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ABSTRACT: The main purpose of the present paper is to study of some new Hilbert sequence spaces  
h , 

ch  and 

0h . New Hilbert sequence spaces 
h , 

ch  and 
0h  consisting all the sequences whose H - transforms are in the 

spaces l , c and 
0c , respectively. The new Hilbert sequence spaces h , 

ch  and 
0h  that are BK - spaces and 

prove that the spaces h , 
ch  and 

0h  are linearly isomorphic to the spaces l , c and c0 , respectively. Afterward 

the bases and α, β and γ duals of these spaces will be given. Finally, matrix the classes ):( pc lh  and ):( chc
 

have been characterized. 
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Yeni Hilbert Dizi Uzayları 

ÖZET: Bu çalışmadaki amacımız h , 
ch  ve 

0h  ile gösterdiğimiz; sınırlı, yakınsak ve sıfıra yakınsak Hilbert dizi 

uzaylarını oluşturarak, Hilbert matrisi ile oluşturulan bu yeni h , 
ch  ve 

0h  Hilbert dizi uzaylarının birer BK- 

uzayları oldukları sırasıyla; l , c ve 
0c  dizi uzaylarını kapsadığını ve lineer olarak izomorf olduklarını 

gösterdikten sonra, -, - ve - duallerini hesaplayarak, ):( pc lh  ve ):( chc
matris dönüşümlerini 

yapmaktır. 

Anahtar Kelimeler: Hilbert dizi uzayları, -, - ve - dualleri, Dizilerin tabanları, Matris dönüşümleri. 

 

 

INTRODUCTION 

By w , we shall denote the space of all real or complex 

valued sequences. Any vector subspace of w  is called 

as a sequence space. We write l , c and 0c , for the 

spaces of all bounded, convergent and null sequences, 

respectively. Also by bs , cs , 1l  and ,pl  we denote 

the spaces of all bounded, convergent, absolutely 

convergent and p -absolutely summable series, 

respectively; where .1  p   

Let X , Y  be any two sequence spaces and 

 
nkaA  be an infinite matrix of real or complex 

numbers nka , where n , Nk  . Then, the matrix A  

defines a transformation from X  into Y  and we denote 

it by YXA : , if for every sequence 

Xxx k  )(  the sequence  
nAxAx )( , the A -

transform of x , is in Y , where 

   

  
knk

k

n
xaAx    (1.1) 

for each n  N . For simplicity in notation, here and in 

what follows, the summation without limits runs from 

0  to  . By  YX : , we denote the class of all 

matrices A such that A : X Y . Thus A  X : Y 

if and only if the series on the right side of (1.1) 

converges for each n  N  and every x  X , and we 

have   nAxAx )( Y  for all x  X . 

A sequence space  with a linear topology is called an 

K -space provided of the maps pi : C defined 

by pixxi is continuous for all i  N ; where C  
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denotes the set of complex number and 

 ,...2,1,0N . An K - space  is called an FK - 

space provided  is a complete linear metric space. An 

FK - space provided whose topology is normable is 

called a BK - space. An FK - space provided whose 

topology is normable is called a BK - space [1]. 

The matrix domain XA of an infinite matrix A  in a 

sequence space X is defined by  

 

  XAxwxxX kA  :  (1.2) 

 

which is a sequence space. 

The approach constructing a new sequence space by 

means of the matrix domain of a particular limitation 

method was used by authors [2]-[8]. They introduced 

the sequence spaces c0Tr t0
r

 and   r

cT
tc r   in 

[2],   r

E
ec r 00   and   r

cE
ec r   in [3],   00 cc

C
  

and ccC   in [4],   r

pEp el r   in [5],   t

R
rl t 

 , 

t

cR
rc t    and   r

R
rc t 00   in [6],  

pCp Xl   in [7] 

and  
qNpl  in [8] where 

r
T , 

r
E , C , 

t
R  and qN  

denote the Taylor, Euler, Cesaro, Riesz and Nörlund 

means, respectively. Following [2] - [8], this way, the 

purpose of this paper is to introduce the new Hilbert 

sequence spaces h , 
ch  and 

0h . 

 

 

The Hilbert Matrix Of Inverse Formula And Hilbert 

Sequence Spaces  

 

The nn  matrix ][ ijhH 
n

jiji 1,1

1 ][ 
  is a Hilbert 

matrix [9]. The inverse of Hilbert's Matrix  H1 [10] is 

given by  

 

.
1

211
)1()1(

2

1











































i

ji

in

jn

jn

in
jih

ji

ij (2.1) 

 

We introduce all bounded, convergent and null of the 

Hilbert sequence spaces, respectively.  

 

 














  k

m

km
k x

kn
wxxh

1

1
sup:

1

 

 













 exists 

1

1
lim:

1

k

m

k
m

kc x
kn

wxxh  

and 

 

  .0
1

1
lim:

1

0
















 k

m

k
m

k x
kn

wxxh  

 

With the notation of (1.2), we may redefine the spaces 

h , 
ch  and 

0h  as follows:  

 

    .)( and  ,00 HHcH
lhchch    (2.2) 

 

If  is an normed or paranormed sequence space, then 

matrix domain H  is called an Hilbert sequence space. 

