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ABSTRACT 
Objective: The objective of this study was to obtain solutions by modeling 
different covariance structures with Bayesian analysis methods in repeated 
measurement and to show its applicability to data in animal science.  

Materials and Methods: This article focused on the analysis of the body weight 
data of 4154 weaned 8-month-old lambs. Repeated measurement analyses 
based on the mixed effect model were evaluated with Bayesian methods. 
Models were created for 12 different covariance structures. As the model 
comparison criterion, Deviation Information Criteria based on the relationship 
between the fit of the data to the model and the complexity of the model were 
used.  

Result: Among 12 different covariance structures, the unstructured covariance 
structure was determined as a suitable structure for the data of this study. 

Conclusions: It was concluded that various variance-covariance structures, 
such as body weight, can be easily modeled in repeated measurement data. 
Instead of PROC MCMC methods that require complex and computational 
difficulties and profound coding knowledge, it was presented a relatively user-
friendly and fast procedure with its theoretical structure and demonstrated its 
feasibility. As a result of the literature review, this is the first study in which 
Bayesian methods solved a wide variety of variance-covariance structure 
models. 
 
ÖZ 
Amaç: Bu çalışma, tekrarlı ölçümlerde farklı kovaryans yapılarını Bayes analiz 
yöntemleriyle modelleyerek çözümler elde etmeyi ve bunun hayvan bilimindeki 
verilere uygulanabilirliğini göstermeyi amaçlamaktadır. 

Materyal ve Yöntem: Bu makalede sütten kesilmiş 8 aylık 4154 kuzunun canlı 
ağırlık verileri analiz edilmiştir. Karma etki modeline dayalı tekrarlı ölçüm 
analizleri Bayes yöntemleri ile değerlendirilmiştir. 12 farklı kovaryans yapısı için 
modeller oluşturulmuştur. Model karşılaştırma kriteri olarak, verilerin modele 
uyumu ile modelin karmaşıklığı arasındaki ilişkiye dayalı Sapma Bilgi Kriterleri 
kullanılmıştır. 

Araştırma Bulguları: 12 farklı kovaryans yapısı arasından yapılandırılmamış 
kovaryans yapısının bu çalışmanın verilerine uygun yapı olduğu belirlendi. 

Sonuç: Tekrarlanan ölçüm verilerinde vücut ağırlığı gibi çeşitli varyans-
kovaryans yapılarının kolaylıkla modellenebileceği gösterilmiştir. Karmaşık ve 
hesaplama zorlukları ve derin kodlama bilgisi gerektiren PROC MCMC 
yöntemleri yerine, nispeten kullanıcı dostu ve hızlı bir prosedür, teorik yapısıyla 
birlikte sunuldu ve uygulanabilirliği gösterildi. Literatür taraması sonucunda bu, 
Bayes yöntemlerin çok çeşitli varyans-kovaryans yapı modellerini çözdüğü ilk 
çalışmadır.
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INTRODUCTION 
Repeated measurement analysis is a widely used design in biological researches. The primary 

purpose of repeated measurement data is to examine simple factor effects (main effects) and their 
interaction effects. The strength of this method is that repeated measurement analysis is the only design 
form in which it is possible to obtain information on individual variations. Standard regression and variance 
analysis methods do not meet the appropriate assumptions for repeated measurements. The models and 
methods to analyze these data have to define the relationship between the observations obtained from the 
same unit. For this reason and because of their correlation structure, there is a need to represent the 
repeated measures data with special statistical models and their complementary analysis methods. Mixed 
models provide more flexibility in modeling covariance structures for repeated measurement data and 
adequately explain the time-dependent correlations of units (Eyduran & Akbaş, 2010; Littell et al., 1998). 
Verbeke and Molenberghs are pioneers in repeated measures, particularly with their work “Linear Mixed 
Models for Longitudinal Data,” which is considered a classic in repeated measurement analysis (. The 
mixed model for repeated measures is popular for individually randomized trials with continuous longitudinal 
outcomes. The advantage of this method is that it does not have to take an equal number of measurements, 
observations with missing data are included in the analysis, and it is flexible in determining the covariance 
structure suitable for the data (Cnaan et al., 1997; Verbeke & Molenberghs, 2012). Bayesian Monte Carlo 
methods offer a more effective alternative to statistical methods such as Maximum Likelihood (ML). For 
instance, quantitative genetics has a historical record of relying on Bayesian statistics, especially in animal 
breeding, since Sorensen and Gianola’s seminal work (de Villemereuil, 2019; Sorensen et al., 2002). 
Geneticists Daniel Gianola and Daniel Sorensen introduced MCMC procedures in the 1990s to solve animal 
breeding problems using Bayesian statistics, and its use has become more and more common. Instead of 
using the mathematical expression, MCMC provides a set of random sample numbers extracted from a 
probability density function (Blasco & Blasco, 2017). Unlike traditional approaches to estimating model 
parameters, a Bayesian paradigm treats model parameters as random variables, and Bayes’ theorem is 
used to derive probability distributions for model parameters.  

