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ABSTRACT: The main purpose of the present paper is to study of some new Hilbert sequence spaces h_ , h_ and
h, . New Hilbert sequence spaces h_, h. and h, consisting all the sequences whose H - transforms are in the

spaces |, C and c,, respectively. The new Hilbert sequence spaces h_, h, and h, that are BK- spaces and

prove that the spaces h_, h, and h, are linearly isomorphic to the spaces le, C and Co, respectively. Afterward

the bases and a, B and y duals of these spaces will be given. Finally, matrix the classes (h, : 1) and (h, : c)

have been characterized.
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Yeni Hilbert Dizi Uzaylan

OZET: Bu calismadaki amacimiz h_ , h. ve h, ile gosterdigimiz; smurli, yakinsak ve sifira yakinsak Hilbert dizi

uzaylarini olusturarak, Hilbert matrisi ile olusturulan bu yeni h_, h. ve h, Hilbert dizi uzaylarmmn birer BK-

uzaylart olduklar1 sirasiyla; |

0

gosterdikten sonra, €-, €- ve €- duallerini hesaplayarak, (he 2 1,) ve (h,

yapmaktir.

, C ve C, dizi uzaylarmi kapsadigimm ve lineer olarak izomorf olduklarii

: C) matris ddniisiimlerini

Anahtar Kelimeler: Hilbert dizi uzaylar, @—, €. ve ¢. dualleri, Dizilerin tabanlari, Matris doniisiimleri.

INTRODUCTION
By W, we shall denote the space of all real or complex

valued sequences. Any vector subspace of W is called
as a sequence space. We write |, C and c,, for the
spaces of all bounded, convergent and null sequences,
respectively. Also by bs, ¢S, I, and I, we denote
the spaces of all bounded, convergent, absolutely

convergent and P -absolutely summable series,
respectively; where 1 < p < oo.
Let X, Y be any two sequence spaces and

A= (ank) be an infinite matrix of real or complex

numbers a,, , where n, k € N . Then, the matrix A

defines a transformation from X into Y and we denote
it by A: X-—>Y, if for every sequence

X =(X.) € X the sequence Ax = {(Ax), }, the A-
transform of X, isin Y , where

(Ax)n = Zank Xk
k

for each N & N For simplicity in notation, here and in
what follows, the summation without limits runs from

(1.1)

0 to o0. By (X :Y), we denote the class of all

matrices A such that A : X @Y Thus A B € 1 YL
if and only if the series on the right side of (1.1)

converges for each N & N and every X & X, and we
have Ax = {(Ax),}eY forall X B X

A sequence space A with a linear topology is called an
K -space provided of the maps Pi - 7O C defined
by PiOEXi s continuous for all | B N; where C
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denotes the set of number and

N ={0,1,2,...}. An K- space 4 is called an FK -

complex

space provided Tis a complete linear metric space. An
FK- space provided whose topology is normable is
called a BK- space. An FK- space provided whose
topology is normable is called a BK- space [1].

The matrix domain XA of an infinite matrix A in a

sequence space X is defined by

X,={x=(x)ew: Axe X} (1.2)

which is a sequence space.

The approach constructing a new sequence space by
means of the matrix domain of a particular limitation
method was used by authors [2]-[8]. They introduced

the sequence spaces @ Ht; ang (C)Tr =t in
[21, (CO)E' =g, and (C)E' =g, in [3], (Co)c = Co
and ¢ =c in[4], (I,). =ef infs], (1), =r',

Cu =1 and () =17 intel, (I,). =X, in (7]
and (Ip)N in [8] where T", E", C, R" and N

denote the Taylor, Euler, Cesaro, Riesz and No&rlund
means, respectively. Following [2] - [8], this way, the
purpose of this paper is to introduce the new Hilbert

sequence spaces h_, h. and h,.

The Hilbert Matrix Of Inverse Formula And Hilbert
Sequence Spaces

n

The nxn matrix H =[h;] = [5]} ;_, is a Hilbert

matrix [9]. The inverse of Hilbert's Matrix Hd[lO] is
given by

L n+i-1\(n+j-1)(i+j-2)
hij =(-1) ](‘I'J 1)[ j[ . j[ . ].(2.1)
n-j n-i i-1

We introduce all bounded, convergent and null of the
Hilbert sequence spaces, respectively.
- w}

x exists}

m

) Derarit

k=

. Ilmz

mawk 1n+

sup

m

hwz{x (x )ew :

o lim =03,
rn—>°°Zn+k 1 . }

With the notation of (1.2), we may redefine the spaces
h.. h, and h, as follows:

he = (CO)H N = (C)H andh, =(l,),. 22

If 2 is an normed or paranormed sequence space, then

matrix domain 7 is called an Hilbert sequence space.
We define the sequence Yy =(y,,) which will be
frequently used, as the H - transform of a sequence
X=(X,) ie,

= 1
Y. _mek, mneN.

k=1

(23)

It can be easily shown that he, hc and ho are linear
and normed spaces by the following norm:

(2.4)

Theorem 1. The sequence spaces h_, h, and h,
endowed with the norm (2.4) are Banach spaces.

