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INTRODUCTION 

 

Quinazolin-4-ones are a significant class of heterocyclic compounds because of their 

biological and pharmacological properties as antagonist (1), anti-tumor (2), anti-

inflammatory (3), insecticidal and antimicrobial activities (4),  anticancer (5), antiviral 

(6), anti-tubercular agents (7), anticonvulsant (8), antifungal (9), antimalarial (10) and 

antidituric (11) activities. In recent years, a number of synthetic strategies have been 

developed for the preparation of quinazolin-4-ones by the reaction of substituted 

aldehydes and ketones with 2-aminobenzamide using differents catalysts, such as 2-

morpholinoethane sulfonic acid (12), p-TSA/NaHSO3 (13), TiCl4/Zn (14), CuCl2 (15), ionic 

liquid-water (16), TFA (17), metal-CNTs (18), PEG-400 (19), nanocrystalline sulfated 

zirconia (20) , SmI2 (21), TBAB/CuCl2 (22), I2/KI (23) , Y(OTf)3 (24) and Yb(OTf)3 (25).  

Herein, we report an efficient process for synthesis of 2,3-dihydroquinazolin-4-ones 3a-l 

derivatives in the presence of FeCl3/egg shell as a heterogeneous catalyst at room 

temperature by reacting the 2-aminobenzamide with different aldehydes. 

 

MATERIALS AND METHODS  

 

All products were purchased from Merck Chemical Company. TLC using silica gel 

monitored the progress of the reactions. Melting points were taken on a KOFLER hot 

stage apparatus and are uncorrected. The 1H NMR spectra were measured in dimethyl 

sulfoxide-d6 (DMSO-d6) solutions on a Brucker 300 MHz spectrometer.  

 

Typical Procedure for the Preparation of FeCl3/egg shell catalyst 

The waste of egg shells were collected, cleaned, and dried in an oven at 100 °C during 

24 h. The shells obtained, without calcinations, are transformed by crushing into white 

soft powder. A mixture of 10 mmol of FeCl3·6H2O and 10 g of egg shell powder were 

mixed in 80 ml of water and then evaporated to dryness and dried for 2 h at 150 °C 

before use. 

 

General procedure of the synthetic of 2,3-dihydroquinazolin-4-ones 3a-l 

To a solution of 2-aminobenzamide 1 (1 mmol) and aldehyde or ketone 2 (1 mmol) in 

ethanol (1 mL), was added the catalyst FeCl3/egg shell (1 mg) was added to of 1 mmol of 

a different aldehyde. The mixture was then stirred at room temperature. The progress of 

the reaction was monitored by TLC. After completion of the reaction, the crude reaction 

mixture was dissolved in EtOH, and the catalyst was separated out by filtration. The 

filtered was recrystallized from EtOH to give compounds 3a-l in high yields (Table 3). 
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The all products prepared 3a-l are known compounds and characterized by comparing 

their 1H NMR data with authentic samples reported in the literature (26-30).  

 

2-(4-Chlorophenyl)-2,3-dihydroquinazolin-4-one 3a: mp 203-205 oC (Lit.(26) 201-

203oC). 1H NMR (δ ppm): 8.20 (s, 1H, NHCO), 7.60 (d, J = 7.7 Hz, 1H, ArH), 7.40-7.44 

(m, 1H, ArH), 7.34-7.38 (m, 2H, ArH), 7.25 (t, J = 6.7 Hz, 1H, ArH), 7.00 (s, 1H, NH), 

6.76 (d, J = 7.7 Hz, 1H, ArH), 6.74 (dd, J = 6.7, 7.8 Hz, 1H, ArH), 6.16 (s, 1H, CH). 

Anal. Calcd for C14H11N2OCl: C, 64.75; H, 4.28; N, 10.82; Cl, 13.65%. Found: C, 64.88; 

H, 4.30; N, 10.84; Cl, 13.62%. 

 

2-Phenyl-2,3-dihydroquinazolin-4-one 3b: mp 224-226oC (Lit.(26) 225-227oC).1H NMR 

(δ ppm): 8.21 (s, 1H, NHCO), 7.00-7.63 (m, 9H, ArH), 6.93 (s, 1H, NH), 6.75 (s, 1H, 

CH). Anal. Calcd for C14H12N2O: C, 74.65; H, 8.82; N, 12.44%. Found: C, 74.67; H, 5.86; 

N, 12.47%. 

