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Abstract
In recent years, researchers have focused on exploring different forms of statistical con-
vergence in Riesz spaces, such as statistical order convergence and statistical unbounded
order convergence. This study aims to present the concept of deferred statistical conver-
gence within Riesz spaces, specifically concerning its relationship with order convergence.
Furthermore, we delve into the interconnections between deferred statistical order conver-
gence and various other types of statistical convergence. Moreover, we explore in depth
the intricate connections between deferred statistical order convergence and other notable
forms of statistical convergence. We provide valuable insights into the broader framework
of statistical convergence theory in Riesz spaces.
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1. Introduction and introductory facts
Statistical convergence, originally introduced by Steinhaus in [19], serves as a broader

extension of the conventional convergence seen in real or complex sequences. Its applica-
bility has been explored by Maddox in more generalized abstract spaces, including locally
convex spaces [17]. Moreover, Küçükaslan and Ylmaztürk delved into the concept of
deferred statistical convergence in [14], paving the way for further investigations in this
area. Several other works have also contributed to the theory of statistical convergence
[1, 10–13,15].

On a separate note, Riesz space, also known as a vector lattice, emerged from the realm
of functional analysis through Riesz’s contributions [18]. Over time, this ordered vector
space has found applications in diverse fields such as measure theory, Banach spaces,
operator theory, and economics [2–4, 8, 16, 21]. The current paper endeavors to combine
the ideas of deferred statistical convergence of real sequences with order convergence in
Riesz spaces.

Recall the definition of an ordered vector space, denoted by E, which is a real-valued
vector space equipped with an order relation. In this setting, for any x and y in E, with
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x less than or equal to y, (x ≤ y), we have the property that x + z is less than or equal to
y+z for all z in E, and αx is less than or equal to αy for all positive real numbers α. When
an ordered vector space E satisfies an additional property, namely that the infimum and
supremum operators exist for any two vectors x and y in E, denoted as x ∧ y = inf(x, y)
and x ∨ y = sup(x, y) respectively, it is referred to as a Riesz space or a vector lattice. For
a given element x in a vector lattice E, the positive part denoted as x+ is defined as x ∨ θ,
the negative part denoted as x− is defined as (−x) ∨ θ, and the modulus of x denoted as
|x| is defined as x ∨ (−x). Thus, in this paper, the symbol | · | represents the modulus
of elements in vector lattices. Moreover, in a vector lattice E, a subset A is called solid
if for every x in A and y in E such that the modulus of y is less than or equal to the
modulus of x, it implies that y is in A. An ideal is the term used to describe a solid vector
subspace within a vector lattice. Additionally, a vector lattice is considered to be σ-order
complete when every countable subset, which is both nonempty and bounded above, has
a supremum. Similarly, it can also be described as σ-order complete if every nonempty
bounded below countable subset has an infimum.

Next, let’s define the terms increasing sequence and decreasing sequence in the context
of a Riesz space E. A sequence (xn) in a Riesz space E is said to be increasing whenever
x1 ≤ x2 ≤ · · · and is decreasing if x1 ≥ x2 ≥ · · · holds. Then, we denote them by xn ↑
and xn ↓, respectively. Moreover, if xn ↑ and sup xn = x, then we write xn ↑ x. Similarly,
if xn ↓ and inf xn = x, then we write xn ↓ x. A sequence is said to be monotonic if it is
either increasing or decreasing. In the theory of Riesz spaces, order convergence plays a
crucial role, and thus we proceed with its definition.

Definition 1.1. Let (xn) be a sequence in a vector lattice E. Then, it is called order
convergent to x ∈ E if there exists another sequence yn ↓ θ (i.e., inf yn = θ and yn ↓) such
that |xn − x| ≤ yn holds for all n ∈ N, and abbreviated it as xn

o−→ x.

Now, let’s move on to discussing the concept of statistical convergence, specifically
focusing on the natural density of subsets of natural numbers. The density of a subset K
of the set of natural numbers is defined as the limit (whenever it exists)

lim
n→∞

1
n

|{k ≤ n : k ∈ K}| .

