∇ξh

′ = 0 [35] (see also [32, 33]).

Theorem 5.4. Let M2n+1 be an almost Kenmotsu manifold with η-parallel h′. Assume that ∇ξh
′ = 0. Denote by

{0, λ1,−λ1, . . . , λr,−λr} the spectrum of h′ with λi > 0. Letmi and 2m0 + 1 be the multiplicity of λi and 0, respectively.
Then M is locally isomorphic to a multi-warped product

I ×f0 M0 ×f+
1
Mλ1

×f−
1
M−λ1

×f+
2
· · · ×f+

r
Mλr

×f−
r
M−λr

,

where I is an open interval, M0 is an almost Kähler manifold of dimension 2m0, M±λi
are flat Riemannian manifolds

of dimension mi. The warping functions are f0(t) = cet, f+i (t) = c1ie
(1+λi)t and f−i (t) = c2ie

(1−λi)t with positive
constants c0, c1i and c2i.

5.6. Kenmotsu manifolds

From Proposition 5.5 we have the following curvature formula for almost Kenmotsu manifolds (cf. [34, 36]):

R(X,Y )ξ = η(X)(I + h′)Y − η(Y )(I + h′)X + (∇Xh
′)Y − (∇Y h

′)X, X, Y ∈ Γ (TM) (5.8)

Hence we obtain
ℓ(X) = R(X, ξ)ξ = η(X)ξ − (I + h′)X + (∇Xh

′)ξ − (∇ξh
′)X.

Kenmotsu manifolds have particular curvature properties. For instance [69]:

R(X,Y )ξ = η(X)Y − η(Y )X, X, Y ∈ Γ (TM) (5.9)

and
K(X ∧ ξ) = −1, X ∈ Γ (D).

The characteristic Jacobi operator has the form

ℓ(X) = η(X)ξ −X = φ2X, X ∈ Γ (TM).

Kenmotsu showed that semi-symmetric Kenmotsu manifolds are of constant curvature −1.
In the class of Sasakian manifolds [resp. cosymplectic manifolds], there is a particularly nice subclass, the

class of Sasakian space forms [resp. cosymplectic space forms]. In the class of Kenmotsu manifolds, constancy of
holomorphic sectional curvature is a too strong restriction. In fact, Kenmotsu [69] showed

Proposition 5.10. Let M be a Kenmotsu manifold of dimension greater than 3. Then M is of constant holomorphic
sectional curvature if and only f it is of constant curvature −1.

Three dimensional case will be discussed in Proposition 6.6.

5.7. H-almost Kenmotsu manifolds

The harmonicity of ξ is characterized in terms of Ricci opeartor as follows.

Theorem 5.5 ([91, 94]). On an almost Kenmotsu manifold M , ξ is a harmonic unit vector field if and only if ξ is an
eigenvector field of the Ricci operator S.

Here we introduce the following notion.

Definition 5.10. An almost Kenmotsu manifold whose characteristic vector field ξ is a harmonic unit vector
field is called an H-almost Kenmotsu manifold.
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5.8. Canonical connections

Let M = (M,φ, ξ, η, g) be an almost contact Riemannian manifold. Define a tensor field A = At of type (1, 2)
by

At
XY = −1

2
φ(∇Xφ)Y − 1

2
η(Y )∇Xξ − tη(X)φY + (∇Xη)(Y )ξ, (5.10)

for all vector fields X and Y . Here t is a real constant. We define a linear connection ∇̃t on M by

∇̃t
XY = ∇XY +At

XY.

The connection ∇̃t is called the generalized Tanaka-Webster-Okumura connection of M (gTWO-connection, in
short) [58]. The gTWO-connection ∇̃t on an almost contact Riemannian manifold satisfies the following
properties:

∇̃φ = 0, ∇̃ξ = 0, ∇̃η = 0, ∇̃g = 0.

Note that the connection ∇0 is the (φ, ξ, η)-connection introduced by Sasaki and Hatakeyama in [98]. Moreover
∇̃1 was introduced by Cho [20]. When M is a strongly pseudo-convex CR-manifold, the gTWO-connection has
the form:

∇̃t
XY = ∇XY − tη(X)φY + η(Y )φ(I + h)X − g(φ(I + h)X,Y )ξ

This formula shows that whenM is a strongly pseudo-convex CR-manifold, ∇̃t|t=−1 coincides with the Tanaka-
Webster connection. In case M is a Sasakian manifold, {∇̃t}t∈R coincides with the 1-parameter family of linear
connections introduced by Okumura [80]. In particular, on Sasakian manifolds, ∇̃1 is the so-called Okumura
connection.

Remark 5.8 (Tanno’s generalized Tanaka-Webster connection). Let M be a contact Riemannian manifold. Tanno
[104] introduced the following linear connection on M :

T∇XY := ∇XY + η(X)φY − η(Y )∇Xξ + {(∇Xη)Y }ξ. (5.11)

Since on contact Riemannian manifolds, the covariant derivative ∇ξ is given by ∇ξ = −φ(I + h), (5.11) is
rewritten as

T∇XY = ∇XY + η(X)φY + η(Y )φ(I + h)X − g(φ(I + h)X,Y )ξ. (5.12)

This linear connection is called the generalized Tanaka-Webster connection. Note that Tanno called it the generalized
Tanaka connection in [104]. In case, the associated almost CR-structure S is integrable, the generalized Tanaka-
Webster connection coincides with our gTWO-connection ∇̃t|t=−1. It should be remarked that the generalized
Tanaka-Webster connection T∇ does not coincide with ∇̃t|t=−1 if S is non-integrable. In fact, ξ, η and g are
parallel with respect to T∇ but for φ, T∇ satisfies(

T∇Xφ
)
Y = Q(Y,X)

holds. Here Q is the Tanno tensor field defined by

Q(X,Y ) = (∇Y φ)X + {(∇Y η)(φX)}ξ + η(X)φ∇Y ξ.

Hence we notice that on a contact Riemannian manifold M , T∇ = ∇̃t|t=−1 if and only if its associated CR-
structure is integrable.

Dileo and Pastore proved the following characterization of CR-integrability for almost Kenmotsu manifolds.

Proposition 5.11 ([36]). Let M be an almost Kenmotsu manifold. Then its associated CR-structure is integrable if and
only if there exits a linear connection ∇ satisfying

• The structure tensor fields φ, ξ and g and η are parallel with respect to it.
• The torsion T of ∇ satisfies

T (X,Y ) = 0, X, Y ∈ Γ (D),

2T (ξ,X) = X + h′X, X ∈ Γ (D),

The endomorphism field X 7−→ T̄ (ξ,X) is self-adjoint with respect to g.
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The linear connection ∇ is given explicitly by the formula:

∇XY = ∇XY + g((I + h′)X,Y )ξ − η(Y )(I + h′)X, X, Y ∈ Γ (TM).

From Theorem 5.1 and Theorem 5.2, the gTWO-connection on an CR-integrable almost Kenmotsu manifold
M has the form

∇̃t
XY = ∇XY = g((I + h′)X,Y )ξ − η(Y )(I + h′)X − tη(X)φY.

Proposition 5.12. On an almost Kenmotsu manifold M with Kähler leaves, Dileo-Pastore’s connection ∇ coincides with
the gTWO-connection ∇̃0.

Dileo proved the following characterization for Kenmotsu manifolds of constant curvature.

Proposition 5.13 ([33]). Let M be a Kenmotsu manifold. Then the following conditions are mutually equivalent:

• The curvature tensor field R̃ of ∇̃0 vanishes.
• The curvature tensor field R̃ of ∇̃0 is parallel with respect to ∇̃0.
• M is locally symmetric.
• M is of constant curvature −1.

Some authors use the connection ∇̃t on Kenmotsu manifolds (see e.g., [1, 44, 73]). Acet, Perktaş and Kılıç
used the connection ∇̃t|t=−1 on Kenmotsu manifolds. More precisely they considered the connection defined
by (5.11) even if Kenmotsu manifold is not contact Riemannian. The connection is called the generalized Tanaka-
Webster connection in [1].

Next, Ghosh and De [44] stated that the following connection

∇XY − η(X)φY − η(Y )∇Xξ + {(∇Xη)Y }ξ.

was introduced by Tanno [103] and call it the generalized Tanaka-Webster connection even if the almost contact
Riemmanian manifolds under consideration are not necessarily contact Riemannian. However this connection
does not appear neither in [103] nor [104]. As we saw before, the connection T∇ defined by (5.11) coincides
with ∇̃t|t=−1 on Kenmotsu manifolds.

On Kenmotsu manifolds, the connection considered in [44] coincides with ∇̃1. They showed that the
curvature tensor field R̃1 of ∇̃1 vanishes when and only when ∇̃1R̃1 = 0 holds. In such a case the Kenmotsu
manifolds under consideration are of constant curvature −1.

T∇XY := ∇XY + η(X)φY + η(Y )φ(I + h)X − g(φ(I + h)X,Y )ξ.

Kiran Kumar, Nagaraja, Manjulamma and Shashidhar also used ∇̃1 in [73].

5.9. Nullity distributions

Motivated by the formula (5.9) and the notion of (generalized) contact (κ, µ, ν)-space, the following notion
was introduced:

Definition 5.11. An almost Kenmotsu manifold M is said to be a generalized almost Kenmotsu (κ, µ, ν)-space if

R(X,Y )ξ = κ(η(Y )X − η(X)Y ) + µ(η(Y )hX − η(X)hY ) + ν(η(Y )φhX − η(X)φhY ) (5.13)

for some smooth functions κ, µ and ν. generalized almost Kenmotsu (κ, µ, 0)-spaces are called generalized almost
Kenmotsu (κ, µ)-spaces.

Since φ ◦ h = −h ◦ φ = −h′ holds on any almost Kenmotsu manifolds, the generalized almost Kenmotsu
(κ, µ, ν)-condition (5.13) is rewritten as

R(X,Y )ξ = κ(η(Y )X − η(X)Y )− ν(η(Y )h′X − η(X)h′Y ) + µ(η(Y )φh′X − η(X)φh′Y ).

The notion of generalized almost Kenmotsu (κ̃, µ̃, ν̃)′-space can be defined as follows:

Definition 5.12. An almost Kenmotsu manifold M is said to be a generalized almost Kenmotsu (κ̃, µ̃, ν̃)′-space if

R(X,Y )ξ = κ̃(η(Y )X − η(X)Y ) + µ̃(η(Y )h′X − η(X)h′Y ) + ν̃(η(Y )φh′X − η(X)φh′Y ). (5.14)
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Comparing (5.13) and (5.14), we notice that a generalized almost Kenmotsu (κ, µ, ν)′-space is a generalized
almost Kenmotsu (κ, ν,−µ)-space. In other words, an almost Kenmotsu (κ, µ, ν)-space is an almost Kenmotsu
(κ,−ν, µ)′-space.

Definition 5.13. Let M be a generalized almost Kenmotsu (κ, µ, ν)-space. If all the functions κ, µ and ν are
constants, then M is called an almost Kenmotsu (κ, µ, ν)-space. A generalized almost Kenmotsu (κ, µ, ν)-space is
said to be proper if |dκ|2 + |dµ|2 + |dν|2 ̸= 0.

Remark 5.9. In [85] the following additional condition:

dκ ∧ η = 0, dµ ∧ η = 0, and dν ∧ η = 0 (5.15)

is assumed for generalized almost Kenmotsu (κ, µ, ν)-spaces. Öztürk, Aktan and Murathan [85] showed that
if the dimension of a generalized almost Kenmotsu (κ, µ, ν)-space is greater than 3, then κ, µ and ν satisfy this
additional condition.

Proposition 5.14 ([16, 85]). Let M be a generalized almost Kenmotsu (κ, µ, ν)-space. Then

h2 = (κ+ 1)φ2,

holds. Hence κ ⩽ −1 and κ = −1 if and only if h = 0. Moreover, M satisfies

ξ(κ) = 2(κ+ 1)(ν − 2).

5.10. Generalized almost Kenmotsu (κ, µ)-spaces

generalized almost Kenmotsu (κ, µ)-spaces satisfy [88, 97]:

h2 = (κ+ 1)φ2, Sξ = 2nκ ξ,

£ξh = 2λ2φ− 2h+ µh′, £ξh
′ = −µh− 2h′

∇ξh = −2h− µφh, dλ(ξ) = −2λ, dκ(ξ) = −4(κ+ 1).

On the other hand, generalized almost Kenmotsu (κ, µ)′-spaces satisfy

(h′)2 = (κ+ 1)φ2, Sξ = 2nκ ξ,

£ξh
′ = −(µ+ 2)h′, £ξh = −2λ2φ− (µ+ 2)h,

∇ξh
′ = −(2 + µ)h′, dλ(ξ) = −2λ(µ+ 2), dκ(ξ) = −2(κ+ 1)(µ+ 2).

Here we collect some fundamental results on generalized almost Kenmotsu (κ, µ)-spaces.

Proposition 5.15 ([36]). Let M be an almost Kenmotsu (κ, µ)-space, then κ = −1 and h = 0. Moreover M is locally
isomorphic to a warped product I ×f M with almost Kähler fiber.

Proposition 5.16 ([36]). Let M be an almost Kenmotsu (κ, µ)′-space with h′ ̸= 0, then κ < −1 and µ = −2 and hence
M is an almost Kenmotsu (κ, 0, 2)-space. The eigenvalue λ of h satisfies λ2 = −(κ+ 1). Moreover M is CR-integrable.

Theorem 5.6 ([36]). Let M be an almost Kenmotsu (κ,−2)′-space with h′ ̸= 0, then M is locally isomorphic to a warped
product Bn+1 ×f Rn, where the base space

1. when κ− 2λ < 0, the base space Bn+1 is the hyperbolic space Hn+1(κ− 2λ) of curvature κ− 2λ < 0. The warping
function is expressed as f(t) = ce(1−λ)t for some positive constant c.

2. when κ+ 2λ < 0, the base space Bn+1 is the hyperbolic space Hn+1(κ+ 2λ) of curvature κ+ 2λ < 0. The warping
function is expressed as f(t) = ce(1+λ)t for some positive constant c.

3. when κ+ 2λ = 0, the base space Bn+1 is the Euclidean space En+1. The warping function is expressed as
f(t) = ce(1+λ)t for some positive constant c.

In 3-dimensional case Dileo and Pastore obtained the following result.

Theorem 5.7 ([36]). Let M be a 3-dimensional almost Kenmotsu (κ, µ)′-space then either
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• M is a Kenmotsu manifold if κ = −1 or
• M is locally isomorphic to a non-unimodular Lie group whose Lie algebra is determined by the commutation

relations:
[e1, e2] = 0, [e2, e3] = (1− λ)e2, [e3, e1] = −(1 + λ)e2 (5.16)

and µ = −2. Here {e1, e2, e3} is a left invariant orthonormal frame field satisfying he1 = λe1 with e3 = ξ.

Note that κ = −1− λ2.

The non-unimodular Lie group with Lie algebra (5.16) will be explained in Example 9.2.
To compare Theorem 5.6 and Theorem 5.7, here we give explicit models of the warped products given in

Theorem 5.6.

Corollary 5.2. Let M be an almost Kenmotsu (κ,−2)′-space with h′ ̸= 0, then M is locally isomorphic to one of the
following warped products:

1. when κ− 2λ < 0, R2n+1(t, x1, . . . , xn, y1, . . . , yn) equipped with the warped product metric

g = dt2 + e−2
√
−κ+2λt(dx21 + · · ·+ dx2n) + c2e2(1−λ)t(dy21 + · · ·+ dy2n).

In this case (R2n+1, g) is the warped product Hn+1(κ− 2λ)×f Rn.

2. when κ+ 2λ < 0, R2n+1(t, x1, . . . , xn, y1, . . . , yn) equipped with the warped product metric

g = dt2 + e−2
√
−κ−2λt(dx21 + · · ·+ dx2n) + c2e2(1+λ)t(dy21 + · · ·+ dy2n).

In this case (R2n+1, g) is the warped product Hn+1(κ+ 2λ)×f Rn.

3. when κ+ 2λ = 0, R2n+1(t, x1, . . . , xn, y1, . . . , yn) equipped with the warped product metric

g = dt2 + dx21 + · · ·+ dx2n + c2e2(1+λ)t(dy21 + · · ·+ dy2n).

In this case (R2n+1, g) is the direct product Hn+1(−1− λ2)×Rn where Hn+1(−1− λ2) is understood as the
warped product

Hn+1(−1− λ2) =
(
Rn+1(t, y1, . . . , yn),dt

2 + c2e2(1+λ)t(dy21 + · · ·+ dy2n)
)
.

In particular, for 3-dimensional cases, we have

Corollary 5.3. Let M be a 3-dimensional almost Kenmotsu (κ,−2)′-space with h′ ̸= 0, then M is locally isomorphic to
one of the following warped products:

1. when κ− 2λ < 0, R3(t, x, y) equipped with the warped product metric

g = dt2 + e−2
√
−κ+2λt dx+ c2e2(1−λ)t dy.