We define the sequence )( myy   which will be 

frequently used, as the H - transform of a sequence 

)( mxx   i.e.,  

. ,   ,
1

1

1

Nnmx
kn

y k

m

k

m 





  (2.3) 

 

It can be easily shown that h, hc  and h0  are linear 

and normed spaces by the following norm:  

 

.
0 


lhhh

Hxxxx
c

  (2.4) 

 

Theorem 1. The sequence spaces h , 
ch  and 

0h  

endowed with the norm (2.4) are Banach spaces. 

 

Proof. Let sequence         ,...,, 210

pppp
xxxx   at h  

a Cauchy sequence for all Np . Then, there exists 

)(00 nn   for every 0  such that 




rp
xx  for all p , 

0nr  . Hence, 

  
rp

xxH for all p , 
0nr   and for each 

Nk  . Therefore,  

      ,...),,()(
210

kkk

p

k HxHxHxHx   is a Cauchy 

sequence in the set of complex numbers C . Since C  is 

complete, it is convergent say    
kk

p

p
HxHx 


lim  

and    
kk

m

m
HxHx 


lim  for each k  N . 

 

 Hence, we have  

     k

m

kk

p

k

m

k

p

kn xxHxxHxHxlim

 for all 
0nn  . This implies that 

mp
xx  for 

p , m . Now, we should that hx . We have 
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p

k

p

kk

m

km
k

m

km

xxx
kn

x
kn

Hxx 








  (
1

1
sup

1

1
sup

11

 


p

k

p
Hxxx  

 

 

for p , Nk  . This implies that 
 hxx k )( . 

Thus, h the space is a Banach space with the norm 

(2.4). 

 

It can be shown that h0  and hc  are closed subspaces of 

h which leads us to the consequence that the spaces 

and are also the Banach spaces with the norm (2.4). 

Furthermore, since h is a Banach space with 

continuous coordinates, i.e.,   


xxH
p

k  

imples    k

p

k xxH  for all k  N , it is also a 

BK - space. 

 

Theorem 2. The sequence spaces  h , 
ch  and 

0h  are 

linearly isomorphic to the spaces l , c and 

c0, respectively, i.e   lh , chc  and 
00 ch  . 

Proof. To prove the fact 
00 ch  ,  we should show the 

existence of a linear bijection between the spaces h0  

and c0 . Consider the transformation T  defined, with 

the notation (2.3), from h0  to c0 . The linearity of T  is 

clear. Further, it is trivial that 0x whenever 

0Tx  and hence T  is injective. 

 

Let 
0cy . We define the sequence  

nxx   as 

follows:  

.
1

211
)1()1(

2

1

k

ji
n

i

n y
i

ji

in
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in
jix 




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











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



























 

 

Then 

  .0lim
1

1
limlim

1









 m

m
k

m

k
m

m
m

yx
kn

Hx  

 

Thus, we have that 0hx . In addition, note that 

 

.sup
1

1
sup

00
N1N







 cm
m

k

m

km
h

yyx
kn

x

 

 

Consequently, T  is surjective and is norm preserving. 

Hence, T  is a linear bijection which therefore says us 

that the spaces 
0h  to 

0c  are linearly isomorphic. In the 

same way, it can be shown that 
ch  and 

h  are linearly 

isomorphic to c  and 
l , respectively,  and so we omit 

the detail. 

 

Theorem 3.The sequence space 
h , 

ch  and 
0h  

includes the sequence spaces 
l , c  and ,0c   

respectively, i.e.   hl ,
chc  and 

00 hc  . 

 

Proof. We only prove the conclusion   hl  and the 

rest follows in a similar way. Let  lx . Then, using 

(2.3) and (2.4), we obtain 

 









  h
n

k
n

k

m

km

xHxx
kn

Hxx supsup
1

1
sup

1N

 

which means that hx . 

The Bases Of The Spaces 
ch  And 

0h  

 

First we define the Schauder bases. A sequence 

 
Nnnb  in a normed sequence space  is called a 

Schauder basis (or briefly bases) [11], if for every 

x there is a  unique sequence n of scalars 

such that 

 

  0...lim 1100  nnn xxxx   . In this 

section, we shall give the Schauder bases of the spaces 

ch  and 
0h . 

 

Theorem 4. Let Nk  a fixed natural number and 
    

N


n

k

n

k
bb  where  

 
.

1

111
)1()1(

2











































n

kn

nm

km

km

nm
knb

knk

n  

Then the following assertions are true: 

 

i. The sequence 
  k

nb  is a basis for the space 0h  

and every 0hx  has a unique representation of the 

form 
   k

kk bx   where  
kk Hx for all 

Nk . 
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ii. The set 
      ,...,...,,,

10 k
bbbe  is a basis for the 

space hc  and every 
chx  has a unique representation 

of the form    k

kk bllex    where 

 
kk Hxl  lim  and  

kk Hx  for all Nk . 