We denote this density as δ(K), where |{k ≤ n : k ∈ K}| represents the count of elements
in K that do not exceed n. On the other hand, a sequence (xn) of real numbers is
statistically convergent to a real number l if, for every positive value ε, the following
condition is satisfied:

lim
n→∞

1
n

∣∣{k : n ≥ k, |xn − l| > ε}
∣∣ = 0.

In the subsequent discussion, we consider a sequence x denoted as (xk), and we introduce
two sequences (pn) and (qn) consisting of non-negative integers such that for each n, pn

is less than qn, and qn diverges to infinity. Based on these sequences, we define a new
sequence as follows:

(Dp,qx)n := 1
qn − pn

qn∑
k=pn+1

xk,

where n ∈ N. The sequence (Dp,qx)n is referred to as the deferred Cesàro mean, which gen-
eralizes the concept of the Cesàro mean for real (or complex) valued sequences. Moreover,
we say that x is strong Dp,q-convergent to l if the following limit exists:

lim
n→∞

1
qn − pn

qn∑
k=pn+1

|xk − l| = 0.
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We use the notation xk
D[p,q]−−−−→ l to represent this convergence. In the context of this

article, whenever we mention p and q sequences, they always satisfy the above properties,
and these properties are referred to as the deferred property. A sequence x = (xk) is said
to be deferred statistical convergent to l ∈ R if, for all ε > 0, the following condition holds:

lim
n→∞

1
qn − pn

∣∣{pn < k ≤ qn : |xk − l| ≥ ε}
∣∣ = 0

We denote this convergence as xk
DS[p,q]−−−−→ l.

In [9], Ercan presented a characterization of statistical convergence on vector lattices.
Then, Aydın explored different forms of statistical convergence in Riesz spaces in [5–7].
In this paper, we remind the following two definitions of statistical convergence in a Riesz
space.

Definition 1.2. Let (xn) be a sequence in a Riesz space E. Then, (xn) is called
- statistical order decreasing to θ if there exists a set K = k1 < k2 < · · · ⊂ N with

density δ(K) = 1 such that (xkn) is decreasing and infn∈K(xkn) = θ. We abbrevi-
ate this as xn ↓sto θ.

- statistical order convergent to x ∈ E if there exists a sequence qn ↓sto θ with an
index set K = k1 < k2 < · · · ⊂ N such that δ(K) = 1 and |xkn − x| ≤ qkn for every
kn ∈ K. We write this as xn

sto−−→ x.

It is clear that every order convergent sequence is statistical order convergent to the
same point.

2. Deferred statistical decreasing
Tripathy introduced the concept of statistical monotonicity for real sequences [20], and

the study of statistically monotone sequences in Riesz spaces was also conducted (see for
example [7]). In this paper, we propose an extension of this concept to deferred statistical
decreasing in Riesz spaces.

Definition 2.1. Consider sequences (pn) and (qn) consisting of nonnegative integers that
satisfy the deferred property. Let (zn) be a sequence in a Riesz space E. We say that (zn)
is a deferred statistical order decreasing sequence to zero if there exists a set K ⊆ N such
that the deferred density of K is equal to one, given by the formula:

δp,q(K) := lim
n→∞

1
qn − pn

∣∣{pn < k ≤ qn : k ∈ K}
∣∣ = 1

Furthermore, the subsequence (zkn)kn∈K must decreasing to zero on the set K, which can
be denoted as (zkn)kn∈K ↓ θ. To simplify notation, we use the abbreviation zn ↓Dsto

p,q θ
to represent the property of a sequence (zn) being a deferred statistical order decreasing
sequence to θ with respect to p and q.

Remark 2.2.
(i) When the sequences q(n) = n and p(n) = θ are used in Definition 2.1, it coincides

with the definition of statistical order decreasing.
(ii) If a sequence (zn) is monotonically decreasing and converges to zero, then it is also

deferred statistical order decreasing to zero. However, the converse does not hold
in general. To illustrate this, consider the Euclidean space R2 equipped with the
coordinatewise ordering. Let q(n) = n and p(n) = 0, and define the sequence (zn) as
follows:

zn :=
{

(0, n2) if n = k3

(0, 1
n2 ) if n ̸= k3 ,
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where k is a natural number. In this case, we have zn ↓Dsto
p,q (0, 0). However, it is

important to note that the entire sequence (zn) is not monotonically decreasing.
(iii) A deferred statistical order decreasing to zero sequence may contain a subsequence

with elements that either decrease or are incomparable in the Riesz space E. How-
ever, the index set corresponding to such a subsequence has deferred density zero.