 

2-(2-Chlorophenyl)-2,3-dihydroquinazolin-4-one 3c: mp 210-212oC (Lit.(26) 208-

210oC).1H NMR (δ ppm): 8.21 (s, 1H, NHCO), 7.68 (d, J = 7.8 Hz, 2H, ArH), 7.48-7.50 

(m, 2H, ArH), 7.38-7.40 (m, 2H, ArH), 7.27 (t, J = 6.8 Hz, 1H, ArH), 7.01 (s, 1H, NH), 

6.78 (d, J = 7.8 Hz, 1H, ArH), 6.73 (dd, J = 6.8, 7.9 Hz, 1H, ArH), 6.15 (s, 1H, CH). 

Anal. Calcd for C14H11N2OCl: C, 64.75; H, 4.28; N, 10.82; Cl, 13.65%. Found: C, 64.88; 

H, 4.30; N, 10.84; Cl, 13.62%. 

 

2-p-Tolyl-2,3-dihydroquinazolin-4-one 3d: mp 230-232oC (Lit.(26) 229-230oC). 1H NMR 

(δ ppm): 8.18 (s, 1H, NHCO), 8.00 (d, J = 7.6 Hz, 2H, ArH), 7.80 (t, J = 7.6 Hz, 2H, 

ArH), 7.60 (dt, J = 6.0, 7.5 Hz, 2H, ArH), 7.37 (t, J = 6.2 Hz, 1H, ArH), 7.19 (t, J = 7.5 

Hz, 1H, ArH), 7.00 (s, 1H, NH), 6.16 (s, 1H, CH), 2.23 (s, 3H, CH3). Anal. Calcd for 

C15H14N2O: C, 75.93; H, 5.52; N, 11.81%. Found: C, 75.90; H, 5.50; N, 11.83%. 

 

2-(4-Nitrophenyl)-2.3-dihydroquinazolin-4-one 3e: mp 201-203 oC (Lit.(28) 198-200 oC). 

1H NMR (δ ppm): 8.23 (s, 1H, NHCO), 8.17 (d, J = 7.8 Hz, 2H, ArH), 7.76 (d, J = 7.8 Hz, 

2H, ArH), 7.64 (d, J = 7.6 Hz, 1H, ArH), 7.31 (s, 1H, NH), 7.29 (t, J = 7.4 Hz, 1H, ArH), 

6.79 (d, J = 7.6 Hz, 1H, ArH), 6.70 (t, J = 7.4 Hz, 1H, ArH), 6.08 (s, 1H, CH). Anal. 

Calcd for C14H11N3O3: C, 62.44; H, 4.11; N, 15.60%. Found: C, 62.46; H, 4.12; N, 

15.50%. 

 

2-(2-Hydroxyphenyl)-2.3-dihydroquinazolin-4-one 3f: mp 221-223oC (Lit.(27) 223-

225oC). 1H NMR (δ ppm): 8.25 (s, 1H, NHCO), 7.64 (d, J = 7.5 Hz, 1H, ArH), 7.36 (d, J = 

7.5 Hz, 1H, ArH), 7.24 (t, J = 7.1 Hz, 1H, ArH), 7.16 (t, J = 7.1 Hz, 1H, ArH), 7.00 (s, 
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1H, NH), 6.88 (s, 1H, OH), 6.74-6.81 (m, 3H, ArH), 6.68 (t, J = 7.5 Hz, 1H, ArH), 6.07 

(s, 1H, CH). Anal. Calcd for C14H12N2O2: C, 69.98; H, 5.10; N, 11.66%. Found: C, 70.12; 

H, 5.11; N, 11.57%. 

 

2-(4-Dimethylaminophenyl)-2,3-dihydroquinazolin-4-one 3g: mp 208-210oC (Lit. (28) 

206-208 oC). 1H NMR (δ ppm): 8.17 (s, 1H, NHCO), 7.62 (d, J = 7.5 Hz, 1H, ArH), 7.31 

(d, J = 7.6 Hz, 2H, ArH), 7.24 (dd, J = 7.2, 7.6 Hz, 1H, ArH), 6.90 (s, 1H, NH), 6.64-

6.74 (m 4H, ArH), 6.00 (s, 1H, CH), 2.85 (s, 6H, (CH3)2). Anal. Calcd for C16H17N3O: C, 

71.89; H, 6.41; N, 15.72%. Found: C, 72.01; H, 6.47; N, 15.65%. 

