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ABSTRACT

In this article we investigate quasi bi-slant submanifolds of locally metallic Riemannian
manifolds. The main objective is to determine the conditions under which the distributions used
in defining these submanifolds are integrable. We also establish the necessary and sufficient
conditions for quasi bi-slant submanifold to be a totally geodesic foliation.
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1. Introduction

V. W. de Spinadel [25] introduced the metallic mean family, a generalization of the golden mean, which
consists of positive solutions to quadratic equation of the form x2 = px+ q, where p and q are positive integers.
These solutions, known as (p, q)-metallic numbers denoted by σp,q, are associated with various metals such
as the golden mean, silver mean, subtle mean, bronze mean, copper mean, nickel mean, and others. Well-
known metallic means include the golden mean (σ1,1 = Φ = (1+

√
5)

2 for p = 1 and q = 1), the silver mean

(σ2,1 = σAg = 1 +
√
2 for p = 2 and q = 1), and the bronze mean (σ3,1 = σBr = (3+

√
13

2 for p = 3 and q = 1).
Crasmareanu and Hretcanu [17] introduced the concept of a metallic structure on C∞-differentiable real

manifolds, which is a specific type of polynomial structure defined by Goldberg in [16]. This metallic structure
is a generalization of geometric structures such as golden, silver, bronze, subtle, copper, and nickel structures
on C∞-differentiable manifolds.

In recent years, slant submanifolds have gained importance in differential geometry. They were introduced
by Chen [6, 7] as a generalization of invariant and anti-invariant submanifolds of Kaehler manifolds. Chen
provided initial results and examples of slant submanifolds in his book [6]. A submanifold N of an almost
Hermitian manifold, involving an almost complex structure J , is called a slant submanifold if the angle
between JXp and Xp is independent of the choice of point p in N and every non-zero tangent vector Xp.
Since their introduction, slant submanifolds have attracted significant attention and have been studied in
various space forms with complex, contact, and product structures ([1]-[3], [21]-[24]). Slant distributions were
introduced using the concept of slanting, and Carriazo [10] defined bi-slant submanifolds of almost Hermitian
manifolds based on slant distributions. More recently, Prasad et al. [23] studied quasi bi-slant submanifolds of
almost Hermitian manifolds.

Motivated by the desire to understand the geometry and topology of slant submanifolds in metallic
Riemannian manifolds, several research works have been conducted in this area. Various types of
submanifolds, including invariant, anti-invariant, slant, semi-slant, hemi-slant, and bi-slant submanifolds,
have been studied in metallic and golden Riemannian manifolds. Different integrability conditions for
the distributions involved in defining these submanifolds have been obtained through these studies (see,
for example, [4, 5], [8, 9], [11]-[15], [17]-[20], and the references therein). Based upon the aforementioned
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articles, we introduce the concept of quasi bi-slant submanifolds in locally metallic Riemannian manifolds,
encompassing slant, semi-slant, hemi-slant, and bi-slant submanifolds as special cases.

2. Preliminaries

If a (1, 1)-type tensor field Ψ̃ on a C∞-differentiable manifold Ñ satisfies the equation

Ψ̃2 = pΨ̃ + qI, (2.1)

then Ψ̃ is referred to as a metallic structure on Ñ , where I denotes the identity transformation. Consider a
Riemannian manifold (Ñ , g̃) and let Ψ̃ be a metallic structure on Ñ , if Ψ̃ satisfies the following equation

g̃(Ψ̃X1, Y1) = g̃(X1, Ψ̃Y1), (2.2)

then (Ñ , g̃, Ψ̃) is said to be Ψ̃ compatible metallic Riemannian manifold. Furthermore if Ñ is locally metallic
Reimannian manifold then we have

(∇̃X1Ψ̃)Y1 = 0. (2.3)

From (2.1) and (2.2) one can easily obtain

g̃(Ψ̃X1, Ψ̃Y1) = pg̃(Ψ̃X1, Y1) + qg̃(X1, Y1). (2.4)

for all X1, Y1 ∈ Γ(TÑ).
If N is submanifold of Ñ and If ∇ is the induced connection on Ñ , then the Gauss and Weingarten formulae

are given by

∇̃X1
Y1 = ∇X1

Y1 + h(X1, Y1) (2.5)

∇̃X1V1 = −AV1X1 +∇⊥
X1

Y1, (2.6)

for all X1, Y1 ∈ Γ(TN) and V1 ∈ Γ(T⊥N), where A and h are shape operator and second fundamental form and
∇⊥ is the connection on the normal bundle of N . Furthermore the shape operator and second fundamental
form are related by

g̃(AV1
X1, Y1) = g̃(h(X1, Y1), V1).