(iv) In Riesz spaces, it is a well-known fact that if zn ↓ θ, then zkn ↓ θ for every sub-
sequence (zkn) of (zn). However, this property may not hold for deferred statistical
monotone decreasing sequences. For instance, consider the sequences described in
(ii), and take a subsequence (zkn) where kn = j3 for some j ∈ N. In this case, the
subsequence (zkn) does not have a supremum.

In the general, Remark 2.2(iv) provides an example illustrating that a subsequence
of a deferred statistical monotone decreasing sequence may not necessarily be deferred
statistical monotone decreasing. However, we present a positive result in the following
theorem.
Theorem 2.3. Consider a sequence (zn) in a Riesz space E. If zn ↓Dsto

p,q θ holds, then
any subsequence (zkn) of (zn), with an index set K satisfying δp,q(K) = 1 and such that
(zkn) is decreasing on K, is also deferred statistical order decreasing to zero.

Proof. Assume that zn ↓Dsto
p,q θ holds in E. Thus, there exists a set K ⊂ N such that

δp, q(K) = 1, and (zkn)kn∈K ↓ θ on K. Let us consider an arbitrary index set M ⊆ N
satisfying K ̸= M , δp, q(M) = 1, and (zn) is decreasing on M . It can be observed that
if no such set M exists, then the proof is complete. Since zkn ↓ θ, we have θ ≤ zkn for
all kn ∈ K. Additionally, we find that δp,q(K ∩ M) = 1. Consequently, for some km ∈ K
and mn ∈ M , we have kn = mn. Hence, we have zm1 ≥ zm2 ≥ · · · ≥ zmn = zkn ≥ θ.
We can find infinitely many such pairs of indices. By continuing this process, we obtain
zmn ≥ θ for every mn ∈ M , i.e., zero is a lower bound of (zmn). Now, let’s take another
lower bound u of (zmn). Therefore, we have u ≤ zmn for every mn ∈ M . Then, we can
find some znkt

such that znkt
= zmk

≥ u for some mk ∈ M . By following this approach,
we can construct a subsequence (znk1

, znk2
, · · · ) of (zkn) such that u is a lower bound of

(znkt
) for t ∈ N. As zkn ↓ θ, the infimum of every subsequence of (zkn) is zero. Hence, we

obtain u = θ. Therefore, we conclude that zmn ↓Dsto
p,q θ as desired. □

In the next results without proof, we give the linear property of deferred statistical
order decreasing sequences.

Proposition 2.4. Consider sequences xn ↓Dsto
p,q θ and yn ↓Dsto

p,q θ in a Riesz space E, where
λ ∈ R. Then, the following properties hold:

(i) The sequence (xn + yn) ↓Dsto
p,q θ.

(ii) The sequence λxn ↓Dsto
p,q θ.

3. Deferred statistical order convergence
Definition 3.1. Consider sequences p and q of positive integers satisfying the deferred
property. Then, a sequence (xn) in a Riesz space E is referred to as deferred statistical
order convergent to x if there exists a sequence zn ↓Dsto

p,q θ with an index set K ⊆ N such
that δp,q(K) = 1, and the following inequality holds for all kn ∈ K:

|xkn − x| ≤ zkn .

We denote this as xn
Dsto (p,q)−−−−−−→ x.

Remark 3.2. It can be observed that when xn
Dsto (p,q)−−−−−−→ x holds, the following statement

is true:
δp,q({n ∈ N : |xn − x| ≰ zn}) = 0.
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Remark 3.3. It can be observed that the deferred statistical order convergence of the
sequence (xn) in Definition 3.1 with sequence (zn) to x implies that xkn

Dsto (p,q)−−−−−−→ x with
the same sequence (zn). The converse is also true, i.e., if there exists a subsequence
(xkn) Dsto (p,q)−−−−−−→ x of a sequence (xn) with a sequence zn ↓Dsto

p,q θ, then xn
Dsto (p,q)−−−−−−→ x with

the same sequence (zn).