As with all statistical models, each measurement has a residual. Since repeated measures on the 
same individual are usually serially correlated, it is usual to have residuals that are not independently and 
identically distributed, meaning that the covariance structure of the residuals must be clearly modeled 
(McNeish, 2017). Correct determination of covariance structures for repeated measurements is essential 
for accurately estimating the standard errors of the coefficients of the mean profiles (Fitzmaurice et al., 
2012). Although evaluating a suitable covariance structure for the data is complex, mixed model analysis 
is more sensitive. A complex situation becomes even more complicated when the covariance structure is 
unknown. In this case, the key to the data analysis strategy is to choose the covariance structure. 

The expression of the general linear mixed model in matrix form is as follows: 

𝒀𝒀 = 𝑿𝑿𝑿𝑿 + 𝒁𝒁𝒁𝒁 + 𝜺𝜺 

In the equation here, 𝑿𝑿 and 𝒁𝒁 are the design matrix for fixed and random effects, respectively, 𝑿𝑿 
and 𝒁𝒁 are the fixed and random effects vectors, respectively, and 𝜺𝜺 is the errors vector. It is assumed that 
𝒁𝒁 and 𝜺𝜺 are 𝑁𝑁(𝟎𝟎,𝑮𝑮) and 𝑁𝑁(𝟎𝟎,𝑹𝑹) distributions and independent, respectively. 

While the error vector is normally distributed with 𝑒𝑒𝑖𝑖~𝑁𝑁(0,𝑅𝑅𝑖𝑖), it is 𝑅𝑅𝑖𝑖 = 𝑐𝑐𝑐𝑐𝑐𝑐 (𝑒𝑒𝑖𝑖). Assuming that the 
random effects are normally distributed, the expected value and variance of the model are as follows: 

𝐸𝐸 �
𝛾𝛾𝑖𝑖
𝑒𝑒𝑖𝑖� = �𝟎𝟎𝟎𝟎� and 𝑉𝑉𝑉𝑉𝑉𝑉 �𝒁𝒁𝜺𝜺� = �𝑮𝑮 𝟎𝟎

𝟎𝟎 𝑹𝑹�. 

The representation of the covariance matrix of 𝑮𝑮 random effects and the covariance matrix of 
errors 𝑹𝑹 are as follows:  
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𝑮𝑮 = 𝑉𝑉𝑉𝑉𝑉𝑉(𝛾𝛾𝑖𝑖) =

⎣
⎢
⎢
⎢
⎡ 𝑐𝑐𝑉𝑉𝑉𝑉(𝛾𝛾1𝑖𝑖) 𝑐𝑐𝑐𝑐𝑐𝑐(𝛾𝛾1𝑖𝑖 , 𝛾𝛾2𝑖𝑖) …
𝑐𝑐𝑐𝑐𝑐𝑐(𝛾𝛾1𝑖𝑖, 𝛾𝛾2𝑖𝑖) 𝑐𝑐𝑉𝑉𝑉𝑉(𝛾𝛾2𝑖𝑖) …