Proof. Let sequence (Xp)z (Xép), x(P), xgp),...) ath,
a Cauchy sequence for all p € N . Then, there exists

no=n,(s) for every &>0 such that
pr -X'| <& for all p, r>n,. Hence,
‘H (xp—xr]<efor all P, r>n, and for each
keN. Therefore,

(kap)=((on)k,(Hxl)k,(sz)k,...) is a Cauchy

sequence in the set of complex numbers C.since C is

= (Hx)k

complete, it is convergent say FI)iLnOO(HXp)k

and lim (Hxm )k

m—oo

= (Hx), foreach k B N,

Hence, we have
lim ‘ka—xk‘—‘H xk—xk) H(x:‘—xk]s

n—oo

for all n > n,. This implies that HX" - XmH — oo for

P, m — oo. Now, we should that X € h_ . We have
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1 o1
"HX" SUp{ZMkl _S:p{émk—l(xk

k=1

SHXP—XH +‘ka‘<oo

for p, ke N. This implies that x=(X,)eh, .

Thus, he the space is a Banach space with the norm
(2.4).

It can be shown that No and Nc¢ are closed subspaces of

he which leads us to the consequence that the spaces
and are also the Banach spaces with the norm (2.4).

Furthermore, since he is a Banach space with

continuous coordinates, i.e., HH (ka—xl‘ — o

imples ‘H (xp - xk] — oo forall K B N, itisalso a

BK - space.

Theorem 2. The sequence spaces h_, h. and h, are

linearly isomorphic to the spaces le, C and

Co, respectively,i.e h, =1_, h, =c and h; =c,.

Proof. To prove the fact h, = c,, we should show the

existence of a linear bijection between the spaces ho

and Co. Consider the transformation T defined, with

the notation (2.3), from No to Co. The linearity of T is
clear. Further, it is trivial that X =0 whenever

Tx =0 andhence T is injective.

Let yec,. We define the sequence x=(xn) as
follows:
o n+i-1\(n+j-1\(i+j-2Y
DN R (EES R L Y-
- n-j n-i i-1
Then
I|m Hx), = I|m =limy, =0
( ) kZ;n-l-k 1 k m_)wym

Thus, we have that X € h,

I 1
=Su —X
o mel\?{én-l-k—l X

. In addition, note that

—suply. |-l <o
meN

p p
=X X

Consequently, T is surjective and is norm preserving.
Hence, T is a linear bijection which therefore says us

that the spaces h, to c, are linearly isomorphic. In the

same way, it can be shown that h_ and h_ are linearly

isomorphic to C and |_, respectively, and so we omit

the detail.
Theorem 3.The sequence space h_, h. and h,
includes the sequence spaces |_, C and c,,

respectively,ie. I, ch_, cch, and c, ch,.

0 !

Proof. We only prove the conclusion | < h_ and the

rest follows in a similar way. Let X €l
(2.3) and (2.4), we obtain

. Then, using

X, | <

.~ ~sug

ian+k-1
which means that x € h_.

The Bases Of The Spaces h, And h,

First we define the Schauder bases. A sequence
(b, )neN in a normed sequence space A is called a
Schauder basis (or briefly bases) [11], if for every

X € A there is a unique sequence B¢ of scalars
such that

lim n—>oo||x (agXy + X + o + anxn)” =0 . In this

section, we shall give the Schauder bases of the spaces
h, and h,.

Theorem 4. Let k e N a fixed natural number and
bk — {b(k)}neN where

(k) n+k m+n-1)(m+k-1)(n+k-1)
bn :(_1) (n+k—1) .
m- k m-n n _1

Then the following assertions are true:

i. The sequence {bgk)} is a basis for the space h,
and every X € h, has a unique representation of the
form Xszﬂkb(k) where A, = (Hx), for all

369



ii. The set {e,b(o),b(l), . b(k),...} is a basis for the
space hc and every X € h_ has a unique representation
of the x=le+Y, (4 —1)b®

I =lim,_, (Hx), and 4, = (Hx), forall k e N.

form where

The o —, f — and y —duals of the spaecs h_, h
and h,

c

For the sequence spaces A and w define the set
S(A,u) by

S(A,u)={z=(z)ew :

The €-, €- and €- duals of the sequence spaces 7,
which are respectively denoted by A%, A¥ and A’ are
defined by Garling [12], by A% =S(4,l,),
A’ =5S(A,cs) and A =S(4,bs). We shall begin

with the lemmas due to Stieglitz and Tietz [13], which
are needed in the proof of the theorems 5-7. We denote

by K and F finite subsets of N .

Co - Il)= (C

Lemma 1. Ae(

MOIR
supY.[Y

KeF n |kek

. 1,) if and only if, for

<

(4.1)

Lemma2. A E @ :
sup> | < o,
noy

(4.2)
= a,, (ke N).

cUifand only if

lim a,,

n—o

(4.3)

Lemma3. Ae(c, : 1) ifand only if (4.2) holds.