Let us consider for any X1 ∈ Γ(TN) and V1 ∈ Γ(T⊥N), the decomposition of Ψ̃(X1) and Ψ̃(V1) into tangential
and normal components as

Ψ̃(X1) = fX1 + ϕX1, (2.7)

Ψ̃(V1) = BV1 + CV1, (2.8)

where fX1 := (Ψ̃X1)
⊤, ϕX1 := (Ψ̃X1)

⊥, BV1 := (Ψ̃V1)
⊤ and CV1 := (Ψ̃V1)

⊥.
The covariant derivative of projection morphisms in foregoing equations are defined as

(∇X1
f)Y1 = ∇X1

fY1 − f(∇X1
Y1), (2.9)

(∇̃X1
ϕ)Y1 = ∇⊥

X1
ϕY1 − ϕ(∇X1

Y1), (2.10)
∇X1

BV1 = ∇X1
BV1 −B(∇X1

Y1), (2.11)
(∇̃X1

C)V1 = ∇⊥
X1

CY1 − C(∇⊥
X1

V1), (2.12)

for any X1, Y1 ∈ Γ(TN) and V1 ∈ Γ(T⊥N).
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3. Quasi bi-slant submanifolds of locally metallic Riemannian manifolds.

In this section, we introduce the concept of quasi bi-slant submanifolds in metallic Riemannian manifolds
and provide the necessary and sufficient conditions for their integrability. Before delving into the study of
quasi bi-slant submanifolds, we review some key results from [18]. We begin by defining slant submanifolds
in metallic Riemannian manifolds:

Definition 3.1. A submanifold N in a metallic Riemannian manifold (Ñ , g̃, Ψ̃) is called a slant submanifold if
it satisfies the condition θ(Xx) = constant, where θ(Xx) is the angle between Ψ̃Xx and TxN for any x ∈ N and
Xx ∈ TxN with Ψ̃Xx ̸= 0. The constant angle θ is referred to as the slant angle of N in Ñ and is given by

cos(θ) =
∥fX1∥
∥Ψ̃X1∥

,

where fX1 represents the orthogonal projection of Ψ̃X1 onto TxN . An immersion i : N → Ñ satisfying these
conditions is called a slant immersion of N in Ñ .

We note that invariant and anti-invariant submanifolds are special cases of slant submanifolds with
slant angles θ = 0 and θ = π

2 , respectively. Slant submanifolds that are neither invariant nor anti-invariant
are referred to as proper slant submanifolds. The following proposition provides a key result for slant
submanifolds:

Proposition 3.1. If N is a slant submanifold with a slant angle θ that is isometrically immersed in the metallic
Riemannian manifold (Ñ , g̃, Ψ̃), then the following equations hold for any X1, Y1 ∈ Γ(TN):

g̃(fX1, fY1) = cos2 θg̃(X1, pfY1 + qY1),

g̃(ϕX1, ϕY1) = sin2 θg̃(X1, pfY1 + qY1),

where g̃ denotes the metric on Ñ .

Definition 3.2. [18] Let N be an immersed submanifold in a metallic Riemannian manifold (Ñ , g̃, Ψ̃). We say
that N is a bi-slant submanifold of Ñ if there exist two orthogonal differentiable distributions ∆1 and ∆2 on N
satisfying the following conditions:

1. TN can be decomposed orthogonally as TN = ∆1 ⊕∆2,

2. Ψ̃(∆1) ⊥ ∆2 and Ψ̃(∆2) ⊥ ∆1,

3. The distributions ∆1 and ∆2 are slant with slant angles θ1 ̸= θ2.

We observe that if N is a bi-slant submanifold in a metallic Riemannian manifold (Ñ , g̃, Ψ̃) with the
decomposition TN = ∆1 ⊕∆2 and dim(∆1) · dim(∆2) ̸= 0, where ∆2 is the slant distribution with slant angle
θ, then the following cases hold:

1. N is an invariant submanifold if θ = 0 and ∆1 is invariant,

2. N is an anti-invariant submanifold if θ = π
2 and ∆1 is anti-invariant,

3. N is a proper semi-invariant submanifold if ∆1 is invariant and ∆2 is anti-invariant. Semi-invariant
submanifolds are a particular case of semi-slant submanifolds (hemi-slant submanifolds) with the slant
angle θ = π

2 (θ = 0), respectively.