In this case (R3, g) is the warped product H2(κ− 2λ)×f R.

2. when κ+ 2λ < 0, R3(t, x, y) equipped with the warped product metric

g = dt2 + e−2
√
−κ−2λt dx+ c2e2(1+λ)t dy.

In this case (R3, g) is the warped product H2(κ+ 2λ)×f R.

3. when κ+ 2λ = 0, R3(t, x, y) equipped with the warped product metric

g = dt2 + dx2 + c2e2(1+λ)t dy2.

In this case (R3, g) is the direct product H2(−1− λ2)×R where H2(−1− λ2) is understood as the warped product

H2(−1− λ2) =
(
R2(t, y),dt2 + c2e2(1+λ)t dy2

)
.

All of these warped products are realized as non-unimodular Lie groups equipped with left invariant almost
Kenmotsu structure. See Example 9.2 and Section 9.5.

Theorem 5.8 ([91]). If the endomorphism field h′ on an almost Kenmotsu manifold M is η-parallel and satisfies
∇ξh

′ = 0, then ξ is a harmonic unit vector field but never a harmonic map. In particular, the characteristic vector field of
an almost Kenmotsu (κ, µ)′-space is a harmonic unit vector field.
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5.11. Locally conformal almost cosymplectic structures

An almost contact Riemannian manifold (M,φ, ξ, η, g) is said to be a locally conformal almost cosymplectic
manifold [resp.emphlocally conformal cosymplectic manifold] if there exists an open covering {Uλ}λ∈Λ together
with smooth functions σλ ∈ C∞(Uλ) such that the structure (Uλ, φ|Uλ

, eσλξ|Uλ
, eσλη|Uλ

, eσλg|Uλ
) is almost

cosymplectic [resp. cosymplectic].

Proposition 5.17 ([107]). An almost contact Riemannian manifold M is locally conformal almost cosymplectic if and
only if there exists a closed 1-form ω satisfying

dη = ω ∧ η, dΦ = 2ω ∧ Φ.

On the other hand, the notion of almost f -cosymplectic manifold was proposed in [3] (see also Pak [86]):

Definition 5.14. An almost contact Riemannian manifold M is said to be an almost f -cosymplectic manifold if

dη = 0, dΦ = 2f η ∧ Φ.

Here f is a smooth function satisfying
df ∧ η = 0. (5.17)

Comparing these two classes of almost contact Riemannian manifolds, we notice that any almost f -
cosymplectic manifold M is locally conformal almost cosymplectic with ω = fη. An almost f -cosymplectic
manifold M is an almost Kenmotsu manifold when f is a constant function 1.

6. Almost Kenmotsu 3-manifolds

Hereafter we concentrate on almost Kenmotsu 3-manifolds.

6.1. Kenmotsu 3-manifolds

Let M = (M,φ, ξ, η, g) be an almost contact Riemannian 3-manifold. Then the covariant derivative of φ is
given by the following Olszak formula [82]:

(∇Xφ)Y = g(φ∇Xξ, Y )ξ − η(Y )φ∇Xξ.

Olszak formula implies that an almost contact Riemannian 3-manifold is normal if and only if ∇ξ commutes
with φ.

Moreover the exterior derivatives of η and Φ are given by

dη = −η ∧∇ξη +
1

2
trg(φ∇ξ) Φ, dΦ = (div ξ)η ∧ Φ.

These formulas imply the following fundamental fact.

Proposition 6.1. An almost contact Riemannian 3-manifold M is almost Kenmotsu if and only if

∇ξξ = 0, trg(φ∇ξ) = 0, div ξ = 2

holds.

Proposition 6.2 ([90]). An almost contact Riemannian 3-manifoldM is almost Kenmotsu if and only if ∇ξ is self-adjoint
and div ξ = 2.

Proposition 6.3. Let M be an almost Kenmotsu 3-manifold. Then M is Kenmotsu and only if h′ = 0.

Here we recall curvature properties of Kenmotsu 3-manifolds. The Riemannian curvature R of a Kenmotsu
3-manifold has the form

R(X,Y )Z =
s + 4

2
(X ∧ Y )Z +

s + 6

2
[ξ ∧ {(X ∧ Y )ξ}]Z. (6.1)

In particular, every Kenmotsu 3-manifold satisfies

R(X,Y )ξ = (−1){η(Y )X − η(X)Y }.

Thus every Kenmotsu 3-manifolds is a normal almost Kenmotsu (−1, 0)-space as well as (−1, 0)′-space.
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Proposition 6.4. The Ricci operator S of a Kenmotsu 3-manifold M has the form

S =
s + 2

2
I− s + 6

2
η ⊗ ξ.

The principal Ricci curvatures are (s + 2)/2, (s + 2)/2 and −2.
The characteristic Jacobi operator ℓ is given by

ℓ(X) = η(X)ξ −X = φ2X.

For a unit vector X ∈ Dp, the sectional curvatures of planes X ∧ φX and X ∧ ξ are given by

H = K(X ∧ φX) =
s

2
+ 2, K(X ∧ ξ) = −1.

Remark 6.1. The characteristic Jacobi operators of Sasakian, cosymplectic and Kenmotsu manifolds are given
as follows:

Structure Sasakian Cosymplectic Kenmotsu
Characteristic Jacobi opeartor ℓ = −φ2 ℓ = 0 ℓ = φ2

Example 6.1 (Warped products). Here we restudy Example 5.1. Let (M, ḡ, J) be a Riemannian 2-manifold
together with a compatible orthogonal complex structure J . Take a smooth function on the Euclidean line
E1 with coordinate t and consider the warped product M = E1(t)×f M . We denote π1 and π2 the natural
projections onto the first and second factors,

π1 :M → E1, π2 :M →M,

respectively. On the warped productM = E1 ×f M , we define the vector field ξ by ξ = ∂
∂t . Then the Levi-Civita

connection ∇ of M is given by

∇X
vY

v
= (∇XY )v − 1

f
g(X

v
, Y

v
)f ′ ξ, ∇ξX

v
= ∇X

vξ =
f ′

f
X

v
, ∇ξξ = 0.

Here the superscript v means the vertical lift operation of vector fields from M to M . The prime means the
differentiation by t. Define φ by φX = {J(π2∗X)}v. Then we get

∇Xξ = β(X − η(X)ξ), (∇Xφ)Y = β{g(φX, Y )− η(Y )φX}, β = f ′/f.

One can see that M is normal almost contact Riemannian 3-manifold. In particular M is a Kenmotsu manifold
if and only if f(t) = cet for some positive constant c. Take a local orthonormal frame field {ē1, ē2} of (M, ḡ) such
that ē2 = Jē1. Then we obtain a local orthonormal frame field {e1, e2, e3} by

e1 =
1

f
ēv1, e2 =

1

f
ēv2 = φ e1, e3 = ξ.

Then sectional curvatures of M are given by

K(e1 ∧ e2) =
1

f2
{K ◦ π2 − (f ′)2}, K(e1 ∧ e3) = K(e2 ∧ e3) = −f

′′

f
,

where K is the Gaussian curvature of M . The Ricci tensor components ρij = ρ(ei, ej) are given by

ρ11 = ρ22 =
κ

f2
− f ′′

f
−
(
f ′

f

)2

, ρ33 = −2f ′′

f

and other components are 0.

Remark 6.2. The hyperbolic 3-space H3(−1) is represented as a warped product (see [4, p. 28]):

R×cosh z H2(−1) =
(
R3(z, x, y),dz2 + cosh2 z(e2ydx2 + dy2)

)
.

If we apply the construction described in Example 6.1 to R×cosh z H2(−1), then we obtain f-Kenmotsu structure
on H3(−1) with f(z) = tanh z. For more information on f-Kenmotsu 3-manifolds, especially on curves in those
manifolds, see [60, 61].
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The local structure of Kenmotsu 3-manifolds is rephrased as:

Lemma 6.1. ([69]) A Kenmotsu 3-manifold M is locally isomorphic to a warped product I ×f M whose base I ⊂ E1 is
an open interval, M is a surface and warping function f(t) = cet, c > 0. The unit vector field ξ is ξ = ∂/∂t.

Proposition 6.5. Every Kenmotsu 3-manifold has the following properties:

• pseudo-symmetric, especially weakly η-Einstein.
• The Ricci operator commutes with φ.
• The Ricci operator satisfies £ξS = 0.
• The characteristic Jacobi opeartor satisfies £ξℓ = 0.

The local symmetry for Kenmotsu 3-manifolds is described as follows:

Proposition 6.6 ([51, 53]). The following properties of a Kenmotsu 3-manifold M are mutually equivalent.

• M is locally symmetric.
• M is η-Einstein.
• the scalar curvature s is constant.
• the holomorphic sectional curvature H is constant.
• M is locally isomorphic to the hyperbolic 3-space H3(−1) of curvature −1.

Here we generalize Proposition 6.6 to the following Proposition.

Proposition 6.7. Every Kenmotsu 3-manifold is a pseudo-symmetric space of constant type.
The following properties of a Kenmotsu 3-manifold M are mutually equivalent.

• M is semi-symmetric.
• M is locally symmetric.
• M is η-Einstein.
• the scalar curvature r is constant.
• the holomorphic sectional curvature H is constant.
• M is locally isomorphic to the hyperbolic 3-space H3(−1) of curvature −1.

Proof. The derivative R · S is computed as follows:

(R(X,Y )S)Z = − s + 6

2
{η(X)(η(Z)Y + g(Y,Z)ξ)− η(Y )(η(Z)X + g(Z,X)ξ)} .

In particular for any vector field X orthogonal to ξ, we have

(R(X, ξ)S)X =
s + 6

2
g(X,X)ξ, (R(X, ξ)S)ξ =

s + 6

2
X.

Assume that M is semi-symmetric, then s = −6. Conversely if s = −6 then M is locally symmetric by
Proposition 6.6. Hence the semi-symmetry of M is equivalent to s = −6.

6.2. Fundamental quantities of almost Kenmotsu 3-manifolds

Let M be an almost Kenmotsu 3-manifold. Denote by U1 the open subset of M consisting of points p such
that h ̸= 0 around p. Next let U0 the open subset ofM consisting of points p ∈M such that h = 0 around p. Since
h is smooth, U = U1 ∪ U0 is an open dense subset of M . So any property satisfied in U is also satisfied in whole
M . For any point p ∈ U , there exits a local orthonormal frame field E = {e1, e2 = φe2, e3 = ξ} around p, where
e1 is an eigenvector field of h.

Lemma 6.2 (cf. [90]). Let M be an almost Kenmotsu 3-manifold. Then there exists a local orthonormal frame field
E = {e1, e2, e3} such that

he1 = λe1, e2 = φe1, e3 = ξ

for some locally defined smooth function λ. The Levi-Civita connection ∇ is described as

∇e1e1 = −be2 − e3, ∇e1e2 = be1 + λe3, ∇e1e3 = e1 − λe2,

∇e2e1 = ce2 + λe3, ∇e2e2 = −ce1 − e3, ∇e2e3 = −λe1 + e2,
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∇e3e1 = δe2, ∇e3e2 = −δe1, ∇e3e3 = 0,

where δ, b and c are locally defined smooth functions.
The commutation relations are

[e1, e2] = be1 − ce2, [e2, e3] = (δ − λ)e1 + e2, [e3, e1] = −e1 + (δ + λ)e2.

The Jacobi identity is described as

e1(λ− δ)− ξ(b) + c(λ− δ)− b = 0, e2(λ+ δ)− ξ(c) + b(λ+ δ)− c = 0. (6.2)

The covariant derivative ∇ξh of h by ξ is given by

∇ξh = −2δ hφ+
ξ(λ)

λ
h.

An local orthonormal frame field {e1, e2, e3} as in Lemma 6.2 will be called a local h-eigenframe field.
Remark 6.3. It should be remarked on an almost Kenmotsu 3-manifold M ,

δ = g(∇ξW,φW )

is independent of the choice of unit eigenvector field W of h on U .
Every Kenmotsu 3-manifold satisfies the commutativity Sφ = φS and Sξ = −2ξ and hence it is H-almost

Kenmotsu (Theorem 5.5). Thus "H-almost Kenmotsu" is an intermediate notion between "almost Kenmotsu"
and "Kenmotsu" for almost contact Riemannian 3-manifolds.

6.3. Curvatures of almost Kenmotsu 3-manifolds

The Riemannian curvature R is computed by the table of Levi-Civita connection in Lemma 6.2.

R(e1, e2)e1 = −He2 + (e1(λ) + 2cλ)ξ, R(e1, e2)e2 = He1 − (e2(λ) + 2bλ)ξ,

R(e1, e2)e3 = −(e1(λ) + 2cλ)e1 + (e2(λ) + 2bλ)e2,

R(e2, e3)e1 = −(e2(λ) + 2bλ)e2 − (ξ(λ) + 2λ)ξ,

R(e2, e3)e2 = (e2(λ) + 2bλ)e1 −K23ξ,

R(e2, e3)e3 = (ξ(λ) + 2λ)e1 +K23e2,

R(e3, e1)e1 = (e1(λ) + 2cλ)e2 +K13ξ,

R(e3, e1)e2 = −(e1(λ) + 2cλ)e1 + (ξ(λ) + 2λ)ξ,

R(e3, e1)e3 = −K13e1 − (ξ(λ) + 2λ)e2,

where the sectional curvatures Kij = K(ei ∧ ej) are given by

H = K12 = K(e1 ∧ e2) = −(e1(c) + e2(b) + 1− λ2 + b2 + c2),

K13 = −(λ2 + 2λδ + 1), K23 = −(λ2 − 2λδ + 1).

The Ricci operator S is given by

Se1 =ρ11e1 + (ξ(λ) + 2λ)e2 − (e2(λ) + 2λb)ξ,

Se2 =(ξ(λ) + 2λ)e1 + ρ22e2 − (e1(λ) + 2λc)ξ,

Se3 =− (e2(λ) + 2λb)e1 − (e1(λ) + 2λc)e2 − 2(1 + λ2)ξ,

where
ρ11 = −(e1(c) + e2(b) + b2 + c2 + 2λδ + 2), ρ22 = −(e1(c) + e2(b) + b2 + c2 − 2λδ + 2).

From these, the scalar curvature is computed as

s = −2(e1(c) + e2(b) + b2 + c2 + λ2 + 3). (6.3)

By using the scalar curvature, ρ11 and ρ22 are rewritten as

ρ11 =
s

2
+ λ2 − 2λδ + 1, ρ22 =

s

2
+ λ2 + 2λδ + 1.
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The holomorphic sectional curvature H is rewritten as

K12 =
s

2
+ 2(λ2 + 1).

The characteristic Jacobi operator ℓ is given by

ℓe1 = −(1 + 2λδ + λ2)e1 + (ξ(λ) + 2λ)e2, ℓe2 = (ξ(λ) + 2λ)e1 − (1− 2λδ + λ2)e2. (6.4)

The covariant derivative ∇ξh is given by

∇ξh = −2δhφ+ ξ(λ)σ, (6.5)

where σ is an endomorphism defined by

σ(e1) = e1, σ(e2) = −e2, σ(e3) = 0

Thus we have ∇ξh = 0 if and only if h = 0 or δ = 0 and ξ(tr h2) = 0. Note that (6.5) is rewritten as

∇ξh = −2δhφ+
ξ(λ)

λ
h

on U1. From (6.4) one can deduce the following fact.

Proposition 6.8. There exists no almost Kenmotsu 3-manifold with vanishing characteristic Jacobi operator.

This makes a sharp contrast with contact Riemannian 3-manifolds. In fact the class of contact Riemannian
3-manifolds with vanishing characteristic Jacobi operator is pretty large (see e.g., [6, 25]).

6.4. Submanifold geometry of leaves

Let us consider again a leaf L of the canonical foliation. Take a local h-eigenframe field {e1, e2, e3} as in
Lemma 6.2, then the representation matrix of A relative to {e1, e2} is(

−1 λ
λ −1

)
.

The principal curvatures of L are −1± λ. Hence the mean curvature of L is −1 (see [71]). Moreover L is totally
umbilical if and only if h = 0 (Proposition 5.3).

The Gauß curvature KL of L is given by the Gauß equation

KL = K12 + detA =
s

2
+ λ2 + 3 =

s

2
+

1

2
tr(h2) + 3.

Thus L is flat if and only if s = −3− tr(h2)/2.

6.5. Weakly η-Einstein almost Kenmotsu 3-manifolds

The weakly η-Einstein property for an almost Kenmotsu 3-manifold is the following system:

δλ = 0, ξ(λ) + 2λ = 0, e1(λ) + 2cλ = e2(λ) + 2bλ = 0. (6.6)

From this system we obtain the following result.