Theorem 5. Let & H@OE W and the matrix

B = (_1)n+k (n n k _1)£m+n—lj(m+k—lj(n+k—1j '

The €- dual of the sequence spaces he, he and ho s

the set
<w}

Dz{a (a)ew :

Wherein h_! is as defined (2.1).

supy_

KeF

Z h.a,

keK

xz=(xz )e uforall xei}.

Proof. Let @ By O W and consider the matrix B
whose rows are the products of the rows of the matrix

H<and sequence @ B@nQ Bearing in mind the
relation (2 3), we immediately derive that

a x —Zhnk Ly

=(By),,neN. (44)

We therefore observe by (4.4) that ax Ei@nxnOH Iy

whenever X & he, he and ho if and only if

By & 11 whenever yel_,C,
appliying Lemma 1 we get

and Co. Then, by

supY_ > hia, <o

KeF n lkek
which yields the consequences that
Mo’ MmN ERo W HD.
Theorem 6. Consider the sets D1, D2, D3 and D4

defined as follows:

D, {a (a,)ew : supz

m k=1|n

<oo},

D, = {a =(a, )Jew : Y hfa, exists for eachk e N},

oufuihie)

lim ZZhnkan ensts}

* =1 n=k

m
2. haa,
k

m
@ hﬁan

nik

s

kd

m m
i & iz,
i nik

Ds H{a HQ 0w

and

Wherein hﬁ is as defined Then

{h,}’ =D, "D, and
.Y =D,nD,ND, and {h,}) =D, N D;.

@.1).

Proof. We only give the proof space ho. Since the
proof may give by a similar way for the spaces he and

he, we omit it. Consider the equation
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m m m m m
-1 -1
Zakxk = Z|:Zhnk yk:|ak = Z|:Zhnkak:| Yo = (DY)nv
k=1 k=1] k=1 k=1Lk=n

where D = [ZL":n hn"klak]. Thus, we deduce from
Lemma 2 with (4.4) that ax = (&, X, )€ s whenever

x=(x)eh, if and only if Dy H C whenever

y B O co. Therefore, using relations (4.3) and

(4.4), we conclude that lim ha, exists for each

n—ow ' 'nk

keN and sup,_, Xi.,lh a,|<o which shows

that {h,}’ =D, N D,.

Theorem 7. The ¥ — dual of the sequence spaces h,_ ,
h. and h, are

Dsz{az(ak)ew:

Wherein hﬁ is as defined (2.1).

sup)_ha, < oo}

N k=0

Proof. We only give the proof space ho. Consider the
equality

m
zakxk
k=1

za{zh;;yk} nia
k=1

m
)
z Moy Yy
EEE k=1

m
<3
k=1

Taking supremum over M N, we get

m m m
su%Zakxk < sup(z hn’klakHyk j <[yl sup(z hnklakJ < o0,
m |k=1 m \ k=1 m k=1

This means that a = (a, ) € {h, . Hence,

D, c {h, V. (4.5)
Conversely, let a=(a,)e{h,} and X # ho. Then
one can easily see that (Zﬂ“zlhn"klak Vi )e I,

whenever axX E@uXx OF bs. This implies that
matrix Y, h-'a, isinthe class @ @ let.

Hence, the condition sup, >y,

-1 .
hnkak‘ <o s

satisfied, which implies that @ EHi@y OF Ds
In other words,

{h,} < D,. (4.6)

Therefore, by combining inclusions (4.5) and (4.6), we
estahlish that the €- dual of the sequence spaces No is
Ds, which completes the proof.

Some Matrix Mappings Related to Hilbert Sequence
Spaces

In this section, we give the characterization of the
classes (hC : Ip) and (h, : c). As the following
theorems can be proved using standart methods, we
omit the detail.

Lemma 4. [13, p. 57] The matrix mappings between

BK- spaces are continuous.

Lemmab5. [13,p. 128] Ae (C : Ip) if and only if

p
sup)_ 1> a,

<o, 1< p<oo. (5.1)
KeF n lkek

Theorem 8. AH @c : IpUif and only if the

following conditions are satisfied:

m P
supd 1> > hycay,

< o0, (5.2)
KeF 'k |keK n=k

> hya,, exists forall k,n e N (5.3)

n=k

m
> > ha,, convergesforallne N (5.4)
k

n=k

m

sup) |

meN -1

m

hla, |<o,1<p<o (5.5)
=k

n

and for P E@, conditions (5.3) and (5.5) are satisfied
and

supzn:

neN y—o

m
-1
Z hnk a‘kn < .

n=k

(5.6)

Wherein hn’kl is as defined (2.1) for every m, n,
keN.

Theorem 9. Ae(hC : c) if and only if conditions
(5.3), (5.5) and (5.6) are satisfied,

limg, =« forallkeN (5.7)

and
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limg, =a. (5.8)

[6]
Where g, = Xiiy hn_klakn

[7]
and

1 k-1 k-1 2
hn‘k1 = (—1)”+k(n +k —1)( ]( J( " J [8]
m-k m-n n-1

[9]
forevery m, n, ke N.

[10]
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