These results set the stage for the introduction and study of quasi bi-slant submanifolds in metallic
Riemannian manifolds. Quasi bi-slant submanifold are defined as a submanifolds of a Riemannian manifold
that satisfies certain conditions. These conditions involve the existence of specific distributions ∆, ∆1, and ∆2

on N , as well as the properties of the tangent spaces and angles between subspaces.

Definition 3.3. A submanifold N of metallic Riemannian manifold Ñ is called quasi bi-slant submanifold if
there exists distributions ∆, ∆1 and ∆2 such that:

1. The tangent bundle TN can be decomposed orthogonally as:

TN = ∆⊕∆1 ⊕∆2

.
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2. The distribution ∆ is invariant under the metallic structure Ψ̃, i.e., Ψ̃(∆) = ∆.

3. The transformed distribution Ψ̃(∆1) is orthogonal to the distribution ∆2, i.e., Ψ̃(∆1) ⊥ ∆2.

4. For any non-zero vector field X1 ∈ (∆1)x, where x is a point in N , the angle θ1 between Ψ̃X1 and (∆1)x
remains constant and does not depend on the specific choice of x and X1.

5. For any non-zero vector field Z1 ∈ (∆2)y, where y is a point in N , the angle θ2 between Ψ̃Z1 and (∆)y
remains constant and does not depend on the specific choice of y and Z1.

Remark 3.1. Based on the dimensions of the distributions and the values of the slant angles θ1 and θ2, different
cases can be identified:

(i) If dim(∆) ̸= 0, dim(∆1) = 0, and dim(∆2) = 0, the submanifold N is classified as an invariant submanifold.
(ii) If dim(∆) ̸= 0, dim(∆1) ̸= 0, 0 < θ1 < π

2 , and dim(∆2) = 0, the submanifold N is considered a proper semi-
slant submanifold.

(iii) If dim(∆) = 0, dim(∆1) ̸= 0, 0 < θ1 < π
2 , and dim(∆2) = 0, the submanifold N is classified as a slant

submanifold with a slant angle of θ1.
(iv) If dim(∆) = 0, dim(∆1) = 0, and dim(∆2) ̸= 0, 0 < θ2 < π

2 , the submanifold N is considered a slant
submanifold with a slant angle of θ2.

(v) If dim(∆) = 0, dim(∆1) ̸= 0, θ1 = π
2 , and dim(∆2) = 0, the submanifold N is classified as an anti-invariant

submanifold.
(vi) If dim(∆) ̸= 0, dim(∆1) ̸= 0, θ1 = π

2 , and dim(∆2) = 0, the submanifold N is considered a semi-invariant
submanifold.

(vii) If dim(∆) = 0, dim(∆1) ̸= 0, 0 < θ1 < π
2 , and dim(∆2) ̸= 0, θ2 = π

2 , the submanifold N is classified as a
hemi-slant submanifold.

(viii) If dim(∆) = 0, dim(∆1) ̸= 0, 0 < θ1 < π
2 , and dim(∆2) ̸= 0, 0 < θ2 < π

2 , the submanifold N is considered
a bi-slant submanifold.

(ix) If dim(∆) ̸= 0 and 0 < θ1 = θ2 < π
2 , the submanifold N is classified as a proper semi-slant submanifold.

(x) If dim(∆) ̸= 0, dim(∆1) ̸= 0, 0 < θ1 < π
2 , and dim(∆2) ̸= 0, 0 < θ2 < π

2 , the submanifold N is considered a
proper quasi bi-slant submanifold.

Thus quasi bi-slant submanifolds are generalisation of invariant, anti-invariant, slant, semi-slant, hemi-slant
and bi-slant submanifolds. In the context of a quasi bi-slant submanifold N in a metallic Riemannian manifold
Ñ , let X1 ∈ Γ(TN), and denote the projections of X1 onto the distributions ∆, ∆1, and ∆2 by P , P1, and P2,
respectively. Then, for any X1 ∈ Γ(TN), we can express this projection as follows:

X1 = PX1 + P1X1 + P2X1 (3.1)

On applying Ψ̃ on both sides and using (2.7) we obtain

Ψ̃X1 = fPX1 + ϕPX1 + fP1X1 + ϕP1X1 + fP2X1 + ϕP2X1.

As Ψ̃∆ = ∆, we have ϕPX1 = 0, therefore we get

Ψ̃X1 = fPX1 + fP1X1 + ϕP1X1 + fP2X1 + ϕP2X1.

Furthermore from the foregoing equation, it is easy to verify that

fX1 = fPX1 + fP1X1 + fP2X1,

ϕX1 = ϕP1X1 + ϕP2X1.