Corollary 6.1 ([63]). An almost Kenmotsu 3-manifold is weakly η-Einstein if and only if it is an H-almost Kenmotsu
3-manifold and satisfies δ trh2 = 0 and ξ(trh2) + 4trh2 = 0. In particular, if M is non-Kenmotsu, then M is weakly
η-Einstein if and only if it is an H-almost Kenmotsu 3-manifold satisfying δ = 0 and ξ(trh2) + 4trh2 = 0.

6.6. Commutativity of φ and S

Here we consider the commutativity condition Sφ = φS. If M = U0, then M is Kenmotsu and satisfies
Sφ = φS. Hereafter we assume that U1 is non-empty. Take a local h-eigenframe field {e1, e2, e3} as in Lemma
6.2, then one can see that Sφ = φS holds if and only if M satisfies the system

δ = 0, ξ(λ) + 2λ = 0, e1(λ) + 2cλ = e2(λ) + 2bλ = 0.

This system coincides with (6.6) over U1. Hence we obtain
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Proposition 6.9 ([63]). For an almost Kenmotsu 3-manifold M , the following three properties are mutually equivalent:

• M satisfies Sφ = φS.
• M is weakly η-Einstein.
• M is H-almost Kenmotsu and satisfies

δ trh2 = 0, ξ(trh2) + 4 trh2 = 0.

The following can be deduced from the second Bianchi identity (see [63]).

Proposition 6.10. Let M be a strictly almost Kenmotsu 3-manifold satisfying Sφ = φS. Then the eigenvalue λ of h only
varies in the direction of ξ, that is, dλ ∧ η = 0.

Remark 6.4. LetM be a contact Riemannian 3-manifold satisfying Sφ = φS, then the eigenvalues of h is constant
by virtue of the second Bianchi identity. This fact provides another evidence for the differences between contact
Riemannian geometry and almost Kenmotsu geometry.

A weakly η-Einstein almost Kenmotsu 3-manifold M satisfies ∇ξh = −2h.

7. Generalized almost Kenmotsu (κ, µ, ν)-spaces

7.1. The H-almost Kenmotsu property

Öztürk, Aktan and Murathan showed the following fact ([84, Theorem 4.5], [85, Theorem 7]).

Proposition 7.1. Let M be an almost Kenmotsu 3-manifold. If Sξ is colinear to ξ, then M satisfies the generalized
(κ, µ, ν)-condition on an open dense subset. In such a case we have

κ = −(λ2 + 1), µ = −2δ, λν = 2λ+ ξ(λ).

Combining this with Theorem 5.5, we obtain

Theorem 7.1. Let M be an almost Kenmotsu 3-manifold. If M is a generalized almost Kenmotsu (κ, µ, ν)-space, then M
is anH-almost Kenmotsu manifold. Conversely ifM is anH-almost Kenmotsu manifold, thenM satisfies the generalized
(κ, µ, ν)-condition on an open dense subset. In such a case we have

κ = −(λ2 + 1), µ = −2δ, λν = 2λ+ ξ(λ).

The Ricci operator has the form

S =
( s
2
− κ
)

I−
( s
2
− 3κ

)
η ⊗ ξ + µh+ νφh.

Moreover, we have
Sξ = 2κξ = (tr ℓ)ξ, tr (h2) = −2(κ+ 1).

On a 3-dimensional generalized almost Kenmotsu (κ, µ, ν)-space, we can take a local h-eigenframe field
{e1, e2, e3} as in Lemma 6.2, then the sectional curvatures are expressed as

H =
s

2
− 2κ, K13 = κ+ λµ, K23 = κ− λµ.

the Ricci operator S has the form

S =

 s/2− κ+ λµ λν 0
λν s/2− κ− λµ 0
0 0 2κ


relative to {e1, e2, e3}. Hence the principal Ricci curvatures are given by

ρ1 =
s

2
− κ+ λ

√
µ2 + ν2, ρ2 =

s

2
− κ− λ

√
µ2 + ν2, ρ3 = 2κ. (7.1)

Theorem 7.1 together with Proposition 6.9 implies the following result which improves [97, Proposition 31.].
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Corollary 7.1. For an almost Kenmotsu 3-manifold M , the following three properties are mutually equivalent:

• M satisfies Sφ = φS.
• M is weakly η-Einstein.
• M is a generalized almost Kenmotsu (κ, 0)-space satisfying dκ ∧ η = 0 (see Example 7.1).

In such a case M is a pseudo-symmetric space.

Remark 7.1. If M is a Kenmotsu 3-manifold, then it is weakly η-Einstein. Now, we assume that M is a strictly
almost Kenmotsu 3-manifold. From Theorem 7.1, the Ricci operator of an H-almost Kenmotsu manifold has
the form

S =
( s
2
− κ
)

I−
( s
2
− 3κ

)
η ⊗ ξ + µh+ νφh.

An H-almost Kenmotsu manifold M is weakly η-Einstein if and only if µ = −2δ = 0 and ν = 0 = 2λ+ ξ(λ).
Since trh2 = 2λ2, we have

0 = ξ(trh2) + 4trh2 = 4λξ(λ) + 8λ2 = 4λ(ξ(λ) + 2λ).

Moreover we have

Proposition 7.2 ([63]). Let M be an almost Kenmotsu 3-manifolds satisfying the commutativity Sφ = φS, then the
characteristic Jacobi operator ℓ is pseudo-parallel. More precisely ℓ satisfies R · ℓ = κR1 · ℓ. Here κ = tr ℓ/2.

Here we mention the following result (see [97, Lemma 4.1]).

Lemma 7.1. Let M be a 3-dimensional generalized almost Kenmotsu (κ, µ)-space satisfying dκ ∧ η = 0. If κ = −1 at a
certain point of M , then κ = −1 on whole of M and h vanishes identically.

The Riemannian curvature R of a generalized almost Kenmotsu (κ, µ, ν)-space with κ < −1 is described as
follows ([16, Theorem 3.25]).

R =
( s
2
− 2κ

)
R1 +

( s
2
− 3κ

)
R3 + µR4 + νR7, (7.2)

where

R3(X,Y )Z =η(Z)η(X)Y − η(Y )η(Z)X + {g(Z,X)η(Y )− g(Y,Z)η(X)}ξ,
R4(X,Y )Z =g(Y,Z)hX − g(Z,X)hY + g(hY, Z)X − g(Z, hX)Y,

R7(X,Y )Z =g(Y,Z)φhX − g(Z,X)φhY + g(φhY,Z)X − g(Z,φhX)Y.

Corollary 7.2 ([16]). Let M be a generalized almost Kenmotsu (κ, µ, ν)-space. If κ < −1 is a function that only varies
in the direction of ξ, i.e., dκ ∧ η = 0, then its curvature can be written as

R = − (κ+ 2)R1 − 2 (κ+ 1)R3 + µR4 + νR7. (7.3)

Corollary 7.3 ([85]). Let M be a generalized almost Kenmotsu (κ, µ, ν)-space. Then

Sφ− φS = 2µhφ+ 2νh

for a vector field on M . Moreover, Sφ = φS if and only if h = 0 or µ = 0 and ν = 0.

From (7.1), pseudo-symmetry of generalized almost Kenmotsu (κ, µ, ν)-spaces are described as follows:

Proposition 7.3. A 3-dimensional generalized almost Kenmotsu (κ, µ, ν)-space. Then M is pseudo-symmetric if and
only if

• M is a Kenmotsu 3-manifold (κ = −1 and L = −1) or
• M is a generalized almost Kenmotsu (κ, µ, ν)-space of scalar curvature s = 6κ± 2λ

√
µ2 + ν2 and L = H =

κ± λ
√
µ2 + ν2.

The second class includes weakly η-Einstein strictly almost Kenmotsu 3-manifolds as well as homogeneous almost
Kenmotsu Lie groups GII(β, β

−1) for β ̸= 0 (see Example 9.3).
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Proof. From (7.1) ρ1 = ρ2 holds if and only if λ = 0 or µ = ν = 0. In the former caseM is a Kenmotsu 3-manifold
and hence κ = −1 and h = 0. In the latter case with λ ̸= 0, M is weakly η-Einstein.

Next, ρ1 = ρ3 holds if and only if
s = 6κ− 2λ

√
µ2 + ν2.

Finally ρ2 = ρ3 holds if and only if
s = 6κ+ 2λ

√
µ2 + ν2.

Note that weakly η-Einstein strictly almost Kenmotsu 3-manifold M is a 3-dimensional generalized almost
Kenmotsu (κ, µ, ν)-spaces of scalar curvature s = 6κ± 2λ

√
µ2 + ν2 with µ = ν = 0. It should be remarked

that if λ = 0 on a 3-dimensional generalized almost Kenmotsu (κ, µ, ν)-spaces of scalar curvature s = 6κ±
2λ
√
µ2 + ν2, then M is a Kenmotsu 3-manifold of scalar curvature −6. Thus it is of constant curvature −1.

7.2. Examples

Here we exhibit some examples of generalized almost Kenmotsu (κ, µ, ν)-spaces constructed by Pastore and
Saltarelli.

Example 7.1 ([88]). Let M = {(x, y, z) ∈ R3 | z > 0} be the upper half space. We introduce an almost contact
Riemannian structure on M by

ξ =
∂

∂z
, η = dz, g = ze2zdx2 +

e2z

z
dy2 + dz2,

φ
∂

∂x
= z

∂

∂y
, φ

∂

∂y
= −1

z

∂

∂x
, φ

∂

∂z
= 0.

Then M = (M,φ, ξ, η, g) is a strictly almost Kenmotsu 3-manifold. We can take a global h-eigenframe field

e1 =
e−z

√
2

(
1√
z

∂

∂x
+
√
z
∂

∂y

)
, e2 = −e

−z

√
2

(
1√
z

∂

∂x
−

√
z
∂

∂y

)
, e3 = ξ.

Then {e1, e2, e3} satisfies

[e1, e2] = 0, [e2, e3] = −λ e1 + e2, [e3, e1] = −e1 + λ e2.

Thus {e1, e2, e3} is a global h-eigenframe field satisfying b = c = 0, δ = 0 and λ = 1/(2z). Note that the
coordinate vector fields ∂x and ∂y are eigenvector fields of h′ corresponding to λ = 1/(2z) and −λ, respectively.
The sectional curvatures are given by

H = −(1− λ2), K13 = K23 = −(1 + λ2).

The Ricci tensor field and the scalar curvature are computed as

ρ =− e2z(4z2 + 2z − 1)

2z
dx2 − e2z(4z2 − 2z + 1)

2z3
dy2 − 4z2 + 1

2z2
dz2,

s =− 12z2 + 1

2z2
= −2(λ2 + 3) = 2(κ− 2).

The components of S relative to {e1, e2, e3} are given by −2 1/z − 1/(2z2) 0
1/z − 1/(2z2) −2 0

0 0 −2(1 + λ2)

 .

The principal Ricci curvatures are

ρ1 = −2 +
2z − 1

2z2
, ρ2 = −2− 2z − 1

2z2
, ρ3 = −2 +

1

2z2
.

HenceM is not pseudo-symmetric. One can check that (M,φ, ξ, η, g) is a generalized almost Kenmotsu (κ, 0, ν)-
space with

κ = −1− 1

4z2
< −1, ν = 2− 1

z
.

In particular κ and ν satisfy dκ ∧ η = dν ∧ η = 0. Moreover the Ricci operator S is η-parallel.
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Example 7.2 ([88]). On the Cartesian 3-space R3(x, y, z), we define an almost contact Riemannian structure
(φ, ξ, η, g) by

ξ =
∂

∂z
, η = dz, g = ef(z)+2zdx2 + e2z−f(z)dy2 + dz2,

φ
∂

∂x
= ef(z)

∂

∂y
, φ

∂

∂y
= −e−f(z) ∂

∂x
, φ

∂

∂z
= 0,

where f(z) = −e−2z . The non-zero eigenvalues of h are λ = e−2z and −λ. Then resulting almost contact
Riemannian 3-manifold M = (R3, φ, ξ, η, g) is a generalized almost Kenmotsu (κ, 0)-space with κ = −1− e−4z .
In particular M satisfies dκ ∧ η = 0. From Corollary 7.1, M is weakly η-Einstein. Here we confirm this by
computing the Ricci operator explicitly.

Let us take a global h-eigenframe field

e1 =
1√
2

(
exp

(
−z − f(z)

2

)
∂

∂x
+ exp

(
−z + f(z)

2

)
∂

∂y

)
,

e2 =
1√
2

(
− exp

(
−z − f(z)

2

)
∂

∂x
+ exp

(
−z + f(z)

2

)
∂

∂y

)
,

e3 = ξ.

This h-eigenframe field satisfies b = c = δ = 0. By using Lemma 6.2, the sectional curvatures are computed as

H = −(1− λ2), K13 = K23 = −(1 + λ2).

The Ricci operator S and the scalar curvature s are computed as

S = −2 I− 2λ2η ⊗ ξ, s = −2e−4z − 6 = −2(λ2 + 3) = 2(κ− 2).

Thus M is really weakly η-Einstein and hence it is pseudo-symmetric. One can verify that S is η-parallel.

Example 7.3 ([97]). We construct a generalized almost Kenmotsu (κ, µ)-space with prescribed function µ.
Let M be an open submanifold of R3(x, y, z) defined by z < −1. Take arbitrary smooth functions µ(z), q(z)

and r(z) of z. We put

f1(x, y, z) = x− y(µ(z) + 2
√
−1− z )

2
+ q1(z), f2(x, y, z) = y +

x(µ(z)− 2
√
−1− z )

2
+ q2(z),

f3(z) = −4(1 + z).

We introduce an almost contact Riemannian structure (φ, ξ, η, g) by

ξ = f1(x, y, z)
∂

∂x
+ f2(x, y, z)

∂

∂y
+ f3(z)

∂

∂z
, η =

dz

f3(z)
,

g = dx2 + dy2 + (1 + f21 + f22 )η ⊗ η − f1(dx⊗ η + η ⊗ dx)− f2(dy ⊗ η + η ⊗ dy),

φ
∂

∂x
=

∂

∂y
, φ

∂

∂y
= − ∂

∂x
, φ

∂

∂z
=
f2
f3

∂

∂x
− f1
f3

∂

∂y
.

Then M(µ, q, r) = (R3, φ, ξ, η, g) is a strictly almost Kenmotsu 3-manifold. The orthonormal frame field

e1 =
∂

∂x
, e2 =

∂

∂y
, e3 = ξ

is a global h-eigenframe field satisfying b = c = 0, δ = −µ(z)/2 and λ =
√
−1− z. By using Lemma 6.2 one can

see that
R(X,Y )ξ = z{η(Y )X − η(X)Y }+ µ(z){η(Y )hX − η(X)hY }.

Thus M(µ, q, r) is a generalized almost Kenmotsu (κ, µ)-space. Note that κ = z and µ = µ(z) satisfy dκ ∧ η = 0
and dµ ∧ η = 0.

Hence the Ricci operator S, the scalar curvature s and the characteristic Jacobi operator are computed as

Se1 = (−2 + λµ)e1, Se2 = (−2− λµ)e2, Se3 = −2(1 + λ2)e3, s = −2(λ2 + 3) = 2(κ− 2).
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Thus M(µ, q, r) is pseudo-symmetric if and only if

µ(z) = 0, or µ(z) = ±2λ(z) = ±2
√
−1− z.

The characteristic Jacobi operator is given by

ℓ(e1) = −(λ2 − λµ+ 1)e1, ℓ(e2) = −(λ2 + λµ+ 1)e2.

In particular, when µ(z) = 0, then M(µ, q, r) is weakly η-Einstein with

S = −2I− 2λ2η ⊗ ξ, ℓ(e1) = −(λ2 + 1)e1, ℓ(e2) = −(λ2 + 1)e2.

Example 7.4 ([97]). Here we construct generalized almost Kenmotsu (κ, 0, ν)-space with prescribed function ν.
Let M be an open submanifold of R3(x, y, z) defined by z < −1. Take arbitrary smooth functions ν(z), q(z)

and r(z) of z. We assume that ν(z) ̸= 2 for all z ∈ R. We put

f1(x, z) =x(1 +
√
−1− z) + q(z), f2(y, z) = y(1−

√
−1− z) + r(z),

f3(z) =− 2(2− ν)(1 + z).

We introduce an almost contact Riemannian (φ, ξ, η) by

ξ = f1(x, z)
∂

∂x
+ f2(y, z)

∂

∂y
+ f3(z)

∂

∂z
, η =

dz

f3(z)
,

φ
∂

∂x
=

∂

∂y
, φ

∂

∂y
= − ∂

∂x
, φ

∂

∂z
=
f2
f3

∂

∂x
− f1
f3

∂

∂y
.

Introduce a Riemannian metric g by the condition

e1 =
1√
2

(
∂

∂x
+

∂

∂y

)
, e2 =

1√
2

(
∂

∂x
− ∂

∂y

)
, e3 = ξ

is orthonormal with respect to g. Then M(ν, q, r) = (M,φ, ξ, η, g) is a strictly almost Kenmotsu 3-manifold. The
orthonormal frame field {e1, e2, e3} is a global h-eigenframe field satisfying b = c = 0, δ = 0 and λ =

√
−1− z.