It is obvious that a deferred statistical order decreasing sequence is deferred statistical
order convergent. However, the converse does not hold in general.

Remark 3.4. Consider q(n) = n and p(n) = 0. The following statements can be observed:
(i) An order convergent sequence is also deferred statistical order convergent to its

order limit.
(ii) Statistical order convergence and deferred statistical order convergence are equiv-

alent.

It should be noted that a subsequence of a deferred statistical order convergent sequence
may not necessarily be deferred statistical order convergent.

Proposition 3.5. Let (xn) be a sequence in a Riesz space E. Then, xn
Dsto (p,q)−−−−−−→ x satisfies

if and only if there exists another sequence (yn) in E satisfying δp,q({n ∈ N : xn = yn}) = 1
and yn

Dsto (p,q)−−−−−−→ x.

Proof. Assume that there exists a sequence (yn) in E such that δp,q({n ∈ N : xn = yn}) =
1 and yn

Dsto (p,q)−−−−−−→ x. This implies the existence of another sequence zn ↓Dsto
p,q θ in E with

δp,q(K) = 1, where |xkn − x| ≤ zkn holds for each kn ∈ K. Thus, it follows from the
including

{pn + 1 ≤ m ≤ qn : |xm − x| ≰ zm} ⊆ {pn + 1 ≤ m ≤ qn : xm ̸= ym}

∪ {pn + 1 ≤ m ≤ qn : |ym − x| ≰ zm}
that we can observe that

lim
n→∞

1
qn − pn

|{pn+1 ≤ m ≤ qn : |xm−x| ≰ zm}| ≤ lim
n→∞

1
qn − pn

|{pn+1 ≤ m ≤ qn : xm ̸= ym}|

due to δp,q({pn + 1 ≤ m ≤ qn : |ym − x| ≰ zm}) = 0. As a result, we have

lim
n→∞

1
qn − pn

|{pn + 1 ≤ m ≤ qn : |xm − x| ≰ zm}| = 0.

Thus, we obtain the desired result, xn
Dsto (p,q)−−−−−−→ x. The proof for the other part is straight-

forward and therefore omitted. □
Proposition 3.6. The deferred statistical order limit is a linear operator and uniquely
determined.

Proof. Suppose that xn
Dsto (p,q)−−−−−−→ x and xn

Dsto (p,q)−−−−−−→ y in a Riesz space E. This means
that there exist sequences zn ↓Dsto

p,q θ with δp,q(K) = 1 and tn ↓Dsto
p,q θ with δp,q(M) = 1,

where K and M are index sets, such that |xkn − x| ≤ zkn and |xmn − y| ≤ tmn for all
kn ∈ K and mn ∈ M . Consequently, we have

|x − y| ≤ |x − xjn | + |xjn − y| ≤ zjn + tjn

for every jn ∈ J := K ∩ M . By utilizing the fact that (zjn + tjn)jn∈J ↓ θ, we deduce that
|x − y| = θ, which implies that x = y. Hence, x and y are equal.

Now, to prove the linearity of the deferred statistical order limit, consider sequences
xn

Dsto (p,q)−−−−−−→ x and yn
Dsto (p,q)−−−−−−→ y in a Riesz space E. This means that there exist sequences
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zn ↓Dsto
p,q θ and tn ↓Dsto θ such that δp,q({n ∈ N : |xn − x| ≰ zn}) = 0 and δp,q({n ∈ N :

|yn − y| ≰ tn}) = 0. By using the triangle inequality in Riesz spaces, we can conclude that
{n ∈ N : |(xn +yn)−(x+y)| ≰ zn + tn} ⊆ {n ∈ N : |xn −x| ≰ zn}∪{n ∈ N : |yn −y| ≰ tn}.

Therefore, we can deduce that δp,q({n ∈ N : |(xn + yn) − (x + y)| ≰ zn + tn}) = 0, which
means that xn + yn converges to x + y. □

The following theorem presents various relationships between deferred statistical order
convergence and lattice properties.