This leads us to the following decomposition

Ψ̃(TN) ⊂ ∆⊕ f∆1 ⊕ ϕ∆1 ⊕ ϕ∆2 ⊕ f∆2.

As ϕ∆1 and ϕ∆2 are in T⊥N , we have

T⊥N = ϕ∆1 ⊕ ϕ∆2 ⊕ ν,

where ν is the orthogonal complement of ϕ∆1 + ϕ∆2 in T⊥N and Ψ̃(ν) = ν. For any vector field W1 ∈ Γ(T⊥N),
we put

Ψ̃W1 = BW1 + CW1, (3.2)

where BW1 ∈ Γ(TN) and CW1 ∈ Γ(T⊥N).
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Lemma 3.1. Let N be quasi bi-slant submanifold of metallic Reimannian manifold Ñ . Then the endomorphism f and
projection morphisms ϕ, T and Q, satisfy the following identities

(i) f2 +Bϕ = pf + qI on TN
(ii) ϕf + Cϕ = pϕ on TN
(iii) ϕB + C2 = pC + qI on T⊥N
(iv) fB +BC = pB on T⊥N

Proof. From (2.7), (3.2) and using the fact that Ψ̃2 = pΨ̃ + qI , then comparing tangential and normal component,
we get the desired identities.

Lemma 3.2. Let N be quasi bi-slant submanifold of metallic Riemannian manifold Ñ , then
(i) f2X1 = cos2 θ1(pfX1 + qX1)
(ii) g̃(fX1, fY1) = cos2 θg̃(pfX1 + qX1, Y1)
(iii)g̃(ϕX1, ϕY1) = sin2 θg̃(pfX1 + qX1, Y1), for any X1, Y1 ∈ Γ(∆1), where θ1 denotes the slant angle of ∆1.

Proof. (i) For any X1 ∈ Γ(∆1), we have

cos θ1 =
g̃(Ψ̃X1, fX1)

∥Ψ̃X1∥.∥fX1∥
.

Using equation (2.2) and as cos θ1 = ∥fX1∥
∥Ψ̃X1∥

we get

cos2 θ1 =
g̃(X1, f

2X1)

g̃(pfX1 + qX1, X1)

from the foregoing equation it is easy to see that

f2X1 = cos2 θ1(pfX1 + qX1)

(ii) From (2.7) we have

fX1 = Ψ̃X1 − ϕX1.

Taking innerproduct of foregoing equation with fX1, then using (2.2) and part (i) of the lemma we get the
desired identity.

(iii) Using equation (2.2), (2.7) and part (ii) of the lemma we get the desired result.

Lemma 3.3. Let N be a quasi bi-slant submanifold of metallic Riemannian manifold Ñ , then
(i) f2W1 = cos2 θ1(pfW1 + qW1)
(ii) g̃(fZ1, fW1) = cos2 θg̃(pfZ1 + qZ1,W1)
(iii)g̃(ϕZ1, ϕW1) = sin2 θg̃(pfZ1 + qZ1,W1),
for any Z1,W1 ∈ Γ(∆2), where θ2 denotes the slant angle of ∆2.

Lemma 3.4. Let N be submanifold of locally metallic Riemannian manifold then for any X1, Y1 ∈ Γ(TN), we have

∇X1
fY1 −AϕY1

X1 − f∇X1
Y1 −Bh(X1, Y1) = 0,

h(X1, fY1) +∇⊥
X1

ϕY1 − ϕ(∇X1
Y1)− Ch(X1, Y1) = 0.

Proof. Using (2.3), (2.5), (2.6), (2.7), (2.8), then comparing tangential and normal components we have the
lemma.

Lemma 3.5. Let N be quasi slant-submanifold of locally metallic Riemannian manifold then for any X1, Y1 ∈ Γ(TN),
we have

(∇X1
f)Y1 = AϕY1

X1 +Bh(X1, Y1),

(∇̃X1ϕ)Y1 = Ch(X1, Y1)− h(X1, fY1).

Proof. Using equation (2.9) and (2.10) in forgoing lemma we get the desired identities.
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Example 3.1. Consider an Euclidean space R5 with Euclidean metric, define an immersion i : N → R5 by

i(x, y, z) = (x, y cos t1, y
σ
√
q
sin t1, z

√
q

σ
cos t1, z sin t2).

where N = {(x, y, z)|x, y, z > 0}, θ1, θ2 ∈ (0, π
2 ). We can easily find an orthogonal frame as

W1 =
∂

∂x1
, W2 = cos t1

∂

∂x2
+

σ
√
q
sin t1

∂

∂x3
, and

W3 =

√
q

σ
cos t2

∂

∂x4
+ sin t2

∂

∂x5
.