By using Lemma 6.2, one can see that

R(X,Y )ξ = z{η(Y )X − η(X)Y }+ ν(z){η(Y )φhX − η(X)φhY }.

Thus we confirmed that M(ν, q, r) is a generalized almost Kenmotsu (κ, 0, ν)-space with κ = z. Note that κ and
ν satisfy dκ ∧ η = 0 and dν ∧ η = 0. The Ricci operator S, the scalar curvature s and the characteristic Jacobi
operator ℓ of M(ν, q, r) are described as

Se1 = −2e1 + λνe2, Se2 = λνe1 − 2e2, Se3 = −2(λ2 + 1)ξ, s = −2(λ2 + 3) = 2(κ− 2),

ℓe1 = −(λ2 + 1)e1 + λνe2, ℓe2 = λνe1 − (λ2 + 1)e2.

When we choose ν(z) = 0 then M(ν, q, r) is weakly η-Einstein and

S = −2I− 2λ2η ⊗ ξ, ℓ(e1) = −(λ2 + 1)e1, ℓ(e2) = −(λ2 + 1)e2.

Saltarelli proved the following local classifications.

Theorem 7.2 ([97]). Let M be a 3-dimensional generalized almost Kenmotsu (κ, µ)-space satisfying dκ ∧ η = 0 and
κ < −1. Then M is locally isomorphic to the M(µ, q, r) in Example 7.3.

Theorem 7.3 ([36, 97]). Let M be a 3-dimensional generalized almost Kenmotsu (κ, 0, ν)-space satisfying dκ ∧ η = 0
and κ < −1. Then

1. If ν = 2, then κ is constant. In this case, M has a local orthonormal frame field {e1, e2, e3} as in Lemma 6.2 with
b = c = δ = 0 and ρ(e1, ξ) = ρ(e2, ξ) = 0. Hence M is locally isomorphic to a non-unimodular Lie group whose
Lie algebra is generated by the commutation relations:

[e1, e2] = 0, [e2, e3] = (1− λ)e2, [e3, e1] = −(1 + λ)e2. (7.4)

The almost Kenmotsu (κ, 0, 2)-space is locally isomorphic to the non-unimodular Lie group GII(λ, λ) in Example
9.2.

2. If ν ̸= 2, then M is locally isomorphic to M(ν, q, r) in Example 7.4.

Theorem 7.3 is a generalization of Theorem 5.7.
Remark 7.2. Local coordinate changes between Example 7.2 and Example 7.3 with µ = 0 can be seen in [97].
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7.3. Almost Kenmotsu generalized (κ, µ)-spaces

Saltarelli obtained the following results.

Proposition 7.4 ([97]). Let M be an almost Kenmotsu 3-manifold.

• If M is an almost Kenmotsu generalized (κ, µ)-space. Then

S =
( s
2
− κ
)
I +
(
3κ− s

2

)
η ⊗ ξ + µh, h(grad µ) = grad κ− dκ(ξ)ξ.

• If M is an almost Kenmotsu generalized (κ, µ)′-space. Then

S =
( s
2
− κ
)
I +
(
3κ− s

2

)
η ⊗ ξ + µh′, h′(grad µ) = grad κ− dκ(ξ)ξ.

Proposition 7.5 ([97]). Let M be an almost Kenmotsu generalized (κ, µ)-space or (κ, µ)′ with dκ ∧ η = 0 and κ < −1,
then M has flat Kähler leaves.

8. φ-Einstein almost Kenmotsu 3-manifolds

Here we compute the φ-Ricci tensor field ρφ of almost Kenmotsu 3-manifolds. Take a local orthonormal
frame field of of the form {e1, e2 = φe1, e3 = ξ}. First we compute 2ρ∗ = trR(X,φY )φ. Note that ρ∗(e1, e3) =
ρ∗(e2, e3) = 0. Next we notice that ρ∗(e1, e1) = ρ∗(e2, e2) = K12 = H . Thus we only have to compute ρ∗(e3, e1)
and ρ∗(e3, e2).

2ρ∗(e3, e1) =

3∑
i=1

g(R(e3, φe1)φei, ei) =

3∑
i=1

g(R(e3, e2)φei, ei) = g(R(e3, e2)φe1, e1) + g(R(e3, e2)φe2, e2)

=− 2g(R(e2, e3)e2, e1) = 2ρ13 = 2(e2(λ) + 2bλ),

2ρ∗(e3, e2) =

3∑
i=1

g(R(e3, φe2)φei, ei) = −
3∑

i=1

g(R(e3, e1)φei, ei) = −g(R(e3, e1)φe1, e1)− g(R(e3, e1)φe2, e2)

=− 2g(R(e3, e1)e2, e1) = 2ρ23 = 2(e1(λ) + 2cλ).

Hence the φ-Ricci tensor field has the components

ρφ =

 H 0 (e2(λ) + 2bλ)/2
0 H (e1(λ) + 2cλ)/2

(e2(λ) + 2bλ)/2 (e1(λ) + 2cλ)/2 0


relative to {e1, e2, e3}. On the other hand, gφ has the components

gφ =

 1 0 0
0 1 0
0 0 0

 .

From this formula we get the following results.

Proposition 8.1. An almost Kenmotsu 3-manifold M is weakly φ-Einstein if and only if ξ is an eigenvector field of S. In
particular M is φ-Einstein if and only if M is an H-almost Kenmotsu and of constant holomorphic sectional curvature.

It should be remarked that "η-Einstein" and "φ-Einstein" are not in inclusion relation. In fact, there exist
φ-Einstein almost Kenmotsu 3-manifolds which are not η-Einstein (see the Lie group GII(β, γ) in Example 9.2.

Note that the symmetric property of ρ∗ is characterized as follows (cf. [31]).

Proposition 8.2. An almost Kenmotsu 3-manifold M has symmetric ρ∗ if and only if M is H-almost Kenmotsu.

Next we give the following result.
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Corollary 8.1 ([31]). An almost Kenmotsu 3-manifold M satisfying ∇ξh = 0 and symmetric ρ∗ is locally isomorphic to
a non-unimodular Lie group.

Proof. Let us consider a non-Kenmotsu almost Kenmotsu 3-manifold M with symmetric ρ∗. Then M is H-
almost Kenmotsu. Take a local h-eigenframe field as in Lemma 6.2, then we have R(e1, e2)ξ = 0 and

R(e2, ξ)ξ = (ξ(λ) + 2λ)e1 − (λ2 − 2λδ + 1)e2, R(ξ, e1)ξ = (λ2 + 2λδ + 1)e1 − (ξ(λ) + 2λ)e2.

Assume that ∇ξh = 0. Then from δ = 0 and ξ(λ) = 0, we have

R(e1, e2)ξ = 0, R(e2, ξ)ξ = −(λ2 + 1)ξ, R(ξ, e1)ξ = (λ2 + 1)e1 − 2λe2.

These formulas imply that M is a generalized almost Kenmotsu (κ, µ, ν)-space with

κ = −1− λ2, µ = 0, ν = 2.

Then from Theorem 7.3, M is locally isomorphic to the non-unimodular Lie group GII(λ, λ) which will be
exhibited in Example 9.2.

Corollary 8.2 ([31]). Let M be an almost Kenmotsu 3-manifold M satisfying ∇ξh = 0. If ρ∗ is η-parallel, then it is
locally isomorphic to a non-unimodular Lie group.

9. Homogeneous almost Kenmotsu 3-manifolds

9.1. Homogeneity

In this section we study homogeneous almost Kenmotsu 3-manifolds as the model cases.

Definition 9.1 (cf. [90]). An almost contact Riemannian manifold M = (M,φ, ξ, η, g) is said to be a homogeneous
almost contact Riemannian manifold if there exists a Lie group G of isometries which acts transitively on M such
that every element f of G preserves η, that is

f∗η = η.

Calvaruso and A. Perrone showed that 3-dimensional Lie groups which admit left invariant almost
Kenmotsu structure are non-unimodular [15].

9.2. Non-unimodular Lie groups

9.2.1. The standard almost Kenmotsu structure First of all we explain that every 3-dimensional non-unimodular
Lie group admits a left invariant almost Kenmotsu structure.

Let G be a 3-dimensional non-unimodular Lie group equipped with a left invariant Riemannian metric. On
the Lie algebra g of G, we take an orthonormal basis {E1, E2, E3} as in Section 4.2. We define a left invariant
endomorphism field φ and a left invariant 1-form η by

φE1 = E2, φE2 = −E1, φE3 = 0, η = ⟨·, ξ⟩, ξ = E3.

Then (φ, ξ, η) is a left invariant almost contact structure compatible to the metric. Now let A = (aij) be the
representation matrix of ad(ξ) on the unimodular kernel u. By using the table (4.1) of the Levi-Civita connection,
one can see that (G,φ, ξ, η, ⟨·, ·⟩) is almost Kenmotsu if and only if trA = −2.

Theorem 9.1 ([36, 93, 94]). On a 3-dimensional non-unimodular Lie groupG equipped with a left invariant Riemannian
metric, there exists a left invariant almost contact structure compatible to the metric and satisfies

• the resulting structure is almost Kenmotsu and
• the left invariant distribution D defined by the Pfaff equation η = 0 coincides with the distribution generated by the

unimodular kernel u.

The almost Kenmotsu structure is called the standard almost Kenmotsu structure of G.
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The operator h and h′ with respect to the standard almost Kenmotsu structure are computed as

hE1 =
1

2
((a12 + a21)E1 + (a22 − a11)E2) , hE2 =

1

2
((a22 − a11)E1 − (a12 + a21)E2) ,

h′E1 =
1

2
((a22 − a11)E1 − (a12 + a21)E2) , h′E2 = −1

2
((a12 + a21)E1 + (a22 − a11)E2) .

The eigenvalues of h are 0 and

±
√

(a12 + a21)2 + (a22 − a11)2

2
=

±
√

(a12 + a21)2 + 4(1 + a11)2

2
,

since a11 + a22 = −2.

9.3. Normalization

Let G be a (simply connected) 3-dimensional non-unimodular Lie group equipped with a left invariant
almost Kenmotsu structure. Then there are two possibilities:

• ξ ⊥ u.
• ξ is transversal to u but it is not orthogonal to u.

It should be remarked that under almost Kenmotsu assumption, the case ξ ∈ u does not occur (see [90]).

9.3.1. The case ξ ⊥ u In this case we may assume that the structure is the standard almost Kenmotsu structure.
Thus the Lie algebra g is gA as in Section 4.2.

Since h is self-adjoint with respect to g, we can take an orthonormal basis {e1, e2} of u which diagonalizes h.
We may assume that {e1, e2} is related to {E1, E2} by a rotation.

e1 = cos θ E1 + sin θ E2, e2 = − sin θ E1 + cos θ E2

for some θ. Then
φe1 = cos θ E2 − sin θ E1 = e2, φe2 = − sin θ E2 − cos θ E1 = −e1.

Hence with respect to the new orthonormal frame field {e1, e2, e3 = E3}, we have

φe1 = e2, φe2 = −e1

and
he1 = λe1, he2 = −λe2.

The matrix A is transformed as (
α̃ γ
β α̃

)
with respect to {e1, e2, e3}. Since trA = −2 is invariant, we have α̃ = −1.

Proposition 9.1 ([15, 94]). Let G be a 3-dimensional non-unimodular Lie group equipped with a left invariant almost
Kenmotsu structure. If the characteristic vector field is orthogonal to the unimodular kernel, then G is locally isomorphic
to the Lie group GA given by (4.2) with

A =

(
−1 γ
β −1

)
for some β, γ ∈ R. Namely, the Lie algebra g is generated by an orthonormal basis {e1, e2 = φe2, e3 = ξ} satisfying
he1 = λe1, he2 = −λe2, he3 = 0 and the commutation relations:

[e1, e2] = 0, [e2, e3] = −γe1 + e2, [e3, e1] = −e1 + βe2,

where λ = (β + γ)/2. The Lie algebra is referred as to a non-unimodular Lie algebra of type II in [15].
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9.3.2. The case ξ is transversal to u and ξ /∈ u⊥ Next, we consider the case ξ is transversal to u but not orthogonal
to u. We express ξ as

ξ = ξ1E1 + ξ2E2 + ξ3E3, ξ21 + ξ22 + ξ23 = 1.

By the assumption, ξ21 + ξ22 ̸= 0. Let us choose a basis {E1, E2, E3} as in Section 4.2 and we represent g as gA for
someA. Since the almost contact structure is almost Kenmotsu, ∇ξ is self-adjoint with respect to g and div ξ = 2
(Proposition 6.2). One can see that div ξ = −ξ3 trA. Hence

ξ3 = − 2

trA
. (9.1)

Perrone [94] showed that the self-adjointness of ∇ξ is equivalent to detA = 0. The coefficients ξ1 and ξ2 satisfy

a11ξ1 + a21ξ2 = a12ξ1 + a22ξ2 = 0.

Let us take an orthonormal basis {e1, e2 = φe1, e3 = ξ} of gA satisfying he1 = λe1. Calvaruso and Perrone
proved that e1 /∈ u, e2 /∈ u and ξ /∈ u. Then Lemma 6.2 and the proof of [15, Theorem 4.3], we have

∇e1e1 = −be2 − e3, ∇e1e2 = be1 + λe3, ∇e1e3 = e1 − λe2,

∇e2e1 = ce2 + λe3, ∇e2e2 = −ce1 − e3, ∇e2e3 = −λe1 + e2,

∇e3e1 = δe2, ∇e3e2 = −δe1, ∇e3e3 = 0,

where b ̸= 0, c ̸= 0 and δ are constants. From this table we confirm that div ξ = 2. From the Jacobi identity, we
have

b = c(λ− δ), c = b(λ+ δ).

According to [15], we set

ē1 :=
be1 − ce2√
b2 + c2

, ē2 := φē2, ē3 = ξ, β := −2δ, γ :=
√
b2 + c2 > 0. (9.2)

For simplicity of notation, we denote this new basis by {e1, e2, e3}. Then the new basis satisfies the commutation
relations:

[e1, e2] = γe1, [e2, e3] = −βe1, [e3, e1] = −2e1.

Moreover we have

λ =

√
β2 + 4

2
, λ2 = 1 + δ2 ≥ 1.

The unimodular kernel is spanned by

e1, ξ +
2

γ
(e1 − e2).

The Lie algebra determined by these commutation relations is referred as to a non-unimodular Lie algebra of
type IV in [15]. Type IV Lie algebras will be studied in Section 9.6. For the classification of homogeneous almost
Kenmotsu 3-manifolds in terms of the submanifold geometry of canonical foliation. See [93, Theorem 5.1].

9.4. The type II Lie algebra

Let GII(β, γ) be a 3-dimensional non-unimodular Lie group equipped with a left invariant almost Kenmotsu
structure with Lie algebra gII(β, γ) of type II. The Lie algebra gII(β, γ) coincides with the Lie algebra gA described
in Section 4.2 with

A =

(
−1 γ
β −1

)
and e1 = E1, e2 = E2 and ξ = E3. Note that {e1, e2, e3} is regarded as a global h-eigenframe field as in Lemma
6.2 under the choice b = c = 0.

The Levi-Civita connection is described as

∇e1e1 = −e3, ∇e1e2 = λe3, ∇e1e3 = e1 − λe2,

∇e2e1 = λe3, ∇e2e2 = −e3, ∇e2e3 = −λe1 + e2,
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∇e3e1 = δe2, ∇e3e2 = −δe1, ∇e3e3 = 0,

where
λ =

β + γ

2
, δ =

β − γ

2
.

The Milnor invariant is D = 1− βγ.
If βγ ̸= 0, the simply connected Lie group G̃A = G̃II(β, γ) is given by (see (4.2)):

G̃II(β, γ) =


 e−z cosh(

√
βγz) γ√

βγ
e−z sinh(

√
βγz) x

β√
βγ
e−z sinh(

√
βγz) e−z cosh(

√
βγz) y

0 0 1


∣∣∣∣∣∣∣ x, y, z ∈ R


In case β = 0, we have

G̃II(0, γ) =


 e−z γze−z x

0 e−z y
0 0 1

 ∣∣∣∣∣∣ x, y, z ∈ R

 .

In addition, we have

G̃II(β, 0) =


 e−z 0 x

βze−z e−z y
0 0 1

 ∣∣∣∣∣∣ x, y, z ∈ R

 .