Theorem 3.7. Let xn
Dsto (p,q)−−−−−−→ x and yn

Dsto (p,q)−−−−−−→ y in a Riesz space E. Then the following
statements hold:

(i) xn ∨ yn deferred statistical order convergent to x ∨ y;
(ii) xn ∧ yn deferred statistical order convergent to x ∧ y;

(iii) x+
n deferred statistical order convergent to x+;

(iv) x−
n deferred statistical order convergent to x−;

(v) |xn| deferred statistical order convergent to |x|.

Proof. It suffices to prove the first statement since the other cases can be obtained by
applying Theorem 1.7 from [3] and the previously mentioned proposition. From (xn) and
(yn) converging to x and y respectively, we can find sequences zn ↓Dsto

p,q θ and tn ↓Dsto
p,q θ,

along with index sets K and M such that δp,q(K) = δp,q(M) = 1, and |xkn − x| ≤ zkn and
|ymn − y| ≤ tmn hold for all kn ∈ K and mn ∈ M . By utilizing Theorem 1.9 from [3] and
taking J := N ∩ M , we can deduce that

|xjn ∨ yjn − x ∨ y| ≤ |xjn − x| + |yjn − y| ≤ zjn + tjn

for every jn ∈ J . Therefore, we obtain
δp,q({n ∈ N : |xjn ∨ yjn − x ∨ y| ≰ zjn + tjn}) = 0.

Consequently, we have proven that xn ∨ yn converges to x ∨ y. □
Corollary 3.8. The positive cone E+ = {x ∈ E : θ ≤ x} of a Riesz space E remains
closed under the deferred statistical order convergence.

Proposition 3.9. If the sequences xn
Dsto (p,q)−−−−−−→ x, yn

Dsto (p,q)−−−−−−→ y, and xn ≥ yn hold for
every n ∈ N in a Riesz space, then x ≥ y.

Proof. Assuming that yn ≤ xn for each n ∈ N, we can deduce that θ ≤ xn − yn ∈ E+ for
every n ∈ N. By utilizing the previously stated corollary, we have xn −yn

Dsto (p,q)−−−−−−→ x−y ∈
E+ due to the fact that (xn − yn) ∈ E+. Consequently, we get x − y ≥ θ, which implies
x ≥ y. □
Theorem 3.10. If the sequence (xn) is both monotone and deferred statistical order con-
vergent in a Riesz space, then it is order convergent.

Proof. Let (xn) ↓ and xn
Dsto (p,q)−−−−−−→ x in a Riesz space E. Fix any k ∈ N. It follows that

xk −xn ≥ θ for all n ≥ k, meaning xk −xn
Dsto (p,q)−−−−−−→ xk −x ≥ θ, which further gives xk ≥ x.

Thus, x is a lower bound of (xn) since k is arbitrary. Now, choose another lower bound
z of (xn). We then have xn − z

Dsto (p,q)−−−−−−→ x − z ≥ θ, leading to x ≥ z. As a result, we
conclude that xn ↓ x. □
Remark 3.11. Let A be an ideal in a vector lattice E and (an) be a sequence in A. One
can observe that if an

o−→ θ in A, then an
o−→ θ in E. Hence, it is clear that an ↓Dsto

p,q θ in A

implies an ↓Dsto
p,q θ in E. For the converse, if an

o−→ θ in E and order bounded, then an
o−→ θ

in A, and so, an ↓Dsto
p,q θ in E implies an ↓Dsto

p,q θ in A for order bounded sequences.
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Using Remark 3.11, we can establish the following two results.

Theorem 3.12. Let A be an ideal in an σ-order complete vector lattice and (xn) be a
sequence in A. Then, xn

Dsto (p,q)−−−−−−→ θ in A if and only if xn
Dsto (p,q)−−−−−−→ θ in E.

Proof. Assume that xn
Dsto (p,q)−−−−−−→ θ in A. Then, there exists a sequence zn ↓Dsto

p,q θ in A
with index set δp,q(K) = 1 such that |xkn | ≤ zkn for all kn ∈ K. Now, by using Remark
3.11, it follows from (zkn)kn∈K ↓ θ in A that (zkn)kn∈K ↓ θ in E, i.e., we get zn ↓Dsto

p,q θ in
E. Therefore, we have xn

Dsto (p,q)−−−−−−→ θ in E.
Conversely, assume xn

Dsto (p,q)−−−−−−→ θ in E. Then, there is a sequence zn ↓Dsto
p,q θ in E with

index set δp,q(K) = 1 such that |xkn | ≤ zkn for all kn ∈ K. Thus, Remark 3.11 implies
that zn ↓Dsto

p,q θ in A. Therefore, we get xn
Dsto (p,q)−−−−−−→ θ in A. □

The theorem stated as [15, Thm.3.1.] yields a similar result, which can be summarized
as the following theorem.