Now we define an endomorphism Ψ̃ : R5 → R5 by

Ψ̃

(
∂

∂x1
,

∂

∂x2
,

∂

∂x3
,

∂

∂x4
,

∂

∂x5

)
=

(
σ

∂

∂x1
, σ

∂

∂x2
, σ̃

∂

∂x3
, σ

∂

∂x4
, σ̃

∂

∂x5

)
.

It is easy to see that Ψ̃ is metallic structure.
Now as

Ψ̃W1 = σ
∂

∂x1

Ψ̃W2 = σ cos t1
∂

∂x2
−√

q sin t1
∂

∂x3
, and

Ψ̃W2 =
√
q cos t2

∂

∂x4
+ σ̃ sin t2

∂

∂x5
.

Now consider the distributions ∆ = span{W1}, ∆1 = span{W2} and ∆2 = span{W3}. It is easy to verify
that the distribution ∆ is invariant and ∆1 and ∆2 are slant distributions with slant angles θ1 =

cos−1

(
σ
√
q cos 2t1√

σ(q+pσ sin2 t1)(σ−p sin2 t1)

)
and θ2 = cos−1

(
σq cos 2t2√

σ̃(q+pσ sin2 t2)(σ̃−p cos2 t2)

)
.

Theorem 3.1. Let N be quasi bi-slant submanifold of locally metallic Riemannian manifold Ñ . Then the invaraiant
distribution ∆ is integrable if and only if

g̃(∇W1
fZ1 −∇Z1

fZ1, fP1X1 + fP2X1 − pX1)

= −g̃(h(Z1, fW1)− h(W1, fZ1), ϕP1X1 + ϕP2X1),

for any W1, Z1 ∈ Γ(∆) and X1 = P1X1 + P2X1 ∈ Γ(∆1 ⊕∆2),

Proof. For any W1, Z1 ∈ Γ(∆) and X1 = P1X1 + P2X1 ∈ Γ(∆1 ⊕∆2), from (2.4) we have

qg̃([W1, Z1], X1) = g̃(Ψ̃[W1, Z1], Ψ̃X1)− pg(Ψ̃[W1, Z1], X1)

= g̃(∇̃W1fZ1, Ψ̃X1)− g̃(∇̃Z1fW1, Ψ̃X1)

− pg̃(∇̃W1fZ1, X1)− g̃(∇̃Z1fW1, X1).

On further solvation we get

qg̃([W1, Z1], X1) = g̃(∇W1
fZ1 −∇Z1

fW1, fP1X1 + fP2X1)

+ g̃(h(W1, fZ1)− h(Z1, fW1), ϕP1X1 + ϕP2X1)

− pg̃(∇W1
fZ1 −∇Z1

fW1, X1).

This completes the proof.

Theorem 3.2. Let N be a proper quasi bi-slant submanifold of locally metallic Riemannian manifold. Then the
distribution ∆1 is integrable if and only if

g̃(AϕW1Z1 −AϕZ1W1, fX1) = g̃(AϕfZ1W1 −AϕfW1Z1, X1)

− g̃(∇⊥
W1

ϕZ1 −∇⊥
Z1
ϕW1, ϕP2X1)

+ pg̃(∇W1Z1 −∇Z1W1, fX1),

for any W1, Z1 ∈ Γ(∆1) and X1 ∈ Γ(∆⊕∆2)
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Proof. For any W1, Z1 ∈ Γ(∆1) and X1 = PX1 + P2X1 ∈ Γ(∆⊕∆2), using (2.4), (2.3) and (2.7), we have

qg̃([W1, Z1], X1) = g̃(Ψ̃[W1, Z1], Ψ̃X1)− pg̃(Ψ̃([W1, Z1], X1)

= g̃(∇̃W1fZ1, Ψ̃X1) + g̃(∇̃W1ϕZ1, Ψ̃X1)

− g̃(∇̃Z1fW1, Ψ̃X1)− g̃(∇̃Z1ϕW1, Ψ̃X1)

− pg̃(∇̃W1Z1, Ψ̃X1) + (∇̃Z1W1, Ψ̃X1).