 

The  ,  and  duals of the spaecs 
h , 

ch  

and 
0h  

 

For the sequence spaces   and   define the set 

  ,S  by 

 

      . allfor :,   xzxxzwzzS kkk

 

The -, -  and - duals of the sequence spaces , 

which are respectively denoted by 
 , 

  and 
  are 

defined by Garling [12], by  ,, 1lS    

 csS ,
 and  bsS ,  . We shall begin 

with the lemmas due to Stieglitz and Tietz [13], which 

are needed in the proof of the theorems 5-7. We denote 

by K  and F finite subsets of N . 

 

Lemma 1.    
110 :: lclcA   if and only if, for 

kR  




nk

KknFK

asup   

   (4.1) 

 

Lemma 2. A  c0 : cif and only if 

,sup  nk

kn

a      

 (4.2) 

.)N( ,lim 


ka knk
n

    (4.3) 

 

Lemma 3.  
 lcA :0 if and only if (4.2) holds. 

Theorem 5. Let a ak w  and the matrix  
2

1

111

)1()1( 







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







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



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












n

kn

nm

km

km

nm
kn

knB . 

The - dual of the sequence spaces h, hc  and h0  is 

the set  

  .sup:
1













 nnk

KknFK
k ahwaaD  

Wherein 
1

nkh  is as defined (2.1). 

 

Proof. Let a an w  and consider the matrix B  

whose rows are the products of the rows of the matrix 

H1 and sequence a an.  Bearing in mind the 

relation (2.3), we immediately derive that 

  N. ,
1

1






 nByyahxa
nknnk

n

k

nn
 (4.4) 

 

We therefore observe by (4.4) that ax anxn l1  

whenever x  h, hc  and h0  if and only if 

By  l1  whenever 
 ly , c ,  and c0 . Then, by 

appliying Lemma 1 we get 





 nnk

KknFK

ah
1

sup  

 

which yields the consequences that 

h

hc


h0


D . 

 

Theorem 6. Consider the sets D1 , D2 , D3  and D4  

defined as follows:   

  ,sup:
1

1

1



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


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
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m
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1

2














 keachforexistsahwaaD nnk

m

kn

k

  

D3  a ak w : lim
m

k1

m


nk

m

hnk
1an 

k1

m

lim
n

nk

m

hnk
1an

 

and 

 

  .existslim:
1

1

4




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
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 nnk

m

kn

m

k
m
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Wherein hnk
1

 is as defined (2.1). Then 

 
210 DDh 


 and 

 
421 DDDhc 


 and  

32 DDh 


. 

 

Proof. We only give the proof space h0 . Since the 

proof may give by a similar way for the spaces hc  and 

h, we omit it. Consider the equation 
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where  
knk

m

nk ahD
1

 . Thus, we deduce from 

Lemma 2 with (4.4) that   csxaax kk   whenever 

0)( hxx k   if and only if Dy  c  whenever 

y yk c0 . Therefore, using relations (4.3) and 

(4.4), we conclude that knkn ah
1

lim


 exists for each 

Nk  and 


 knk

n

kn ah
1

1Nsup  which shows 

that  
210 DDh 


. 

 

Theorem 7. The   dual of the sequence spaces h , 

ch  and 
0h  are 
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Proof. We only give the proof space h0 . Consider the 

equality 
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Taking supremum over m  N , we get 
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This means that  
0)( haa k  . Hence, 

 

  .05


hD      (4.5) 

Conversely, let     
0haa k   and x  h0 . Then 

one can easily see that  




  lyah kknk

m

k

1

1  

whenever ax akxk bs . This implies that 

matrix knk

m

nk ah
1

  is in the class c0 : l. 

Hence, the condition 


 knk

m

km ah
1

1sup  is 

satisfied, which implies that a ak D5 .  

In other words, 

 

  .10 Dh 


    (4.6) 

 

Therefore, by combining inclusions (4.5) and (4.6), we 

estahlish that the - dual of the sequence spaces h0  is 

D5 , which completes the proof. 

 

Some Matrix Mappings Related to Hilbert Sequence 

Spaces 
 

In this section, we give the characterization of the 

classes  
pc lh :  and  chc : . As the following 

theorems can be proved using standart methods, we 

omit the detail. 

Lemma 4.  [13, p. 57] The matrix mappings between 

BK - spaces are continuous. 

 

Lemma 5. [13, p. 128]  
plcA :  if and only if  

.1   ,sup 


pa

p

nk

KknFK

 (5.1) 

 

Theorem 8. A  hc : lpif and only if the 

following conditions are satisfied:   

,sup
1
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N ,allfor  exists
1
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Nallfor  converges
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1 ,sup
1
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 (5.5) 

and for p , conditions (5.3) and (5.5) are satisfied 

and 

.sup
1

0N
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 knnk

m
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n
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ah    (5.6) 

 

Wherein 
1

nkh  is as defined (2.1) for every m , n , 

Nk  . 

 

Theorem 9.  chA c :  if and only if conditions 

(5.3), (5.5) and (5.6) are satisfied,  

 

Nallfor   lim 


kg knk
n

   (5.7) 

 

and 
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.lim 
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Where knnk

m
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and 
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for every m , n , Nk  . 
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