The Riemannian curvature R of GII(β, γ) is given by

R(e1, e2)e1 = −K12e2, R(e1, e2)e2 = K12e1, R(e1, e2)e3 = 0,

R(e2, e3)e1 = −2λξ, R(e2, e3)e2 = −K23ξ, R(e2, e3)e3 = 2λe1 +K23e2,

R(e3, e1)e1 = K13ξ, R(e3, e1)e2 = 2λξ, R(e3, e1)e3 = −K13e1 − 2λe2,

where
K12 = −(1− λ2), K13 = −(λ2 + 2λδ + 1), K23 = −(λ2 − 2λδ + 1).

The Ricci operator S is given by

Se1 = −2(1 + λδ)e1 + 2λe2, Se2 = 2λe1 − 2(1− λδ)e2, Se3 = −2(1 + λ2)ξ.

The scalar curvature is a negative constant
s = −2(3 + λ2).

The principal Ricci curvatures are

ρ1 =− 2 + 2λ
√

1 + δ2 = −2 +
β + γ

2

√
(β − γ)2 + 4,

ρ2 =− 2− 2λ
√

1 + δ2 = −2− β + γ

2

√
(β − γ)2 + 4,

ρ3 =− 2(1 + λ2) = −1

2
(4 + (β + γ)2).

From these we conclude that GII(β, γ) is pseudo-symmetric if and only if β = −γ (locally symmetric) or D = 0
(equivalently βγ = 1).

The covariant derivative ∇S is computed as

(∇e1S)e1 = 2δλξ, (∇e1S)e2 = 2λ(λ2 + αλ− 1)ξ,

(∇e1S)e3 = 2δλe1 + 2λ(λ2 + δλ− 1)e2, (∇e2S)e1 = 2λ(λ2 − δλ− 1)ξ,

(∇e2S)e2 = −2δλξ, (∇e2S)e3 = 2λ(λ2 − δλ− 1)e1 − 2δλe2,

(∇e3S)e1 = −4δλe1 − 4δ2λe2, (∇e3S)e2 = −4δ2λe1 + 4δλe2, (∇e3S)e3 = 0.

From this table, one can see that GII(β, γ) is locally symmetric if and only if λ = 0 (equivalently β = −γ, see
Example 9.1) or δ = 0 (equivalently β = γ, see Example 9.2).

503 dergipark.org.tr/en/pub/iejg

https://dergipark.org.tr/en/pub/iejg


Characteristic Jacobi Operator on Almost Kenmotsu 3-manifolds

The characteristic Jacobi operator ℓ is given by

ℓe1 = −(1 + 2λδ + λ2)e1 + 2λe2, ℓe2 = 2λe1 − (1− 2λδ + λ2)e2.

Let L be a leaf of the canonical foliation. The Gauß curvature KL of the leaf is identically zero. Note that the
leaf through the origin is the canonical normal subgroup U .

Let us investigate commutativity of S and φ. Since

[S, φ]e1 = 4λ(e1 + δe2), [S, φ]e2 = 4λ(δe1 − e2), [S, φ]e3 = 0,

GII(β, γ) satisfies [S, φ] = 0 when and only when λ = 0 (compare with [21, Proposition 6]).
Next

(£ξS)e1 = −4λδ(e1 + (λ+ δ)e2), (£ξS)e2 = 4λδ((λ− δ)e1 + e2).

Thus £ξS = 0 holds if and only if λ = 0 or δ = 0 (compare with [21, Proposition 7]). Note that one can check
that £ξS = 0 is equivalent to ∇ξS = 0 on G(β, γ) (see [21]). On can check that GII(β, γ) is almost Kenmotsu
(−1− λ2,−2δ, 2)-space and (−1− λ2,−2,−2δ)′-space.

Proposition 9.2. A non-unimodular Lie group GII(β, γ) with Lie algebra gII(β, γ) has the following properties.

• it is φ-Einstein.
• it is η-Einstein if and only if β = −γ. In such a case G(β,−β) is Kenmotsu and Einstein.
• it is H-almost Kenmotsu.
• it is an almost Kenmotsu (−1− (β + γ)2/4, γ − β, 2)-space.
• it is pseudo-symmetric if and only if β = −γ or βγ = 1 (equivalently D = 0). In the former case G(β,−β) is

Kenmotsu.
• it is semi-symmetric if and only if β = −γ or β = γ = ±1. In the former case GII(β,−β) is Kenmotsu. In the latter

case GII(1, 1) and GII(−1,−1) are isometric to H2(−4)×R (see Example 9.2).
• it has η-parallel Ricci operator.
• it has transversally Killing Ricci operator when and only when β = ±γ.
• it satisfies £ξS = 0 when and only when β = ±γ.
• it has η-parallel Riemannian curvature.
• The canonical normal subgroup U is intrinsically flat and constant mean curvature −1.

In particular, GII(β, γ) is semi-symmetric if and only if it is locally symmetric.

Remark 9.1. The type II Lie group GII(β, γ) in this article and G(λ, α) in [64, 65] are related by

G(λ, α) = GII(λ+ α, λ− α), GII(β, γ) = G((β + γ)/2, (β − γ)/2).

Note that GII(β, γ) is denoted by G(β, γ) in [63].

Example 9.1 (λ = 0). Assume that λ = 0, i.e., β + γ = 0. In this case, GII(β,−β) is Kenmotsu and δ = β. The
Milnor invariant is D = 1 + β2 ≥ 1. The simply connected Lie group G̃II(β,−β) is given by

G̃II(β,−β) =


 e−z cos(βz) −e−z sin(βz) x

e−z sin(βz) e−z cos(βz) y
0 0 1

 ∣∣∣∣∣∣ x, y, z ∈ R

 .

Note that G̃II(β,−β) is a Lie subgroup of the universal covering of the orientation preserving similarity
transformation group

S̃im(2) =


 et cos z −et sin z x

et sin z et cos z y
0 0 1

 ∣∣∣∣∣∣ x, y, z, t ∈ R


of Euclidean plane. The left invariant metric is expressed as the warped product metric

e2z(dx2 + dy2) + dz2.

Hence G̃II(β,−β) is isometric to the hyperbolic 3-space H3(−1) = R×ez C of constant curvature −1 (see
Example 5.1). The canonical normal subgroup U is nothing but the horosphere of H3(−1). As is well known
H3(−1) is expressed as H3(−1) = SL2C/SU2 as a Riemannian symmetric space. The Lie group

G̃II(0, 0) =


 e−z 0 x

0 e−z y
0 0 1

 ∣∣∣∣∣∣ x, y, z ∈ R


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is isomorphic to the solvable part S of SL2C according to the Iwasawa decomposition SL2C = S · SU2. Note that
G̃II(0, 0) is nothing but the non-unimodular Lie group G̃A in Example 4.1 with A = −I . The Lie group G̃II(0, 0)

coincides with the solvable Lie group S(−1) in Example 9.5. The Lie group G̃II(β, β) with β ̸= 0 coincides with
the Lie group G̃A in Example 4.1 with a11 = a22 = −1 and a21 = −a21 = β ̸= 0.

It should be remarked that the automorphism group of the Kenmotsu structure of H3(−1) is 4-dimensional
([103]). The hyperbolic 3-space H3(−1) has several homogeneous Kenmotsu manifold representtaions. For
instance we know H3(−1) = G̃II(β,−β)/{Id}. On the other hand, H3(−1) admits a homogeneous Kenmotsu
manifold representation H3(−1) = (S ·U1)/U1 (see [57]). This phenomena has Sasakian analogue. The 3-sphere
S3 is represanted by SO4/SO3 = (SU2 × SU2)/SU2 as a Riemannian symmetric space. On the other hand S3 has
homogeneous Sasakian manifold representations SU(2)/{Id} as well as U2/U1 = (SU2 ×U1)/U1.

Example 9.2 (δ = 0). When δ = 0, we have λ = β and G̃II(β, β) is given by

G̃II(β, β) =


 e−z cosh(βz) e−z sinh(βz) x

e−z sinh(βz) e−z cosh(βz) y
0 0 1

 ∣∣∣∣∣∣ x, y, z ∈ R

 .

The Milnor invariant is D = 1− β2 ≤ 1. In particular when β = ±1, D = 0. Note that G̃II(β, β) is a Lie subgroup
of the identity component 

 et cosh z et sinh z x
et sinh z et cosh z y

0 0 1

 ∣∣∣∣∣∣ x, y, z, t ∈ R


of the similarity transformation group Sim(1, 1) of Minkowski plane.

The almost Kenmotsu manifold GII(β, β) is non-Kenmotsu unless β = 0. The left invariant metric is

e2z cosh(2βz)(dx2 + dy2) + 2e2z sinh(2βz)dxdy + dz2.

The sectional curvatures are given by

K12 = −1 + β2, K13 = K23 = −1− β2.

The Ricci operator S is given by

Se1 = −2e1 + 2βe2, Se2 = 2βe1 − 2e2, Se3 = −2(1 + β2)ξ.

The scalar curvature is computed as
s = −2(3 + β2).

The Ricci eigenvalues are
−2 + 2β, −2− 2β, −2− 2β2.

Thus GII(β, β) is pseudo-symmetric if and only if β = 0 (locally symmetric and hence of constant curvature
−1) or β = ±1. In the latter case, the principal Ricci curvatures are {−4,−4, 0}. As we saw before H2(−4)×R
in Example 4.2 and Example 5.2 has trA = −2, D = 0 and principal Ricci curvatures {−4,−4, 0}. Hence we
conclude that GII(1, 1) and GII(−1,−1) are isometric to H2(−4)×R as well as isomorphic to H2(−4)×R as Lie
groups. Thus for GII(β, β), pseudo-symmetry is equivalent to local symmetry.

The characteristic Jacobi operator ℓ is given by

ℓe1 = −(1 + β2)e1 + 2βe2, ℓe2 = 2βe1 − (1 + β2)e2.

We notice that GII(β, β) is an almost Kenmotsu (−1− β2, 0, 2)-space and an almost Kenmotsu (−1− β2,−2)′-
space (see Theorem 5.7). The Lie group GII(β, β) satisfies £ξS = 0. The Lie group given in [27, Theorem] is
G(β, β).

Here we give an explicit models for pseudo-symmetric almost Kenmotsu Lie group of type II.

Example 9.3 (Pseudo-symmetric Lie groups). Let GII(β, γ) be an almost Kenmotsu Lie group of type II. As we
saw before, GII(β, γ) is pseudo-symmetric if and only if β + γ = 0 or βγ = 1. In the former case, GII(β,−β) is
Kenmotsu. In the latter case, the universal covering G̃II(β, β

−1) is given by

G̃II(β, β
−1) =

{(
e−z cosh z β−1e−z sinh z
βe−z cosh z e−z cosh z

) ∣∣∣∣ x, y, z ∈ R
}
.
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This Lie group is an example of the second class in Proposition 7.3. Indeed G̃II(β, β
−1) is an almost Kenmotsu

(κ, µ, 2)-space with κ = −1− (β + β−1)2/4 and µ = β−1 − β. Thus G̃II(β, β
−1) is proper pseudo-symmetric if

β ̸= ±1.

Let us reexamine the almost Kenmotsu (κ, 0, 2)-spaces appeared in Theorem 7.3. Dileo and Pastore proved
the following Lemma.

Lemma 9.1 ([36]). Let M be a strictly almost Kenmotsu 3-manifold. Assume that M is an almost Kenmotsu (κ, 0, 2)-
space. Then for any unit eigenvector field E1 of h′ corresponding to an eigenvalue λ ̸= 0, the Levi-Civita connection is
described as

∇E1
E1 = −(1 + λ)E1, ∇E1

E2 = 0, ∇E1
E3 = (1 + λ)E1

∇E2E1 = 0, ∇E2E2 = −(1− λ)E3, ∇E2E3 = (1− λ)E2 (9.3)

∇E3
E1 = 0, ∇E3

E2 = 0, ∇E3
E3 = 0,

where E2 = φE1 and E3 = ξ. In particular [ξ, E1] = −(1 + λ)E1 and [ξ, E2] = −(1− λ)E2.

Now let M be 3-dimensional strictly almost Kenmotsu (κ, 0, ν)-space. Then Dileo and Pastore proved
that ν = 2. Then we can apply the preceding Lemma. Since κ = −1− λ2, the eigenvalue λ is constant. The
orthonormal frame field satisfies the commutation relation (5.16)

[E1, E2] = 0, [E2, E3] = (1− λ)E2, [E3, E1] = −(1 + λ)E1.

Hence M is locally isomorphic to a non-unimodular Lie group GA with representation matrix

A =

(
−1− λ 0

0 −1 + λ

)
. (9.4)

The matrix A has trA = −2 and D = detA = 1− λ2 < 1. On the other hand, we know that the non-unimodular
Lie group G̃II(λ, λ) has D = 1− λ2 < 1. Hence GA is locally isomorphic to G̃II(λ, λ) given in Example 9.2.

Remark 9.2. In G̃II(β, γ), if λ = −1, then the representation matrix A is rewritten as

A =

(
−1 −1− δ

−1 + δ −1

)
.

In this case β = −1 + δ and γ = −1− δ. The Lie group GII(−1 + δ,−1− δ) is an almost Kenmotsu (−2,−2δ, 2)-
space.

Example 9.4 (Pseudo-symmetric Lie groups). When βγ = 1, the simply connected Lie group G̃II(β, β
−1) is

realized as

G̃II(β, β
−1) =


 e−z cosh z β−1e−z sinh z x

βe−z sinh z e−z cosh z y
0 0 1

 ∣∣∣∣∣∣ x, y, z ∈ R

 .

The principal Ricci curvatures are

−2− 1

2β2
(β2 + 1)2, −2− 1

2β2
(β2 + 1)2, −2 +

1

2β2
(β2 + 1)2.

In particular, as we saw before, G̃II(1, 1) and G̃II(−1,−1) are locally symmetric and isometric to H2(−4)×R.

Remark 9.3. The simply connected almost Kenmotsu Lie group G̃II(β, γ) has negative constant scalar curvature
s = −2(3 + λ2) and constant square norm ||S||2 = 4(λ2 + (δ + 4)λ2 + 3) of the Ricci operator S. Thus we have the
inequality

s2

3
≤ ||S||2 ≤ s2

2
.

One can confirm that

• s2/3 ≤ ||S||2 holds when and only when λ = 0, i.e., G̃II(β, γ) is isometric to H3(−1).
• s2/2 ≤ ||S||2 holds when and only when δ = 0, i.e., G̃II(β, γ) is isometric to H2(−4)×R.
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• G̃II(β, γ) is conformally flat when and only when λ = 0 or δ = 0.

In [18], Cheng, Ishikawa and Shiohama proved that a complete conformally flat Riemannian 3-manifold M of
constant negative scalar curvature and constant square norm of the Ricci operator is isometric to a space form
or else the square norm ||S||2 satisfies

s2

3
< ||S||2 ≤ s2

2
.

The almost Kenmotsu Lie group G̃II(β, γ) with λ = (β + γ)/2 ̸= 0 satisfies this inequality. But it is not
conformally flat unless δ = 0.

9.5. Solvable Lie group models

In this subsection we study simply connected non-unimodular Lie group G̃A with representation matrix

A =

(
−2− c 0

0 c

)
, c ∈ R. (9.5)

Note that trA = −2 and D = −c(c+ 2). We equip the standard left invariant almost Kenmotsu structure
(φ, ξ, η, g) on G̃A. we denote the resulting almost Kenmotsu manifold by S(c). The metric on S(c) is

g = e2(c+2)zdx2 + e−2czdy2 + dz2.

Since D = 0 if and only if c = 0 or c = −2, S(0) and S(−2) are isometric to H2(−4)×R.
Note that this 1-parameter family of homogeneous spaces can be seen in [106]. The Lie algebra s(c) of S(c) is

spanned by the orthonormal basis

E1 =

 0 0 1
0 0 0
0 0 0

 , E2 =

 0 0 0
0 0 1
0 0 0

 , E3 =

 −2− c 0 0
0 c 0
0 0 0

 .

We denote by the left invariant vector field on S(c) which is obtained by left translation of Ei (i = 1, 2, 3) by the
same letter. Then we have

E1 = e−(c+2)z ∂

∂x
, E2 = ecz

∂

∂y
, E3 =

∂

∂z
. (9.6)

The sectional curvatures are given by

H = K12 = K(E1 ∧ E2) = c(c+ 2), K13 = K(E1 ∧ E3) = −(c+ 2)2, K23 = K(E2 ∧ E3) = −c2.

The operators h and h′ are computed as

hE1 = (c+ 1)E2, hE2 = −(c+ 1)E1, hE3 = 0,

h′E1 = (c+ 1)E1, h′E2 = −(c+ 1)E2, h′E3 = 0.

From these we notice that the matrix (9.4) and (9.5) are related by λ = 1 + c. Hence S(c) is an almost Kenmotsu
(κ, 0, 2)-space (equivalently (κ,−2)′-space) with κ = −1− λ2 = −1− (c+ 1)2. Moreover S(c) is isomorphic to
GII(c+ 1, c+ 1) in Example 9.2.