Using (2.2) and part(i) of lemma (4.4) we get

qg̃([W1, Z1], X1) = cos2θ(pf + qI)g̃([W1, Z1], X1)

− g̃(AϕfZ1
W1 −AϕfW1

Z1, X1)

− g̃(AϕZ1
W1 −AϕW1

Z1, Ψ̃X1)

+ g̃(∇⊥
W1

ϕW1 −∇⊥
Z1
ϕW1, Ψ̃X1),

− pg̃(∇W1
Z1 −∇Z1

W1, Ψ̃X1)

which leads to

(cos2 θ1pfI − sin2 θ1qI)g̃([W1, Z1], X1) = g̃(AϕfZ1W1 −AϕfW1Z1, X1)

+ g̃(AϕZ1W1 −AϕW1Z1, fX1)

− g̃(∇⊥
W1

ϕZ1 −∇⊥
Z1
ϕW1, ϕP2X1)

+ pg̃(∇W1Z1 −∇Z1W1, fX1).

Thus the proof follows.

Corollary 3.1. Let N be a proper quasi bi-slant submanifold of locally metallic Riemannian manifold. If

∇⊥
W1

ϕZ1 −∇⊥
Z1
ϕW1 ∈ ϕ∆1 ⊕ ν,

AϕfZ1W1 −AϕfW1Z1 ∈ ∆1,

AϕZ1W1 −AϕW1Z1 ∈ ∆1, and

∇W1Z1 −∇Z1W1 ∈ ∆1,

for any W1, Z1 ∈ Γ(∆1), then slant distribution ∆1 is integrable.

From the forgoing theorem we obtain the following theorem

Theorem 3.3. Let N be a proper quasi bi-slant submanifold of locally metallic Riemannian manifold. Then the
distribution ∆2 is integrable if and only if

g̃(AϕW1Z1 −AϕZ1W1, fX1) = g̃(AϕfZ1W1 −AϕfW1Z1, X1)

− g̃(∇⊥
W1

ϕZ1 −∇⊥
Z1
ϕW1, ϕP1X1)

+ pg̃(∇W1Z1 −∇Z1W1, fX1)

for any W1, Z1 ∈ Γ(∆2) and X1 ∈ Γ(∆⊕∆1).

Corollary 3.2. Let N be a proper quasi bi-slant submanifold of locally metallic Riemannian manifold. If

∇⊥
W1

ϕZ1 −∇⊥
Z1
ϕW1 ∈ ϕ∆2 ⊕ ν,

AϕfZ1
W1 −AϕfW1

Z1 ∈ ∆2,

AϕZ1
W1 −AϕW1

Z1 ∈ ∆2, and

∇W1
Z1 −∇Z1

W1 ∈ ∆2

for any W1, Z1 ∈ Γ(∆2), then slant distribution ∆2 is integrable.
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4. Foliation determined by the distributions.

In this section we present some results regarding the foliations determined by the distributions.

Theorem 4.1. Let N be a proper quasi bi-slant submanifold of locally metallic Riemannian manifold Ñ . Then N is totally
geodesic if and only if

(1− p)g̃(h(X1, PY1), V1) + cos2 θ1(pf + qI)g̃(h(X1, P1Y2), V1)

+ cos2 θ2(pf + qI)g̃(h(X1, P2Y1), V1)

= −g̃(∇⊥
X1

ϕfP1Y1 +∇⊥
X1

ϕfP2Y1, V1)

+ g̃(AϕY1 , BV1)− g̃(∇⊥
X1

ϕY1, CV1 − pV1)

+ pg̃ (h(X1, fP1Y1) + h(X1, fP2Y1), V1)) ,

for any X1, Y1 ∈ Γ(TN) and V1 ∈ Γ(T⊥N).

Proof. For any X1, Y1 ∈ Γ(TN) and V1 ∈ Γ(T⊥N), using (3.1) we have

g̃(∇̃X1Y1, V1) = g̃(∇̃X1PY1, V1) + g̃(∇̃X1P1Y1, V1) + g̃(∇̃X1P2Y1, V1). (4.1)

Using (2.4), (2.3) and (2.2) we get

g̃(∇̃X1
PY1, V1) =

(1− p)

q
g̃(h(X1, PY1), V1), (4.2)

Simmilarly from (2.4), (2.3), (2.2) and (2.8) we have

qg̃(∇̃X1
P1Y1, V1) = cos2 θ1(pf + qI)g̃(h(X1, P1Y1), V1) + g̃(∇⊥

X1
ϕfP1Y1, V1)

+ g̃(−AϕP1Y1 , BV1) + g̃(∇⊥
X1

ϕP1Y1, CV1 − pV1)

− pg̃(h(X1, fP1Y1, V1), (4.3)

and

qg̃(∇̃X1P2Y1, V1) = cos2 θ2(pf + qI)g̃(h(X1, P2Y1), V1) + g̃(∇⊥
X1

ϕfP2Y1, V1)

+ g̃(−AϕP2Y1
, BV1) + g̃(∇⊥

X1
ϕP2Y1, CV1 − pV1)

− pg̃(h(X1, fP2Y1, V1). (4.4)

Using (4.2), (4.3) and (4.4) in (4.1) we get the desired result.