 

1'H-spiro[cyclohexane-1,2'-quinazolin]-4'-one 3h: mp 224-226oC (Lit.(29) 223-225oC). 

1H NMR (δ ppm): 7.91 (s, 1H, NHCO), 6.62-7.56 (m, 4H, ArH), 6.57 (s, 1H, NH), 1.22-

2.04 (m, 10H, CH2). Anal. Calcd for C13H16N2O: C, 72.19; H, 7.46; N, 12.96%. Found: C, 

72.22; H, 7.49; N, 13.03%. 

 

2-(4-Hydroxyphenyl)-2,3-dihydroquinazolin-4-one 3i: mp 208-210oC (Lit.(30) 210-

212oC). 1H NMR (δ ppm): 8.22 (s, 1H, NHCO), 7.63 (d, J = 7.5 Hz, 1H, ArH), 7.32 (d, J = 

7.5 Hz, 2H, ArH), 7.26 (t, J = 7.1 Hz, 1H, ArH), 7.08 (s, 1H, NH), 6.94 (s, 1H, OH), 6.66-

6.78 (m, 4H, ArH), 6.12 (s, 1H, CH). Anal. Calcd for C14H12N2O2: C, 69.98; H, 5.10; N, 

11.66%. Found: C, 70.12; H, 5.11; N, 11.57%. 

 

2-(3-Nitrophenyl)-2,3-dihydroquinazolin-4-one 3j: mp 201-203oC (Lit.(30) 200-202oC). 

1H NMR (δ ppm): 8.26 (s, 1H, NHCO), 8.16 (d, J = 7.4 Hz, 2H, ArH), 8.02 (7, J = 7.5 Hz, 

2H, ArH), 7.67 (dt, J = 6.2, 7.5 Hz, 2H, ArH), 7.14 (s, 1H, NH), 6.96 (t, J = 6.2 Hz, 1H, 

ArH), 6.85 (t, J = 7.5 Hz, 1H, ArH), 6.75 (s, 1H, CH). Anal. Calcd for C14H11N3O3: C, 

62.44; H, 4.11; N, 15.60%. Found: C, 62.46; H, 4.12; N, 15.50% 

 

2-(4-Methoxyphenyl)-2,3-dihydroquinazolin-4-one 3k: mp 181-183oC (Lit.(30) 182-

184oC). 1H NMR (δ ppm): 8.20 (s, 1H, NH-CO),  8.26 (d, J = 7.6 Hz, 2H, ArH), 8.00 (t, J 

= 7.6 Hz, 2H, ArH), 7.8 (dt, J = 6, 7.5 Hz, 2H, ArH), 7.62 (s, 1H, NH), 7.57 (t, J = 6.2 

Hz, 1H, ArH), 7.39 (t, J = 7.5 Hz, 1H, ArH), 6.00 (s, 1H, CH), 3.43 (s, 3H, OCH3). Anal. 

Calcd for C15H14N2O2: C, 70.83; H, 5.54; N, 11.01%. Found: C, 70.85; H, 5.56; N, 

11.05% 

 

2-(4-Hydroxy-3-methoxyphenyl)-2,3-dihydroquinazolin-4-one 3l: mp 218-219oC (Lit. 

(30) 219-221oC). 1H NMR (δ ppm): 8.25 (s, 1H, NHCO), 7.60 (d, J = 7.5 Hz, 1H, ArH), 

7.23 (dd, J = 7.1, 7.7 Hz, 1H, ArH), 7.10 (s, 1H, ArH), 7.00 (s, 1H, NH), 6.92 (s, 1H, 

OH), 6.87 (d, J = 7.4 Hz, 1H, ArH), 6.75 (t, J = 7.6 Hz, 2H, ArH), 6.67 (t, J = 7.4 Hz, 
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1H, ArH), 6.10 (s, 1H, CH), 3.74 (s, 3H, CH3). Anal. Calcd for C15H14N2O3: C, 66.64; H, 

5.21; N, 10.35%. Found: C, 66.63; H, 5.19; N, 10.38%. 

 

RESULTS AND DISCUSSION 

 

General information for the catalyst 

The analysis by the X-ray powder diffraction (XRD) of the egg shell (Figure 1) showed a 

well-crystallized phase. The presence of calcite was confirmed by the characteristic peaks 

012, 104, 006, 110, 113, 202, 024, 018, 116, 211, 122, 214 and 300 reflections at 

23.17°, 29.52°, 31.58°, 36.19°, 39.52°, 43.33°, 47.30°, 47.78°, 48.73°, 56.99°, 

57.62°, 60.96°, 63.34° and 64.92° (2θ) (reported on the JCPDS: 47-1743).  