Example 9.5 (Hyperbolic space). For c = −1, then S(c) is the warped product model R(z)×ez E2(x, y);

(R3(x, y, z), e2z(dx2 + dy2) + dz2)

of the hyperbolic 3-space H3(−1) of constant curvature −1 (Example 5.1). The almost Kenmotsu structure
satisfies

(∇Xφ)Y = g(φX, Y )ξ − η(Y )φX

for all vector fields X and Y on S(−1). Hence S(−1) is a Kenmotsu manifold. The solvable Lie group S(−1)

coincides with the non-unimodular Lie group G̃II(0, 0) in Example 9.1.

Example 9.6 (H2(−4)×R). Choose c = −2. Then S(c) is the Riemannian product of R(x) and the warped
product model R(z)×e2z R(y) of the hyperbolic plane H2(−4). The structure is strictly almost Kenmotsu. The
metric is expressed as dx2 + e4zdy2 + dz2.
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Example 9.7 (H2(−4)×R). Choose c = 0. Then S(c) is the Riemannian product of R(y) and the warped product
model R(z)×e2z R(x) of the hyperbolic plane H2(−4). The structure is strictly almost Kenmotsu. The metric is
expressed as e4zdx2 + dy2 + dz2. The homogenous almost Kenmotsu 3-manifolds S(0) is isomorphic to the
example H2(−4)×R in Example 5.2 as an almost Kenmotsu manifold under the isometry:

u := 2x, v := e−2z, t := y.

Note that this is the isometry given in (5.7) with k = 2.

Kenmotsu [70] generalized the Weierstrass-Enneper’s representation formula for minimal surfaces in
Euclidean 3-space E3 to surfaces in E3 with prescribed mean curvature function. Kenmotsu’s representation
formula inspired differential geometers to obtain such a formula for surfaces in hyperbolic 3-space H3(−1).
In 1987, Góes and Simões [43] obtained integral representation formulas for minimal surfaces in H3(−1) and
H4(−1). Góes and Simões used the upper half space model of the hyperbolic spaces. In 1997, Kokubu [74]
obtained an integral representation formula for minimal surfaces in the hyperbolic space Hn(−1) of arbitrary
dimension n ≥ 3 by using the solvable Lie group model S(−1). Kokubu’s formula for S(−1) is generalized to
general G(c) in [47, 48, 66]. Nistor [79] studied constant angle surfaces in S(c).

9.6. The type IV Lie algebra

Let us consider a 3-dimensional non-unimodular Lie groupGIV[β, γ] of type IV equipped with a left invariant
almost Kenmotsu structure. The Lie algebra gIV[β, γ] is determined by the commutation relations:

[e1, e2] = γe1, [e2, e3] = −βe1, [e3, e1] = −2e1.

Then the Levi-Civita connection is described as

∇e1e1 = −γe2 − 2e3, ∇e1e2 = γe1 +
β

2
e3, ∇e1e3 = 2e1 −

β

2
e2,

∇e2e1 =
β

2
e3, ∇e2e2 = 0, ∇e2e3 = −β

2
e1, (9.7)

∇e3e1 = −β
2
e2, ∇e3e2 =

β

2
e1, ∇e3e3 = 0,

The Lie group GIV[β, γ] is strictly almost Kenmotsu. The unimodular kernel is spanned by

e1, ξ +
2

γ
(e1 − e2).

The operators h and h′ are given by

he1 =
β

2
e1 + e2, he2 = e1 −

β

2
e2,

h′e1 = e1 −
β

2
e2, h′e2 = −β

2
e1 − e2.

The eigenvalues of h are 0, λ and −λ where

λ =

√
β2 + 4

2
.

The covariant derivative ∇ξh is computed as

∇ξh = βhφ.

This formula implies that δ = −β/2. Hence ∇ξh = 0 holds when and only when β = 0.
Remark 9.4 (h-eigenframe). To look for h-eigenframes, one need to rotate {e1, e2} as

u1 = cos θ e1 + sin θ e2, u2 = − sin θ e1 + cos θ e2

with angle θ determined by

cos(2θ) =
β√
β2 + 4

, sin(2θ) =
−2√
β2 + 4

.
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Then {u1, u2, u3 = e3} is a left invariant h-eigenframe satisfying

hu1 = λu1, hu2 = −λu2, hu3 = 0.

Note that {u1, u2, u3} and {e1, e2, e3} are related by (9.2). More precisely in (9.2), replace ei [resp. ēi ] by ui [resp.
ei], then we get the present {e1, e2, e3} and {u1, u2, u3}.

Moreover {u1, u2, u3} is a global h-eigenframe as in Lemma 6.2 with

b = γ cos θ, c = γ sin θ, δ = −β
2
.

Remark 9.5. The Lie group G[α, γ] of type IV in [64, 65] is related to GIV[β, γ] by

G[α, γ] = GIV[−2α, γ], GIV[β, γ] = G[−β/2, γ].

The Riemannian curvature R, Ricci operator S and the the scalar curvature are described as

R(e1, e2)e1 =

(
γ2 − β2

4

)
e2 + 2γe3, R(e1, e2)e2 =

(
β2

4
− γ2

)
e1 − βγe3, R(e1, e2)e3 = −γ(2e1 − βe2),

R(e1, e3)e1 = 2γe2 +

(
4− β2

4

)
e3, R(e1, e3)e2 = −2γe1 − 2βe3, R(e1, e3)e3 =

(
β2

4
− 4

)
e1 + 2βe2,

R(e2, e3)e1 = −β(γe2 + 2e3), R(e2, e3)e2 = βγe1 +
3β2

4
e3, R(e2, e3)e3 = 2βe1 −

3β2

4
e2.

ρ11 =
β2

2
− γ2 − 4, ρ12 = 2β, ρ13 = −βγ,

ρ22 = −β
2

2
− γ2, ρ23 = −2γ, ρ33 = −β

2

2
− 4,

s = −β
2

2
− 2γ2 − 8.

The principal Ricci curvatures are

−4− β2

2
− γ2, −4− β2

2
− γ2,

β2

2
.

These formulas show that this Lie group is never H-almost Kenmotsu (see also [94, Theorem 8]). Moreover
GIV[β, γ] is always pseudo-symmetric. One can check that £ξS = 0 holds when and only when β = 0.

Let us consider a leaf of the canonical foliation D. Then the shape operator A has the components

A =

(
−2 β/2
β/2 0

)
relative to {e1, e2}. Thus L has extrinsic curvature −β2/4 and hence KL = −γ2 < 0.

The characteristic Jacobi operator is given by

ℓ(e1) =

(
β2

4
− 4

)
e1 + 2βe2, ℓ(e2) = 2βe1 −

3β2

4
e2.

Here we compute the Lie derivative £ξℓ:

(£ξℓ)e1 = 2β(βe1 + 2e2), (£ξℓ)e2 = −β2(βe1 + 2e2).

Proposition 9.3. Let G be a 3-dimensional non-unimodular Lie group equipped with a left invariant almost Kenmotsu
structure. Assume that the Lie algebra is of type IV. Then the following properties are mutually equivalent:

• β = 0.
• £ξℓ = 0 holds.
• £ξS = 0 holds.
• (∇ξS)ξ = 0 holds.
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• ∇ξS = 0 holds.
• S is η-parallel.
• R is η-parallel.
• G is locally symmetric.
• G is semi-symmetric.

Proof. The equivalence of β = 0 and ∇S = 0 can be checked by direct computation. The covariant derivative
∇S is computed as

(∇e1S)e1 =− β2

2
(γe2 + 2e3) , (∇e1S)e2 = −β

2
(βγe1 + 4γe2 − (γ2 − 4)e3),

(∇e1S)e3 =− β

2
(2βe1 − (γ2 − 4)e2 − 4γe3),

(∇e2S)e1 =
β

2
(2βγe1 + 2γe2 + (β2 − γ2)e3), (∇e2S)e2 = β(γe2 + βe3),

(∇e3S)e1 =
β

2

(
4βe1 − (β2 − 4)e2 − 2γe3

)
, (∇e3S)e2 = −β

2

(
(β2 − 4)e1 + 4βe2 − βγe3,

)
(∇e3S)e3 =− βγ

2
(2e2 − βe3).

From these we deduce that

∇S = 0 ⇐⇒ ∇ξS = 0 ⇐⇒ (∇ξS)ξ = 0 ⇐⇒ β = 0.

In a similar manner one can check that R · S = 0 if and only if β = 0. For example (R(e1, e2)S)e1 is computed as

(R(e1, e2)S)e1 = β2

{
βe1 −

1

4
(β2 − 4)e2 −

γ

2
e3

}
.

Since ξ /∈ u⊥, the leaf of the canonical foliation through the origin is different from the canonical normal
subgroup U . Here we study the canonical normal subgroup U . It is known that U is intrinsically flat. Here we
compute the extrinsic curvature of U .

Take a basis
X1 = e1, X2 = 2(e1 − e2) + γξ

of the unimodular kernel u. Then we can take a unit normal vector field of U as

N =
1√
γ2 + 4

(γ e2 + 2ξ).

The shape operator derived from N is

AU =
1√
γ2 + 4

(
γ2 + 4− β 2γ2 + β

2 γ
2 + 8

β
2 β

)
.

Let us compute the extrinsic curvature Kext(U) of U . Direct computations show that

⟨AUX1, X1⟩ =
√
γ2 + 4, ⟨AUX1, X2⟩ =

1

2

√
γ2 + 4(β + 4),

⟨AUX2, X2⟩ =2
√
γ2 + 4(β + 2).

Q(X1, X2) :=⟨X1, X1⟩⟨X2, X2⟩ − ⟨X1, X2⟩2 = γ2 + 4.

Hence

Kext(U) = −β
2

4
.

On the other hand, we have

⟨R(X1, X2)X1, X2⟩ = −β
2

4
(γ2 + 4).
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Hence we get

K(X1 ∧X2) = −⟨R(X1, X2)X1, X2⟩
Q(X1, X2)

=
β2

4
.

This confirms that the Gauss curvature KU of U is 0.
In the Lie algebra gIV[β, γ], we can take an orthonormal basis {E1, E2, E3} as

E1 := e1, E2 :=
−2e2 + γξ√

γ2 + 4
, E3 = N.

Then one can confirm that tr ad(E1) = tr ad(E2) = 0 and [E1, E2] = 0. Hence {E1, E2} spans u. The
representation matrix Aβ,γ of ad(E3) relative to {E1, E2} is

Aβ,γ =

(
−
√
γ2 + 4 −β
0 0

)
.

This representation matrix implies that the above definition of {E1, E2, E3} is consistent with (9.1).
Remark 9.6. The Lie algebra g with A = Aβ,γ coincides with Ga,b in [93, Example 4.6] under the choice
a = −

√
γ2 + 4 and b = −β.

Note that trAβ,γ = −
√
γ2 + 4 and D = 0. The Ricci operator has the components

S =


β2

2 − (γ2 + 4) −β
√
γ2 + 4 − 4βγ√

γ2+4

−β
√
γ2 + 4 −β2

2 0

− 4βγ√
γ2+4

0 −β2

2 − (γ2 + 4)

 (9.8)

relative to {E1, E2, E3}. Note that the orthogonality condition ⟨[E3, E1], [E3, E2]⟩ = 0 is equivalent to β = 0. In
case β = 0, S is diagonalized.

On the other hand, we know that H2(−k2)×R is realized as a simply connected non-unimodular Lie group
G̃A with

A =

(
−k 0
0 0

)
.

(see Example 5.2). Hence the universal cover G̃IV[β, γ] of GIV[β, γ] is isomorphic to H2(−4− γ2)×R as a Lie
group. However the spectrum set of the Ricci operator S is not identical to {−4− γ2,−4− γ2, 0} in general.
One can see that G̃IV[β, γ] is isometric to H2(−4− γ2)×R when and only when β = 0, i.e., L is extrinsically flat
(cf. [93, Theorem 5.1-III]).

Corollary 9.1. Let G be a 3-dimensional non-unimodular Lie group equipped with a left invariant almost Kenmotsu
structure. Assume that the Lie algebra g of G is of type IV, then the following properties are mutually equivalent:

• The leaves of the canonical foliation are extrinsically flat.
• The characteristic Jacobi operator ℓ is invariant under the flow of ξ.
• The Ricci operator S is invariant under the flow of ξ.
• G is semi-symmetric.
• G is locally symmetric.
• G is locally isomorphic as a Lie group and isometric to H2(−4− γ2)×R for some γ ̸= 0.

Here we give an explicit model for G̃IV[β, γ].

Example 9.8 (Simply connected Lie group of type IV). The simply connected non-unimodular Lie group
G̃IV[β, γ] determined by A = Aβ,γ is given explicitly by

G̃IV[β, γ] =


 exp(−

√
γ2 + 4z) β

γ2+4 (exp(−
√
γ2 + 4z)− 1) x

0 1 y
0 0 1

 ∣∣∣∣∣∣ x, y, z ∈ R

 .

The Lie algebra gIV[β, γ] of G̃IV[β, γ] is spanned by the orthonormal basis

E1 = exp(−
√
γ2 + 4z)

∂

∂x
, E2 =

β

γ2 + 4
(exp(−

√
γ2 + 4z)− 1)

∂

∂x
+

∂

∂y
, E3 =

∂

∂z
.
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The global orthonormal frame field {e1, e2 = φe1, e3 = ξ} is computed as

e1 =exp(−
√
γ2 + 4z)

∂

∂x
,

e2 =− 2β

(γ2 + 4)3/2
(exp(−

√
γ2 + 4z)− 1)

∂

∂x
+

1√
γ2 + 4

(
−2

∂

∂y
+ γ

∂

∂z

)
,

e3 =
βγ

(γ2 + 4)3/2
(exp(−

√
γ2 + 4z)− 1)

∂

∂x
+

1√
γ2 + 4

(
γ
∂

∂y
+ 2

∂

∂z

)
.

The left invariant metric g is expressed as

g = exp(2
√
γ2 + 4z) dx2 +

{
1 +

β2

(γ2 + 4)2
(exp(

√
γ2 + 4z)− 1)2

}
dy2

+
2β exp(

√
γ2 + 4z)

γ2 + 4
(exp(

√
γ2 + 4z)− 1)dxdy + dz2.

The Ricci operator is given by (9.8) relative to {E1, E2, E3}.

Example 9.9 (H2(−4− γ2)×R). In case β = 0, the Ricci operator has components −(γ2 + 4) 0 0
0 0 0
0 0 −(γ2 + 4)

 .

Hence G̃IV[0, γ] is semi-symmetric and isometric to H2(−4− γ2)×R. The canonical normal subgroup U is
extrinsically flat.

The Lie group G̃IV[0, γ] is realized as the following non-unimodular Lie group

G̃IV[0, γ] =


 exp(−

√
γ2 + 4 z) 0 x
0 1 y
0 0 1

 ∣∣∣∣∣∣ x, y, z ∈ R


equipped with a left invariant Riemannian metric

g = exp(2
√
γ2 + 4 z)dx2 + dy2 + dz2.

This shows that G̃[0, γ] is interpreted as a warped product R2(y, z)×f R(x) with warping function f(z) =

exp(
√
γ2 + 4 z).

Take a global orthonormal frame field:

e1 = exp(−
√
γ2 + 4 z)

∂

∂x
, e2 =

1√
γ2 + 4

(
−2

∂

∂y
+ γ

∂

∂z

)
, e3 =

1√
γ2 + 4

(
γ
∂

∂y
+ 2

∂

∂z

)
.

Define an endomorphism field φ by

φe1 = e2, φe2 = −e1, φe3 = 0.

Equivalently,

φ
∂

∂x
=
exp(

√
γ2 + 4 z)√
γ2 + 4

(
−2

∂

∂y
+ γ

∂

∂z

)
,

φ
∂

∂y
=−

2 exp(−
√
γ2 + 4 z)√

γ2 + 4

∂

∂x
,

φ
∂

∂z
=
γ exp(−

√
γ2 + 4 z)√

γ2 + 4

∂

∂x
.
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Set ξ = e3. Then the 1-form η metrically dual to ξ is

η =
1√
γ2 + 4

(γ dy + 2dz).

The fundamental 2-form is

Φ =
exp(

√
γ2 + 4 z)√
γ2 + 4

(2 dx ∧ dy − γ dx ∧ dz).

One can check that dη = 0 and dΦ = 2η ∧ Φ. Under the isometry (5.7), the metric of G̃IV[0, γ] is transformed as

du2 + dv2

γ2 + 4
+ dt2.

The orthonormal frame field is transformed as

e1 = −
√
γ2 + 4v

∂

∂u
, e2 = γ v

∂

∂v
− 2√

γ2 + 4

∂

∂t
, e3 = 2v

∂

∂v
+

γ√
γ2 + 4

∂

∂t
.

Hence

η =
1√
γ2 + 4

(
2dv√
γ2 + 4v

+ γ dt

)
Under the limit γ → 0, η converges to dv/(2v). This is the (opposite sign of the) 1-form of the standard almost
Kenmotsu structure of H2(−4)×R given in Example 5.2.