Theorem 4.2. Let N be a proper quasi bi-slant submanifold of locally metallic Riemannian manifold Ñ . Then the
distribution ∆ defines a totally geodesic foliation on N if and only if

g̃(∇X1
fY1, fW1 − pW1) = −g̃(h(X1, fY ), ϕW1), (4.5)
g̃(∇X1

fY1, Bξ) = g̃(h(X1, fY1), Cξ − pξ),

for any X1, Y1 ∈ Γ(∆), W1 = P1W1 + P2W1 ∈ Γ(∆1 ⊕∆2) and ξ ∈ Γ(T⊥N).

Proof. For any vector field X1, Y1 ∈ Γ(∆), W1 = P1W1 + P2W1 ∈ Γ(∆1 ⊕∆2), using (2.4) and ϕY1 = 0 we have

qg̃(∇̃X1
Y1,W1) = g̃(∇X1

fY1, fW1) + h(X1, fY1), ϕW1)

− pg̃(∇X1
fY1,W1).

Which proves (4.5). Now for any ξ ∈ Γ(T⊥N) and X1, Y1 ∈ Γ(∆), we have

qg̃(∇̃X1
Y1, ξ) = g̃(∇̃X1

fY1, Ψ̃ξ)− pg̃(∇̃X1
Y1, Ψ̃ξ).

Using (2.8) we get

qg̃(∇̃X1Y1, ξ) = g̃(∇X1fY1, Bξ) + h(X1, fY1), Cξ)

− pg̃(h(X1, fY1), ξ).

Thus the proof follows.
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Theorem 4.3. Let N be a proper quasi bi-slant submanifold of locally metallic Riemannian manifold Ñ . Then the slant
distribution ∆1 defines a totally geodesic foliation on Ñ if and only if

g̃(∇⊥
X1

ϕY1, ϕP2W1) = g̃(AϕfY1X1,W1) + g̃(AϕY1X1, fW1)

+ pg̃(∇X1fY1 −AϕY1X1,W1),

g̃(AϕY1X1, Bξ) = g̃(∇⊥
X1

ϕfY1, ξ) + g̃(∇⊥
X1

ϕY1, Cξ)

− pg̃(∇⊥
X1

ϕY1 + h(X1, fY1), ξ),

for any X1, Y1 ∈ Γ(∆1),W1 ∈ Γ(∆⊕∆2) and ξ ∈ Γ(T⊥N).

Proof. for any X1, Y1 ∈ Γ(∆1), W1 = PW1 + P2W1 ∈ Γ(∆⊕∆2) and using (2.2), (2.4), and (2.7), we get

qg̃(∇̃X1
Y1,W1) = g̃(∇̃X1

f2Y1,W1)− g̃(AϕfY1
X1,W1)− g̃(AϕY1

X1, Ψ̃W1)

+ g̃(∇⊥
X1

ϕY1, Ψ̃W1)− pg̃(∇X1fY1 −AϕY1X1,W1)

On further solvation we get

(sin2 θ1qI − cos2 θ1pfI)g̃(∇̃X1
Y1,W1) = g̃(∇⊥

X1
ϕY1, ϕP2W1)− g̃(AϕfY1

X1,W1)

− pg̃(∇X1
fY1 −AϕY1

X1,W1)

− g̃(AϕY1
X1, fW1)

Simmilarly we obtain

(sin2 θ1qI − cos2 θ1pfI)g̃(∇̃X1
Y1, ξ) = g̃(∇⊥

X1
ϕfY1, ξ)− g̃(AϕY1

X1, Bξ)

− pg̃(∇⊥
X1

ϕY1 + h(X1, fY1), ξ)

+ g̃(∇⊥
X1

ϕY1, Cξ)

Thus the proof follows from foregoing equations.