Theorem 3.13. Let (xn) be a sequence in a Riesz space E and (xkn)kn∈K be a subsequence
of (xn). If the limit

lim inf
n→∞

1
qn − pn

∣∣{pn < kn ≤ qn : kn ∈ K}
∣∣ > 0

holds and xn
Dsto (p,q)−−−−−−→ x for some sequences p and q satisfying the deferred property, then

xkn

Dsto (p,q)−−−−−−→ x.

Proof. Let’s assume that xn
Dsto (p,q)−−−−−−→ x holds true in the Riesz space E. Thus, there

exists a sequence zn ↓Dsto
p,q θ in E such that δp,q({n ∈ N : |xn − x| ≰ zn}) = 0. It can be

observed that
{pn < kn ≤ qn : kn ∈ K, |xkn − x| ≰ zn} ⊆ {pn < n ≤ qn : |xn − x| ≰ zn}.

By defining Hn := {pn < kn ≤ qn : kn ∈ K} for all n, we can express the inequality as
follows:

1
|Hn|

∣∣{pn < kn ≤ qn : kn ∈ K, |xkn − x| ≰ zn}
∣∣ ≤ 1

|Hn|
{pn < n ≤ qn : |xn − x| ≰ zn}.

Therefore, to prove the convergence xkn

Dsto (p,q)−−−−−−→ x, it is sufficient to show that

lim sup
n→∞

1
|Hn|

∣∣{pn < n ≤ qn : |xn − x| ≰ zn}
∣∣ = 0.

We observe the following inequality:

lim inf
n→∞

|Hn|
qn − pn

= lim sup
n→∞

|{pn < n ≤ qn : |xn − x| ≰ zn}|
|Hn|

≤ lim sup
n→∞

|{pn < n ≤ qn : |xn − x| ≰ zn}|
qn − pn

.

Thus, we have
lim sup

n→∞

1
|Hn|

∣∣{pn < n ≤ qn : |xn − x| ≰ zn}
∣∣ = 0

due to xn
Dsto (p,q)−−−−−−→ x. This establishes the desired result. □

In Remark 3.4, we establish a connection between statistical order convergence and
deferred statistical order convergence by selecting q(n) = n and p(n) = 0. We introduce
another relationship in the subsequent theorem, subject to a new condition.
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Theorem 3.14. If the sequence
( pn

qn−pn

)
is bounded for any sequences p and q that satisfy

the deferred property, then statistical order convergence implies deferred statistical order
convergence.

Proof. Let us assume that xn
sto−−→ x in a Riesz space E, and

( pn

qn−pn

)
is a bounded sequence

for certain sequences p and q that fulfill the deferred property. Consequently, there exists
a sequence zn ↓sto θ such that:

lim
n→∞

1
n

|{k ≤ n : |xk − x| ≰ zk}| = 0.

By utilizing the deferred property of (qn), we derive:

lim
n→∞

1
qn

|{k ≤ qn : |xk − x| ≰ zk}| = 0.

Thus, through the inclusion:

{pn < k ≤ qn : |xk − x| ≰ zk} ⊆ {k ≤ qn : |xk − x| ≰ zk},

we can deduce:

lim
n→∞

1
qn − pn

|{pn < k ≤ qn : |xk−x| ≰ zk}| ≤ lim
n→∞

1
qn

(1+ pn

qn − pn
)|{k ≤ qn : |xk−x| ≰ zk}|.

Hence, we obtain the desired result, xn
Dsto (p,q)−−−−−−→ x. □

The converse of Theorem 3.14 does not necessarily hold in general. An example is
provided to illustrate this point.