10. Ricci curvatures of almost Kenmotsu 3-manifolds

Now we start our investigation on Ricci tensor field and related tensor fields on almost Kenmotsu 3-
manifolds.

10.1. The parallelism

As is well known, locally symmetric Kenmotsu manifolds are of constant curvature −1. In [34], Dileo and
Pastore proposed the following question:

Is a locally symmetric almost Kenmotsu manifold either Kenmotsu of constant curvature −1 or locally
isometric to the product Hn+1(−4)×Rn ?

As a partial affirmative answer, they proved that locally symmetric almost Kenmotsu manifolds of
dimension greater than 3 satisfying R(X,Y )ξ = 0 for all vector fields X and Y orthogonal to ξ are Kenmotsu of
constant curvature −1 or locally isometric to the product Hn+1(−4)×Rn.

Next, Wang and Liu [111] proved that locally symmetric CR-integrable almost Kenmotsu manifolds of
dimension greater than 3 are Kenmotsu of constant curvature −1 or locally isometric to the product Hn+1(−4)×
Rn. It should be remarked that 3-dimensional almost Kenmotsu manifolds are automatically CR-integrable. In
this section we give a complete classification of (simply connected and complete) locally symmetric almost
Kenmotsu 3-manifolds.

10.2. The system of local symmetry

We compute the covariant derivative ∇S and the derivative R · S over U1. Take a local orthonormal frame
field {e1, e2, e3} as in Lemma 6.2, then we have

(∇e1S)e1 = {e1(ρ11) + 2bρ12 + 2ρ13}e1 + {e1(ρ12)− b(ρ11 − ρ22)− λρ13 + ρ23}e2
+ {e1(ρ13)− (ρ11 − ρ33) + λρ12 + bρ23}e3,

(∇e1S)e2 = {e1(ρ12)− b(ρ11 − ρ22)− λρ13 + ρ23}e1 + {e1(ρ22)− 2bρ12 − 2λρ23}e2
+ {e1(ρ23)− ρ12 − bρ13 + λ(ρ22 − ρ33)}e3,

(∇e1S)e3 = {e1(ρ13)− (ρ11 − ρ33) + λρ12 + bρ23}e1 + {e1(ρ23)− ρ12 − bρ13 + λ(ρ22 − ρ33)}e2
+ {e1(ρ33)− 2ρ13 + 2λρ23}e3.
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Hence ∇e1S = 0 if and only if

e1(ρ11) + 2bρ12 + 2ρ13 = 0, (10.1)
e1(ρ12)− b(ρ11 − ρ22)− λρ13 + ρ23 = 0, (10.2)
e1(ρ13)− (ρ11 − ρ33) + λρ12 + bρ23 = 0, (10.3)
e1(ρ22)− 2bρ12 − 2λρ23 = 0, (10.4)
e1(ρ23)− ρ12 − bρ13 + λ(ρ22 − ρ33) = 0, (10.5)
e1(ρ33)− 2ρ13 + 2λρ23 = 0. (10.6)

(∇e2S)e1 = {e2(ρ11)− 2cρ12 − 2λρ13}e1 + {e2(ρ12) + c(ρ11 − ρ22) + ρ13 − λρ23}e2,
+ {e2(ρ13) + λ(ρ11 − ρ33)− ρ12 − cρ23}e3,

(∇e2S)e2 = {e2(ρ12) + c(ρ11 − ρ22) + ρ13 − λρ23}e1 + {e2(ρ22) + 2cρ12 + 2ρ23}e2
+ {e2(ρ23) + λρ12 + cρ13 − (ρ22 − ρ33)}e3,

(∇e2S)e3 = {e2(ρ13) + λ(ρ11 − ρ33)− ρ12 − cρ23}e1 + {e2(ρ23) + λρ12 + cρ13 − (ρ22 − ρ33)}e2
+ {e2(ρ33) + 2λρ13 − 2ρ23}e3.

Hence ∇e2S = 0 if and only if

e2(ρ11)− 2cρ12 − 2λρ13 = 0, (10.7)
e2(ρ12) + c(ρ11 − ρ22) + ρ13 − λρ23 = 0, (10.8)
e2(ρ13) + λ(ρ11 − ρ33)− ρ12 − cρ23 = 0, (10.9)
e2(ρ22) + 2cρ12 + 2ρ23 = 0, (10.10)
e2(ρ23) + λρ12 + cρ13 − (ρ22 − ρ33) = 0, (10.11)
e2(ρ33) + 2λρ13 − 2ρ23 = 0. (10.12)

(∇e3S)e1 = {e3(ρ11)− 2αρ12}e1 + {e3(ρ12) + α(ρ11 − ρ22)}e2 + {e3(ρ13)− αρ23}e3,
(∇e3S)e2 = {e3(ρ12) + α(ρ11 − ρ22)}e1 + {e3(ρ22) + 2αρ12)}e2 + {e3(ρ23) + αρ13}e3
(∇e3S)e3 = {e3(ρ13)− αρ23}e1 + {e3(ρ23) + αρ13}e2 + ξ(ρ33)e3.

Thus ∇ξS = 0 if and only if

e3(ρ11)− 2αρ12 = 0, (10.13)
e3(ρ12) + α(ρ11 − ρ22) = 0, (10.14)
e3(ρ13)− αρ23 = 0, (10.15)
e3(ρ22) + 2αρ12 = 0, (10.16)
e3(ρ23) + αρ13 = 0, (10.17)
e3(ρ33) = 0. (10.18)

10.3. Classification

Now let us assume that M is a locally symmetric almost Kenmotsu 3-manifold. Then the scalar curvature
s is constant on M . If M = U0, then M is a Kenmotsu manifold of constant curvature −1. Hence M is locally
isometric and to H3(−1). Moreover M is locally isomorphic to GII(β,−β) for some β as a Kenmotsu 3-manifold.

Hereafter we assume that U1 is non-empty. On U we take a local orthonormal frame field {e1, e2, e3} as in
Lemma 6.2.

From g((∇e3S)e3, e3) = 0, that is, (10.18), we get ξ(λ) = 0. Thus we have ρ12 = 2λ. Thus we obtain

g((∇e3S)e1, e2) = α(ρ11 − ρ22) = 0.

and Since ρ11 − ρ22 = −4αλ, we get α2λ = 0. Thus α = 0 on U1. This implies that ∇ξh = 0 on U1. Moreover

ρ11 = ρ22 =
s

2
+ 1 + λ2

holds on U1.
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Proposition 10.1. If an almost Kenmotsu 3-manifold M is locally symmetric then M satisfies ∇ξh = 0.

The converse statement of this Proposition does not hold. In fact the Lie group GII(λ, λ) with λ2 ̸= 1 in
Example 9.2 satisfies ∇ξh = 0 but it is not locally symmetric.

Proposition 10.2. On U1, λ is constant.

Proof. From the condition g((∇e1S)e1, e1) = 0, we get e2(λ) = λe1(λ). Analogously from g((∇e2S)e2, e2) = 0, we
get e1(λ) = λe2(λ). Since ξ(λ) = 0, λ is constant.

Hence the Ricci operator has components s/2 + λ2 + 1 2λ −2λb
2λ s/2 + λ2 + 1 −2λc

−2λb −2λc −2(1 + λ2)


Since λ is constant g((∇e1S)e1, e2) = 0 reduces to ρ23 = λρ13. In addition g((∇e2S)e2, e1) = 0 reduces to ρ13 =
λρ23. Hence

(λ2 − 1)ρ13 = 0, (λ2 − 1)ρ23 = 0

hold on U1. Since λ is constant on U1, we have two possibilities: (1) λ2 ̸= 1 or (2) λ2 = 1.
First we discuss the case λ2 ̸= 1. In this case ρ13 = ρ23 = 0 on U1, hence U1 is H-almost Kenmotsu. Thus we
obtain b = c = 0 on U1. Next, since b = c = 0, the scalar curvature is s = −2(λ2 + 3) because of (6.3). Hence the
components of the Ricci operator are  −2 2λ 0

2λ −2 0
0 0 −2(1 + λ2)

 .

The principal Ricci curvatures are
−2 + 2λ, −2− 2λ, −2− 2λ.

The orthonormal frame field satisfies the commutation relations:

[e1, e2] = 0, [e2, e3] = −λe1 + e2, [e3, e1] = −e1 + λe2.

These show that U1 is locally isometric to the non-unimodular Lie group GII(λ, λ) exhibited in Example 9.2 and
locally isomorphic to G(λ, 0) as an almost Kenmotsu mannifold. However GII(λ, λ) is locally symmetric when
and only when λ2 = 1. This contradicts to the assumption λ2 ̸= 1 on U1. Thus we proved the following result.

Proposition 10.3. If an almost Kenmotsu 3-manifoldM is locally symmetric thenM is a Kenmotsu manifold of constant
curvature −1 or strictly almost Kenmotsu manifold satisfying tr h2 = 2.

Thus we know that λ = 1 or λ = −1 on U1. Since ρ13 = λρ23 and ρ23 = λρ13, we have c = λb and hence the
Ricci operator has components:  s/2 + 2 2λ −2λb

2λ s/2 + 2 −2b
−2λb −2b −4

 .

Next from the Jacobi identity, we have ξ(b) = 0. We prove the constancy of b. First, from g((∇e1S)e1, e3) = 0, we
have

2λe1(b) = −ρ11 − 2− 2b2.

Next, from g((∇e2S)e1, e3) = 0, we have

2e2(b) = ρ11 + 2 + 2b2.

Thus we get
e2(b) = −λe1(b).

and
ρ11 = −2− 2b2 − 2λe1(b) = −2− 2b2 − 2e2(b).
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From g((∇e1S)e2, e3) = 0, we have
ρ22 = 2λ e1(b)− 2− 2b2 =

r

2
+ 2.

By using ρ11 = ρ22, we obtain e1(b) = 0 and hence e2(b) = 0. Thus we conclude that b is constant. Here we set
γ := b

√
2. Then the scalar curvature is −2(γ2 + 4). Hence the Ricci operator is −γ2 − 2 2λ −

√
2λγ

2λ −γ2 − 2 −
√
2γ

−
√
2λγ −

√
2γ −4

 , λ = ±1.

The commutation relations are

[e1, e2] =
γ√
2
(e1 − λe2), [e2, e3] = −λe1 + e2, [e3, e1] = −e1 + λe2, λ = ±1.

It should be remarked that U1 is H-almost Kenmotsu if and only if γ = 0. In case γ = 0, we notice that U1 is
locally isomorphic to GII(1, 1) or GII(−1,−1) in Example 9.2. In this case U1 is locally isometric to H2(−4)×R.

In case λ = 1, then we rotate the orthonormal frame field and get a new one {E1, E2, E3} as

E1 =
1√
2
(e1 − e2), E2 =

1√
2
(e1 + e2), E3 = e3.

Then the new frame field satisfies

[E1, E2] = γ E1, [E2, E3] = 0, [E3, E1] = −2E1, h′E1 = E1, h′E2 = −E2, h′E3 = 0. (10.19)

Hence U1 is locally isomorphic to GIV[0, γ] in Example 9.9. Thus U1 is locally isometric to H2(−4− γ2)×R.
In case λ = −1, then set

E1 =
1√
2
(e1 + e2), E2 =

1√
2
(−e1 + e2), E3 = e3.

This new frame field satisfies (10.19) and hence U1 is is locally isomorphic to GIV[0, γ].
Henceforth we proved that U1 is locally isomorphic to H2(−4− γ2)×R as an almost Kenmotsu manifold.
Conversely we know that H3(−1), H2(−4)×R and H2(−4− γ2) are locally symmetric.
Thus we arrive at the following classification theorem.

Theorem 10.1. Let M be an almost Kenmotsu 3-manifold. Then M is locally symmetric if and only if M is one of the
following spaces:

1. If M is H-almost Kenmotsu, then M is a Kenmotsu manifold of constant curvature −1 or locally isomorphic to
H2(−4)×R or

2. If M is non H-almost Kenmotsu, then M is locally locally isomorphic to H2(−4− γ2)×R for some γ ̸= 0.

This classification result was announced in [21] (see also [22, 109]).
The third example H2(−4− γ2)×R was discovered in [93, Theorem 1.2 Case (IV)]. This classification gives a

negative answer to the question posed by Dileo and Pastore in dimension 3 (see also [21, 22, 109]).
From Theorem 10.1, the following corollary is deduced (see also [110]).

Corollary 10.1. Let M be an almost Kenmotsu 3-manifold satisfying ∇ξh = 0. Then M has harmonic curvature, that is,

(∇XS)Y = (∇Y S)X

for all vector fields on X and Y if and only if M is one of the following spaces:

1. If M is H-almost Kenmotsu, then M is a Kenmotsu manifold of constant curvature −1 or locally isomorphic to
H2(−4)×R or

2. If M is non H-almost Kenmotsu, then M is locally locally isomorphic to H2(−4− γ2)×R for some γ ̸= 0.

Theorem 10.1 says that local symmetry (equivalently the parallelism of S) is a very strong assumption for
almost Kenmotsu 3-manifolds. We are interested in more mild condition for S. First we are interested in the
semi-symmetry. The full classification of proper semi-symmetric strictly almost Kenmotsu 3-manifolds is still
open. Some partial classifications are obtained.
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Theorem 10.2 ([64]). Let M be an almost Kenmotsu 3-manifold satisfying ∇ξh = −2δ hφ for some constant δ. Then M
is semi-symmetric if and only if M is locally symmetric.

Theorem 10.3 ([64]). Let M be a proper semi-symmetric H-almost Kenmotsu 3-manifold, then it is locally a generalized
almost Kenmotsu (κ, µ, ν)-space satisfying

κ2 = λ2(µ2 + ν2), µ2 + ν2 ≥ 4, s = 4κ < −4, µ ̸= 0.

Theorem 10.4 ([64]). There does not exist a proper semi-symmetric H-almost Kenmotsu 3-manifold satisfying
d(tr(h2)) ∧ η = 0.

Here we propose the following problem:

Problem 1. Classify pseudo-symmetric almost Kenmotsu 3-manifolds (including semi-symmetric ones).

As a partial answer, pseudo-symmetric homogeneous almost Kenmotsu 3-manifolds are classified as follows:

Proposition 10.4. Let M be a pseudo-symmetric homogeneous almost Kenmotsu 3-manifold. Then M is locally
isomorphic to the following simply connected Lie groups:

• The Kenmotsu Lie group G̃II(β,−β) for any β ∈ R (locally symmetric).
• The strictly almost Kenmotsu Lie group G̃II(β, β

−1) for β ̸= 0. It is proper if and only if β ̸= ±1. The Lie group
G̃II(1, 1) and G̃II(−1,−1) are isomorphic to H2(−4)×R as a homogeneous almost Kenmotsu 3-manifold (locally
symmetric).

• The strictly almost Kenmotsu Lie group G̃IV[β, γ] for any β, γ ∈ R, γ ̸= 0. In particular, G̃IV[0, γ] is isomorphic to
H2(−4− γ2)×R as a homogeneous almost Kenmotsu 3-manifold (locally symmetric).

It should be emphasize that there exist non-homogeneous proper pseudo-symmetric almost Kenmotsu 3-
manifolds, see Example 7.2 and Example 7.3.

Theorem 10.5 ([64]). Let M be an H-almost Kenmotsu 3-manifold. If M is proper pseudo-symmetric then

• M is a Kenmotsu 3-manifold of non-constant curvature and L = −1,
• M is locally a generalized almost Kenmotsu (κ, 0, 0)-space with κ < −1, s ̸= 6κ and L = κ, or
• M is locally a generalized almost Kenmotsu (κ, µ, ν)-space with κ < −1, H = s/2− 2 and L = H = κ.

10.4. The strong η-parallelism

One of the relaxation of local symmetry (parallelism of S) is the η-parallelism of S. In our previous paper
[53], the present author investigated η-parallelism of S of Kenmotsu 3-manifolds.

Theorem 10.6 ([53]). A Kenmotsu 3-manifold M has η-parallel Ricci operator if and only if it is locally isomorphic to
the warped product I ×cet M , where I is an interval and M is of constant curvature.

For Kenmotsu 3-manifolds, η-parallelism and strong η-parallelism of S are not equivalent.

Theorem 10.7 ([53]). Let M be a Kenmotsu 3-manifold. Then the following properties are mutually equivalent:

• The scalar curvature is constant along the trajectories of ξ.
• The scalar curvature is constant.
• The scalar curvature is −6.
• The holomorphic sectional curvature is constant.
• The Ricci operator is strongly η-parallel.
• M is locally symmetric.
• M is of constant curvature −1.

Thus the warped products
E1 ×cet S2(k2), E1 ×cet H2(−k2)

are Kenmotsu 3-manifolds whose Ricci operator is η-parallel but not strongly η-parallel.
Up to now, classification of almost Kenmotsu 3-manifolds with η-parallel Ricci operator is still open.