 

 

 

Figure 1: XRD analysis for egg shell (calcite). 

 

The scanning electron microscopy of egg shell (Figure 2) shows it can be observed that 

the egg shell does not have irregular shape, resulting of the comminution process used 

and shows the high porosity of the egg shell powder particles. The egg shell (calcite) 

powder has an average specific surface of 1.02 m2/g by the measurements which were 

carried out by the BET (Brunauer, Emmett, and Teller). 
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Figure 2: SEM photographs of egg shell (calcite). 

 

The FT-IR spectra of egg shell (Figure 3) shows that the spectrum can be divided into 

five parts with peaks around 3455, 3515, 2360, 1799, 1417, 1385, 875 and 713 cm-1, 

which can be associated to CO3
2- ions in CaCO3. By observing the spectra, it appears that 

a prominent absorption peak of carbonate was observed at 1417 cm-1, respectively, 

attributed to alkyl group. Besides, the FT-IR result also showed the absorption peak of 

calcite at 875 cm-1 of CO3
2-. This agrees well with the result reported by Islam et al. (31) 

in which they observed the absorption peak of calcite at 875 cm-1 of CO3
2- . 

 

 

 

Figure 3: FT-IR spectra of egg shell (calcite). 

 

Catalytic testing for the synthesis of 2,3-dihydroquinazolin-4-ones 

Initially, to optimize the reaction conditions, we carried out the reaction of 2-amino 

benzamide 1, with 4-chloro benzaldehyde 2a in ethanol as a model reaction (Scheme 1). 

Different heterogeneous catalysts were tested such as egg shell, SnCl2/egg shell, 

ZnCl2/egg shell, NiCl2/egg shell, BaCl2/egg shell, CoCl2/egg shell, CaCl2/egg shell, 

FeCl3/egg shell, and FeCl3. The results listed in Table 1 show that FeCl3/egg shell (entries 

18-22, Table 1) is the most effective catalyst for this synthesis of 2-(4-chlorophenyl) 

quinazolin-4-one 3a. Moreover, we found that the yields were affected by the amount of 
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FeCl3/egg shell loaded. Therefore, 1 mg of FeCl3/egg shell was sufficient and optimal 

amount of catalyst for the completion of the condensation at room temperature (entry 

21, Table 1).  

 

+

  1                       2

NH2

NH2

O

NH

N
H

O

1 ml EtOH, rt, 10-80 min

3a-l

 1 mg FeCl3/egg shell
O

R R1
R

R1

 

Scheme 1: Synthesis of 2,3-dihydroquinazolin-4-ones using FeCl3/egg shell. 

 

Similarly, as shown in Table 2, among the solvent effect, such as ethanol, methanol, 

toluene, dioxane and DMF, it was found that the reaction proceeded efficiently in EtOH 

and resulted in high yields of desired product (Entry 2, Table 2).  

 

The generality of the reaction was confirmed by using substituted aldehydes having both 

electron-withdrawing and donating substituent’s (Table 3). In almost all the cases, the 

reaction was completed with desired products in efficient yields. 

 

Table 1. Comparison of catalytic activities for the synthesis of  3aa 

Entry Catalyst Amount  

   (mg) 

Condition Yield (%)b 

1 Egg Shell  4 Reflux 94 
2 Egg Shell  4 r.t 95 
3 Egg Shell  1 Reflux 96 
4 SnCl2/egg shell 4 Reflux 54 
5 SnCl2/egg shell 4 r.t 55 
6 SnCl2/egg shell 1 Reflux 54 
7 ZnCl2/egg shell 4 Reflux 66 

8 ZnCl2/egg shell 4 r.t 67 
9 ZnCl2/egg shell 1 Reflux 66 
10 NiCl2/egg shell 4 Reflux 10 
11 NiCl2/egg shell 4 r.t 10 
12 NiCl2/egg shell 1 Reflux 11 
13 BaCl2/egg shell 1 Reflux 96 
14 BaCl2/egg shell 1 r.t 95 