Theorem 4.4. Let N be a proper quasi bi-slant submanifold of locally metallic Riemannian manifold Ñ . Then the slant
distribution ∆2 defines a totally geodesic foliation on Ñ if and only if

g̃(∇⊥
X1

ϕY1, ϕP1W1) = g̃(AϕfY1
X1,W1) + pg̃(∇X1

fY1 −AϕY1
X1,W1)

+ g̃(AϕY1
X1, fW1),

g̃(AϕY1
X1, Bξ) = g̃(∇⊥

X1
ϕfY1, ξ)− pg̃(∇⊥

X1
ϕY1 + h(X1, fY1), ξ)

+ g̃(∇⊥
X1

ϕY1, Cξ),

for any X1, Y1 ∈ Γ(∆2),W1 ∈ Γ(∆⊕∆1) and ξ ∈ Γ(T⊥N).
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[8] Crasmareanu, M., Hreţcanu, C. E.: Metallic differential geometry. Chaos Solitons Fractals. 38(5), 1229-1238 (2008).
[9] Crasmareanu, M., Hretcanu, C. E., Munteanu, M. I.: Golden- and product-shaped hypersurfaces in real space forms. Int. J. Geom. Methods

Mod. Phys. 10(4), Article ID 1320006, 2013.
[10] Carriazo, A.: Bi-slant immersions. Proc ICRAMS. 55, 88-97 (2000).
[11] Choudhary, M. A., Park, K. S.: Optimization on slant submanifolds of golden Riemannian manifolds using generalized normalized δ-Casorati

curvatures. J. Geom. 111, 31 (2020). https://doi.org/10.1007/s00022-020-00544-5.
[12] Choudhary, M. A., Blaga, A. M.: Inequalities for generalized normalized δ-Casorati curvatures of slant submanifolds in metallic Riemannian space

forms. J. Geom. 111, 39 (2020). https://doi.org/10.1007/s00022-020-00552-5.
[13] Choudhary, M.A., Blaga, A. M.: Generalized Wintgen inequality for slant submanifolds in metallic Riemannian space forms. J. Geom. 112, 26

(2021). https://doi.org/10.1007/s00022-021-00590-7.
[14] Etayo, F., Santamaria, R., Upadhyay, A.: “On the geometry of almost Golden Riemannian manifolds. Mediterr. J. Math. 14(5), 1-14 (2017).
[15] Gezer A., Cengiz, N., Salimov, A.: On integrability of golden Riemannian structures. Turk. J. Math. 37(4), 693-703 (2013).
[16] Goldberg, S. I., Yano, K.: Polynomial structures on manifolds. Kodai Mathematical Seminar Reports. 22, 199-218 (1970).
[17] Hretcanu, C. E., Crasmareanu, M.: Metallic structures on Riemannian manifolds. Revista de la Union Matematica Argentina. 54(2), 15-27

(2013).
[18] Hretcanu, C. E., Blaga, A. M.: Slant and semi-slant submanifolds in metallic Riemannian manifolds. J. Funct. Spaces. 2864263, 1-13 (2018).
[19] Hretcanu, C. E., Blaga A. M.: Hemi-slant submanifolds in metallic riemannian manifolds. Carpathian J. Math. 35(1), 59–68 (2019).
[20] Hretcanu, C. E., Blaga, A. M.: Warped product submanifolds of metallic Riemannian manifolds. Tamkang J. Math. 51(3), 161-186 (2020).
[21] Lotta, A.: Slant submanifolds in contact geometry. BULL. Math. Soc. Sc. Math. Roumania Tome. 39(1), 183-198 (1996).
[22] Papaghiuc, N.: Semi-slant submanifolds of a Kaehlerian manifold. Scientifc Annals of the Alexandru Ioan Cuza University of Iasi, s. I. a,

Mathematics. 40(1), 55-61 (1994).
[23] Prasad, R., Akyol, M. A., Verma, S. K., Kumar, S.: Quasi bi-slant submanifolds of Kaehler manifolds. Int. Electron. J. Geom. 15(1), 57-68 (2022).
[24] Sahin, B.: Slant submanifolds of an almost product Riemannian manifold. J. Korean Math. Soc. 43(4), 2006, 717-732.
[25] de Spinadel, V. W.: The metallic means family and forbidden symmetries. Int. Math. J. 2 (3), 279-288 (2002).

Affiliations

IDREES FAYAZ HARRY
ADDRESS: National Institute of Technology, Dept. of Mathematics, 190006, Srinagar-India.
E-MAIL: harryidrees96@gmail.com
ORCID ID:0000-0003-3930-2009

MEHRAJ AHMAD LONE
ADDRESS: National Institute of Technology, Dept. of Mathematics, 190006, Srinagar-India.
E-MAIL: mehrajlone@nitsri.net
ORCID ID:0000-0002-4764-9224

357 dergipark.org.tr/en/pub/iejg

https://dergipark.org.tr/en/pub/iejg

	1 Introduction
	2 Preliminaries
	3 Quasi bi-slant submanifolds of locally metallic Riemannian manifolds.
	4 Foliation determined by the distributions.