Problem 2. Classify almost Kenmotsu 3-manifolds with η-parallel Ricci operator.
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Here we quote the following result.

Proposition 10.5 ([65]). An almost Kenmotsu 3-manifold M has η-parallel Riemannian curvature if and only if

dH(X) + 2ρ(X, ξ) + 2ρ(hφX, ξ) = 0 (10.20)

for all vector field X orthogonal to ξ.
Moreover M has strongly η-parallel Riemannian curvature if R is η-parallel and dH(ξ) = 0 holds.
In particular if M is H-almost Kenmotsu, then R is η-parallel if and only if the holomorphic sectional curvature H is

η-parallel. In addition, an H-almost Kenmotsu 3-manifold M has strongly η-parallel Riemannian curvature if and only
if H is constant.

We know some examples of almost Kenmotsu 3-manifolds whose Ricci operator is η-parallel but not parallel.
See Example 7.1 and Example 7.2. Some partial classification of almost Kenmotsu 3-manifolds with η-parallel
Ricci operator were obtained in [65]. Here we only quote the following results.

Proposition 10.6 ([65]). Every almost Kenmotsu Lie group GII(β, γ) has η-parallel Ricci operator.

1. The Ricci operator is strongly η-parallel when and only when β = ±γ. In case β = −γ, GII(β,−β) is locally
isometric to H3. In case β = γ, GII(β, β) is an almost Kenmotsu (−1− β2, 0, 2)-space and (−1,−β2,−2)′-space.

2. The Ricci operator is dominantly η-parallel if and only if β = −γ or β = γ = ±1. In the former case GII(β,−β)
is Kenmotsu and of constant curvature −1. In the latter case, GII(1, 1) and GII(−1,−1) are locally isometric to
H2(−4)×R.

Proposition 10.7 ([65]). For a homogeneous almost Kenmotsu 3-manifold M , the dominant η-parallelism of the Ricci
operator is equivalent to the local symmetry.

Proposition 10.8 ([65]). LetM be an almost Kenmotsu 3-manifold satisfying ∇ξh = 0. Then the dominant η-parallelism
of the Ricci operator S is equivalent to the parallelism of S.

In [29, Theorem 4.1], De claimed that if a Kenmotsu 3-manifold M has η-parallel Riemannian curvature, then
M is of constant scalar curvature. However the conclusion of [29, Theorem 4.1] should be corrected as "M has
η-parallel scalar curvature". This is a special case of Proposition 5.2. One can see that the conclusion of [29,
Theorem 4.1] is true under the assumption R is strongly η-parallel. Hence we obtain the following result.

Proposition 10.9. A Kenmotsu 3-manifold satisfies the condition

φ2{(∇WR)(X,Y )Z} = 0

for all vector fields X , Y , Z orthogonal to ξ and any vector field W on M if and only if M is of constant curvature −1.

This Proposition corrects [51, Corollary 4] and [53, Corollary 2.2].

10.5. The characteristic flow invariance

It is known that every Kenmotsu 3-manifold satisfies the commutativity condition [S, φ] = 0. More generally,
we know that the commutativity [S, φ] = 0 is equivalent to the generalized almost Kenmotsu (κ, 0)-condition
(see Corollary 7.1).

Next candidate is the invariance under the flows of ξ. The following result is due to Cho, Kimura and
D. Perrone.

Theorem 10.8 ([27, 95]). Let M be an H-almost Kenmotsu 3-manifold. Then M satisfies £ξS = 0 if and only if M is
either Kenmotsu 3-manifold of constant curvature −1 or locally isomorphic to a non-unimodular Lie groupGII(β, β) with
β ̸= 0 given in Example 9.2.

Up to now full classification of almost Kenmotsu 3-manifolds satisfying £ξS = 0 is still open.

Problem 3. Classify almost Kenmotsu 3-manifolds satisfying £ξS = 0.

Perrone obtained a classification of those spaces under the homogeneity (see [95, Theorem 1.2]).

Theorem 10.9. Let M be a homogenous almost Kenmotsu 3-manifold. If M satisfies £ξS = 0, then M is a locally
isometric to and locally isomorphic as an almost Kenmotsu 3-manifold to one of the following spaces:
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1. The hyperbolic 3-space H3(−1) realized as G̃II(0, 0) in Example 9.1. The structure is Kenmotsu.

2. The hyperbolic 3-space H3(−1) realized as G̃II(β,−β) in Example 9.1 with β ̸= 0. The structure is Kenmotsu.

3. The Lie group G̃II(β, β) in Example 9.2 with β ̸= 0. It is H-almost Kenmotsu.

4. The non-unimodular Lie group G̃IV[β, γ] with type IV Lie algebra. It is never H-almost Kenmotsu.

Generally speaking, the condition £ξℓ = 0 is weaker that £ξS = 0. In Section 11 we shall study this property
for almost Kenmotsu 3-manifolds under the assumption that ξ is an eigenvector field of S. It should be
remarked that for G̃IV[β, γ], £ξℓ = 0 is equivalent to £ξS = 0.

11. Characteristic flow invariant characteristic Jacobi operator

11.1. The Lie derivative £ξℓ

In our previous paper [26] we have investigated contact Riemannian 3-manifolds satisfying £ξℓ = 0 under
the assumption that ξ is an eigenvector field of S (i.e., H-contact assumption). Corresponding classification
for almost cosymplectic 3-manifolds was given in [54]. In this section we study almost Kenmostu 3-manifolds
satisfying £ξℓ = 0 under the assumption that ξ is an eigenvector field of S.

Let M be an almost Kenmotsu 3-manifold. Take the open sets U0 and U1 as before. In case M = U0, then M
is Kenmotsu and £ξℓ = 0 holds. Hereafter we assume that U1 is non-empty. We take a local h-eigenframe field
{e1, e2, e3} on U = U0 ∪ U1 as in Lemma 6.2.

Let M be an H-almost Kenmotsu 3-manifold. Then as we have seen before, M is locally a generalized almost
Kenmotsu (κ, µ, ν)-space. In this case Sξ = 2κξ.

In case M = U0, then Sξ = 2κξ and £ξℓ = 0 holds on whole M , since M is Kenmotsu. Thus hereafter we
assume that U1 is non-empty and take a local orthonormal frame field E = (e1, e2, e3) as in Lemma 6.2.

We put ℓ(e1) = ℓ11e1 + ℓ21e2 and ℓ(e2) = ℓ12e1 + ℓ22e2. Then

(£ξℓ)e1 =[ξ, ℓ(e1)]− ℓ[ξ, e1] = [ξ, ℓ11e1 + ℓ21e2]− ℓ[ξ, e1]

={−ξ(1 + λ2 + 2λδ)− 2δ(ξ(λ) + 2λ)}e1 + {ξ(ξ(λ) + 2λ)− 4λδ(λ+ δ)}e2.

Analogously we get

(£ξℓ)e2 = {ξ(ξ(λ) + 2λ) + 4λδ(λ− δ)}e1 + {−ξ(1− λ2 − 2λδ) + 2δ(ξ(λ) + 2λ)}e2.

Since λ ̸= 0 on U1, (£ξℓ)e1 = 0 holds if and only if

−ξ(1 + λ2 + 2λδ)− 2δ(ξ(λ) + 2λ) = 0, ξ(ξ(λ) + 2λ)− 4λδ(λ+ δ) = 0. (11.1)

On U1, (£ξℓ)e2 = 0 holds if and only if

−ξ(1− λ2 − 2λδ) + 2δ(ξ(λ) + 2λ) = 0, ξ(ξ(λ) + 2λ) + 4λδ(λ− δ) = 0. (11.2)

From (11.1)-(11.2) we deduce that δ = 0 on U1. Hence ξ(λ) = 0. Conversely if δ = ξ(λ) = 0, then (11.1) and (11.2)
hold on U1. It should be remarked that the system δ = ξ(λ) = 0 is equivalent to ∇ξh = 0. Thus we obtain the
following result.

Proposition 11.1. Let M be an almost Kenmotsu 3-manifold. Then M satisfies £ξℓ = 0 if and only if M satisfies
∇ξh = 0.

Now let us assume thatM isH-almost Kenmotsu. ThenM is locally a generalized almost Kenmotsu (κ, µ, ν)-
space with κ = −1− λ2, µ = −2δ and λν = ξ(λ) + 2λ.

The characteristic Jacobi operator ℓ is computed as

ℓ(X) = R(X, ξ)ξ = (κI + µh+ νφh)(X − η(X)ξ) = κ(X − η(X)ξ) + µhX + νφhX.

Hence we get
ℓ(e1) = (κ+ λµ)e1 + λνe2, ℓ(e2) = λνe1 + (κ− λµ)e2.

On a generalized almost Kenmotsu (κ, µ, ν)-space we know that (Proposition 5.14)

ξ(κ) = 2(κ+ 1)(ν − 2).

From Proposition 11.1 we obtain
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Corollary 11.1. Let M be a 3-dimensional generalized almost Kenmotsu (κ, µ, ν)-space. Then M satisfies £ξℓ = 0 if and
only if M is a Kenmotsu manifold or a generalized almost Kenmotsu (κ, 0, 2)-space.

If in addition M is strictly almost Kenmotsu and satisfies dκ ∧ η = 0, then M is locally isomorphic to a non-
unimodular Lie group exhibited in Example 9.4.

On the other hand we know that non-unimodular Lie groups whose Lie algebras are type IV and β = 0
satisfy £ξℓ = 0 but not H-almost Kenmotsu.

Up to now the full classification of strictly almost Kenmotsu 3-manifolds satisfying £ξℓ = 0 is still open.

Problem 4. Classify strictly almost Kenmotsu 3-manifolds satisfying £ξℓ = 0 which are non H-almost Kenmotsu.

11.2. Pseudo-parallelism of ℓ

In [63], we studied almost Kenmotsu 3-manifolds with pseudo-parallel characteristic Jacobi operator. For
instance the following results are obtained:

Proposition 11.2 ([63]). There are no almost Kenmotsu 3-manifolds with semi-parallel characteristic Jacobi operator. In
particular, the characteristic Jacobi operator of an almost Kenmotsu 3-manifold can not be parallel.

Proposition 11.3 ([63]). If the characteristic Jacobi operator of an almost Kenmotsu 3-manifold is pseudo-parallel, then
M is H-almost Kenmotsu.

Proposition 11.4 ([63]). Let M be an almost Kenmotsu 3-manifold. Assume that tr ℓ only varies in the direction of ξ.
Then M has pseudo-parallel characteristic Jacobi operator if and only if M is weakly η-Einstein.

Proposition 11.5 ([63]). Homogeneous almost almost Kenmotsu 3-manifolds with pseudo-parallel characteristic Jacobi
operator are locally isomorphic to the Kenmotsu Lie group G̃II(β,−β) for some β.

12. Harmonic maps

In this section we discuss harmonic maps and Ricci operators on Kenmotsu 3-manifolds.

12.1. Holomorphic maps

Let (M,φ, ξ, η, g) be a Kenmotsu manifold and (N, J, h) an almost Hermitian manifold. A smooth map
f : N →M is said to be a holomorphic map if it satisfies

df ◦ φ = J ◦ df.

On the other hand, a smooth map f : (N,h) → (M,φ, ξ, η, g) of a Riemannian manifold into a Kenmotsu
manifold is vertically harmonic if it satisfies

τ(f)− η(τ(f))ξ = 0.

Assume that N is a Kähler manifold, then the tension field τ(f) of a holomorphic map f : N →M into a
Kenmotsu manifold is given by [52]:

τ(f) = −2e(f)ξ.

Theorem 12.1 ([52]). Holomorphic maps from a Kähler manifold into a Kenmotsu manifold are vertically harmonic.

Corollary 12.1 ([52],[96]). Holomorphic maps from a Kähler manifold into a Kenmotsu manifold are harmonic if and
only if they are constants.

Gherghe [41] obtained the following result (cf. Rehman [96]).

Proposition 12.1. Let f :M → N be a smooth map from a Kenmotsu manifold M into a Kähler manifold. If f is
holomorphic, i.e., df ◦ φ = J ◦ df , then f is harmonic.

Voicu [108] studied holomorphic horizontally conformal submersions from a Kenmotsu 3-manifold
(M,φ, ξ, η, g) onto an oriented Riemannian 2-manifold (N, gN , J) equipped with a compatible complex
structure J .
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Proposition 12.2 ([108]). Let π :M → N be a holomorphic horizontally conformal submersion with dilation Λ. Then
ξ(log Λ) = −1 and the Ricci operator S of M is described as

S = (Λ2π∗KN +∆g(log Λ)} (I− η ⊗ ξ)− 2η ⊗ ξ.

Here KN is the Gauß curvature of N and ∆g is the Laplace-Beltrami operator of (M, g).

By using the formula of S, we obtain the following result.

Corollary 12.2. If there exist a holomorphic horizontally conformal submersion from a Kenmotsu 3-manifold M onto a
complex 1-dimensional Kähler manifold N , then M has the scalar curvature

s = 2(Λ2π∗KN +∆g(log Λ)− 1).

Remark 12.1. In [108, Corollary 3.8], Voicu stated that under the assumption of 12.2, M is weakly η-Einstein. It
should be remarked that every Kenmotsu 3-manifold is weakly η-Einstein.

Note that Chinea computed the tension field of holomorphic maps between general almost contact
Riemannian manifolds.

Proposition 12.3 ([19]). Let (M,φ, ξ, η, g) and (N, φ̃, ξ̃, η̃, g̃) be almost contact manifolds. For a holomorphic map
f :M → N , its tension field is

τ(f) = φ̃{trg(f∗(∇̃φ̃) )− f∗(φ(δgφ) + (δgη)ξ) + {(f∗ξ)η̃(f∗ξ)− trg(f
∗(∇̃η̃) )}ξ̃.

Here ∇̃ is the Levi-Civita connection of g̃. The vector field δgφ is defined by

δgφ = trg(∇φ)

and related to δgΦ by
δgΦ(X) = g(δgΦ, X), X ∈ X(M).

Gherghe and Viı̃cu [42] studied harmonicity of holomorphic maps from locally conformal almost
cosymplectic manifolds into cosymplectic manifolds [42]. Moreover they studied stability of identity maps
of compact locally conformal almost cosymplectic manifolds. Erdem has done more systematic study of
harmonicity of holomorphic maps between almost contact Riemannian manifolds [40].

12.2. The φ-condition

During their studies on Levi-harmonic maps, Dragomir and D. Perrone introduced the notion of φ-condition
for almost contact Riemannian manifolds [39, Definition 3.8].

Definition 12.1. An almost contact Riemannian manifold (M,φ, ξ, η, g) satisfies the φ-condition if

∇φX(φX) +∇XX = φ[φX,X]

for all X , Y ∈ Γ (D).

Perrone introduced the following tensor field [92]:

P (X,Y ) = (∇Xφ)(φY )− (∇φXφ)Y, X, Y ∈ Γ (TM).

Proposition 12.4 ([92]). An almost contact Riemannian manifoldM satisfies the φ-condition if and only if P (X,X) = 0
for all X ∈ Γ (D).

Proposition 12.5 ([92]). On an almost contact Riemannian manifold M , the following three conditions are mutually
equivalent:

• Msatisfies Rawnsley’s condition (A) :

(∇Z̄φ)W = 0, Z,W ∈ Γ (S).

• P (X,Y ) = 0 for all X , Y ∈ Γ (D).
• P (X,X) = 0 and P (X,φX) = 0 for all X ∈ Γ (D).
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Now let us compute the (1, 1)-part of the covariant exterior derivative d∇φ of φ (see [52, p. 359]). For any
Z̄ = X +

√
−1φX ∈ Γ (S) and W = Y −

√
−1φY ∈ Γ (S), we get

(d∇φ)(Z̄,W ) = (P (φX, Y )− P (φY,X))−
√
−1(P (X,Y ) + P (Y,X)).

Thus (d∇φ)(1,1) = 0 if and only if φ satisfies φ-condition. Thus we obtain

Proposition 12.6. An almost contact Riemannian manifold satisfies φ-condition if and only if (d∇φ)(1,1) = 0 holds.

As mentioned in [92], contact Riemannian manifolds satisfy φ-condition but not the condition (A). On the
other hand, one can check that almost Kenmotsu 3-manifolds never satisfy φ-condition.
Remark 12.2. According to Dragomir and Kamishima [37] a smooth map f :M → N of a strongly pseudo-
convex CR-manifold M into a Riemannian manifold N is said to be ∂̄b-pluriharmonic if

(∇̂dφ)(X,Y ) + (∇̂dφ)(JX, JY ) = 0.

Here ∇̂ is the Tanaka-Webster connection of M . When M is a normal strongly pseudo-convex CR-manifold
(i.e., Sasakian manifold), ∂̄b-pluriharmonicity coincides with the CR-pluriharmonicity in the sense of [52].
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