Example 3.15. Consider the Riesz space E = R2 with the coordinatewise ordering. Let
(xn) be a sequence in E defined as follows:

xn :=
{

(0, n+1
2 ), n is odd

(0, −n
2 ), n is even

for all n. Additionally, consider the sequences (qn) = (2n) and (pn) = (4n). It is clear
that the assumption of Theorem 3.14 is satisfied, and xn

Dsto (p,q)−−−−−−→(0, 0). However, it is not
statistically order convergent.

The following theorem and its proof demonstrate a result related to convergence in
Riesz spaces.

Theorem 3.16. Let p′, q′, and p, q be pairs of sequences satisfying the deferred property,
where pn ≤ p′

n and q′
n ≤ qn for each n ∈ N. Let (xn) be a sequence in a Riesz space E. If

xn
Dsto(p′,q′)−−−−−−−→ x, and the sets {k : pn < k ≤ p′

n} and {k : q′
n < k ≤ qn} are finite for every

n ∈ N, then xn
Dsto (p,q)−−−−−−→ x in E.

Proof. Assume that xn
Dsto (p′,q′)−−−−−−→ x holds in E. Then, there exists a sequence zn ↓Dsto

p,q θ
such that δp,q(n ∈ N : |xn − x| ≰ zn) = 0. By considering the equality

{k : pn < k ≤ qn, |xn − x| ≰ zn} = {k : pn < k ≤ p′
n, |xn − x| ≰ zn}

∪{k : p′
n < k ≤ q′

n, |xn −x| ≰ zn}∪{k : q′
n < k ≤ qn, |xn −x| ≰ zn},

we obtain
lim

n→∞
1

qn − pn
|{k : pn < k ≤ qn, |xn − x| ≰ zn}| = 0.

Hence, xn
Dsto (p,q)−−−−−−→ x. □
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Corollary 3.17. Let p′, q′, and p, q be pairs of sequences satisfying the deferred property,
where lim

n→∞
qn−pn

q′
n−p′n = t > 0 and (xn) be a sequence in a Riesz space E. If xn

Dsto(p′,q′)−−−−−−−→ x,

then xn
Dsto (p,q)−−−−−−→ x in E.

Now, consider the set Cp,q
(zn) = {(xn) : ∃x ∈ E, xn

Dsto (p,q)−−−−−−→ x} with (zn) for a fixed
sequence zn ↓Dsto θ. It is evident that Cp,q

(zn) ⊆ Cp,q
(wn) whenever zn ≤ wn for all n ∈ N.

Proposition 3.18. If δp,q({n ∈ N : zn ̸= wn}) = 0, then Cp,q
(zn) = Cp,q

(wn).

Proof. Suppose that δp,q({n ∈ N : zn ̸= wn}) = 0 holds for some sequences zn ↓Dsto
p,q θ

and wn ↓Dsto θ. Take any element (xn) ∈ Cp,q
(zn). Then, there exists x ∈ E and an index

set δp, q(M) = 1 such that |xmn − x| ≤ zmn for all mn ∈ M . By considering the inclusion
{n : |xn − x| ≰ wn} ⊆ {n : |xn − x| ≰ zn} ∪ {n : zn ̸= wn},

we can conclude that (xn) ∈ Cp,q(wn). Similarly, (xn) ∈ Cp,q(wn) implies (xn) ∈ Cp,q(zn).
Therefore, Cp,q

(zn) = Cp,q
(wn). □

It is apparent that Cp,q
(zkn) ⊆ Cp,q

(zn) for any subsequence zkn ↓Dsto
p,q θ of sequence zn ↓Dsto

p,q θ.
The following proposition provides a result for the converse.

Proposition 3.19. If zn ↓ θ, then Cp,q
(zn) ⊆ Cp,q

(zkn ) holds for each subsequence (zkn)kn∈K of
(zn) with δp,q(K) = 1.

Proof. Assume that zn ↓ θ and (zkn)kn∈K is a subsequence of (zn) with δp, q(K) =
1. Consider any element (xn) ∈ Cp,q(zn). Then, there exists x ∈ E and an index set
δp, q(M) = 1 such that |xmn − x| ≤ zmn for all mn ∈ M . By defining J := M ∩ K, it
follows that |xjn − x| ≤ zjn for each jn ∈ J . Since (zjn) is a subsequence of (zkn), we have
(xn) ∈ Cp,q

(zkn ). □
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