15 CoCl2/egg shell 1 Reflux 56 
16 CoCl2/egg shell 1 r.t 54 

17 CaCl2/egg shell 1 Reflux 80 
18 FeCl3/egg shell 4 Reflux 96 
19 FeCl3/egg shell 3 Reflux 96 
20 FeCl3/egg shell 3 r.t 96 
21 FeCl3/egg shell 1 r.t 98 

22 FeCl3/egg shell 2 r.t 97 
23 BaCl2 1 Reflux 70 
24 FeCl3 1 Reflux 72 

a 2-aminobenzamide  1 (1 mmol) and 4-chlorobenzaldehyde  2a  (1 mmol),  
1 mL EtOH, 30 min. 
b Isolated yield. 
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Table 2: Optimization of solvent in the synthesis of 3aa. 

 

 

 

 

 

 

a2-aminobenzamide 1 (1 mmol) and 4-chlorobenzaldehyde 2a  

(1 mmol), 1 mL solvent, r.t, 1mg of catalyst. 

b Isolated yield. 

 

As shown in Table 4, the recoverability of the catalyst was investigated in the pilot 

experiment for the synthesis of 3a. The recycled catalyst was reused in the subsequent 

fresh reactions without any treatment and no considerable loss of its catalytic activity 

was observed. As a result, it can be classified as an excellent catalyst in industry for 

large-scale synthesis. 

 

Table 3. Synthesis of 2,3-dihydroquinazolin-4-ones 3a-l 

Product R R1 Time (min) Yield (%)a 

3a 4-ClC6H4 H 30 99 

3b C6H5 H 18 95 

3c 2-ClC6H4 H 30 93 

3d 4-MeC6H4 H 15 91 

3e 4-NO2C6H4 H 70 89 

3f 2-OHC6H4 H 10 94 

3g 4-N(Me)2C6H4 H 40 97 

3h (CH2)5  80 75 

3i 4-OHC6H4 H 60 79 

3j 3-NO2C6H4 H 55 88 

3k 4-CH3OC6H4 H 25 90 

3l 4-HO-3-CH3OC6H3 H 30 85 

a Isolated yield. 

 

Entry Solvent Time (min) Yield (%)b 

1 Solvent-free 30 25 
2 EtOH 30 98 
3 EtOH 20 94 
4 EtOH 10 93 
5 MeOH 30 93  
6 MeOH 60 93  
7 Toluene 30 69  

8 Dioxane 10 70  
9 Dioxane 30 72  
10 DMF 30 -- 
11 DMF 90 -- 
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Table 4: Recovery results of the catalyst in the model reaction. 

Run Time (min) Yield (%)a 

1 30 98 
2 30 97 

3 30 96 

4 30 95 

5 30 94 

6 30 93 

7 30 90 
a Isolated yields. 

 

To show the merit of our work, the reaction of 2-aminobenzamide and 4-chloro 

benzaldehyde was compared with literature data. As shown in Table 5, the reported 

methods suffer from more disadvantages such as elevated reaction temperatures and 

longer reaction times. Therefore, we believe the present work is an improvement with 

respect to other procedures. 

 

Table 5. Comparison of the efficiency of catalyst and the reaction conditions with some 

other reports on the model reaction. 

 

Catalyst Solvent Time 
(min) 

Temp. 
(°C) 

Yield 
(%) 

Lit. 

NaHSO4 H2O 10 60 94 (30) 
L-Proline nitrate MeCN 20 r.t. 75 (32) 
CAN MeCN 120 60 92 (33) 
Fe3O4/chitosan EtOH 32 r.t 97 (34) 

Amberlyst-15 H2O 30 r.t 98 (35) 
[Bmim]PF6 - 35 75 89 (16) 
NH4Cl EtOH 15 r.t. 92 (36) 

Sulfamic acid MeOH 20 r.t. 89 (37) 
Boric acid Free 13 120 81 (38) 
FeCl3/egg shell EtOH 30 r.t 98 This work 

 

CONCLUSIONS  

 

In summary, a highly efficient and simple procedure was developed for the synthesis of 

quinazolin-4-one derivatives by using 2-aminobenzamide and various aldehydes in the 

presence of FeCl3/egg shell as an efficient and reusable catalyst. The present work 

include several advantages such as avoiding the use of non toxic solvent or expensive 

catalyst, high yields, short reaction times, ease of product isolation, recyclability of the 

catalyst and good agreement with the green chemistry protocols. It can be classified as a 

useful, practical and attractive protocol for the synthesis of heterocyclic compounds. 
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