⋮
𝑐𝑐𝑐𝑐𝑐𝑐�𝛾𝛾1𝑖𝑖 , 𝑏𝑏𝑞𝑞𝑖𝑖�

⋮
𝑐𝑐𝑐𝑐𝑐𝑐�𝛾𝛾2𝑖𝑖 , 𝛾𝛾𝑞𝑞𝑖𝑖�

…
…

𝑐𝑐𝑐𝑐𝑐𝑐�𝛾𝛾1𝑖𝑖 , 𝛾𝛾𝑞𝑞𝑖𝑖�
𝑐𝑐𝑐𝑐𝑐𝑐�𝛾𝛾2𝑖𝑖 , 𝛾𝛾𝑞𝑞𝑖𝑖�

⋮
𝑐𝑐𝑉𝑉𝑉𝑉�𝛾𝛾𝑞𝑞𝑖𝑖� ⎦

⎥
⎥
⎥
⎤
 

𝑹𝑹 = 𝑉𝑉𝑉𝑉𝑉𝑉(𝑒𝑒𝑖𝑖) = �

𝑐𝑐𝑉𝑉𝑉𝑉(𝑒𝑒1𝑖𝑖) 𝑐𝑐𝑐𝑐𝑐𝑐(𝑒𝑒1𝑖𝑖 , 𝑒𝑒2𝑖𝑖) …
𝑐𝑐𝑐𝑐𝑐𝑐(𝑒𝑒1𝑖𝑖, 𝑒𝑒2𝑖𝑖) 𝑐𝑐𝑉𝑉𝑉𝑉(𝑒𝑒2𝑖𝑖) …

⋮
𝑐𝑐𝑐𝑐𝑐𝑐(𝑒𝑒1𝑖𝑖, 𝑒𝑒𝑛𝑛𝑖𝑖)

⋮
𝑐𝑐𝑐𝑐𝑐𝑐(𝑒𝑒2𝑖𝑖 , 𝑒𝑒𝑛𝑛𝑖𝑖)

…
…

𝑐𝑐𝑐𝑐𝑐𝑐(𝑒𝑒1𝑖𝑖 , 𝑒𝑒𝑛𝑛𝑖𝑖)
𝑐𝑐𝑐𝑐𝑐𝑐(𝑒𝑒2𝑖𝑖 , 𝑒𝑒𝑛𝑛𝑖𝑖)

⋮
𝑐𝑐𝑉𝑉𝑉𝑉(𝑒𝑒𝑛𝑛𝑖𝑖)

� 

In the classical mixed model, 𝑹𝑹 = 𝜎𝜎2𝑰𝑰, where 𝑰𝑰 is the 𝑛𝑛 × 𝑛𝑛 identity matrix, and 𝑮𝑮 is the diagonal 
matrix containing variance components. The choice of the covariance structure is equivalent to the choice 
of structure for 𝑮𝑮 and 𝑹𝑹. The first step is to consider the study’s design and the obstructive nature of the 
observations (Gomez et al., 2005). 

This article is about facilitating the modeling of different covariance structures. Growth data 
collected from lambs at different times were used to represent repeated measurement data commonly 
used in animal science. Generating 12 models with different covariance structures for body weight data 
and show how all models can fit in PROC BGLIMM because the procedure is relatively new. In the SAS 
package program, Bayesian solutions are implemented using not only the long-standing original and 
versatile Bayesian procedure, PROC MCMC, but also the new PROC BGLIMM procedure.  PROC 
MCMC is a simulation-based general Bayesian approach that offers flexibility in model specification but 
requires more user programming knowledge. Mixing efficiency can sometimes be less than due to the 
general sampling (non-model-specific) algorithms that PROC MCMC uses (Chen et al., 2016). PROC 
MCMC also has certain limitations, such as the absence of automated support for a CLASS statement to 
manage categorical variables. PROC BGLIMM is a Bayesian procedure designed explicitly for fitting 
generalized linear mixed models using Markov chain Monte Carlo methods. It employs optimal 
parallelized sampling algorithms for improved performance, handles multilevel nested and non-nested 
random-effects models, and fits models to multivariate or longitudinal data that contain repeated 
measurements (Shi & Chen, 2019). The Bayesian approach to statistical modeling involves treating 
model parameters as random variables and estimating the joint distribution of all parameters in the model. 
This can be done using Markov chain Monte Carlo (MCMC) methods, which allow for sampling from the 
posterior distribution of the model parameters given the data. The random effects parameter γ adds an 
extra sampling step to the Gibbs algorithm, thus eliminating the need to integrate γ to make inferences 
about β numerically. MCMC methods generate estimates of the marginal distribution for all fixed-effects 
parameters, including the G and R covariance matrices. 

 
MATERIALS and METHOD 
Data set and descriptive statistics 

The material of this study consists of the repeated measurements of body weight data of 4154 
weaned 8-month-old lambs. The number of measurements is the same for each animal, and body weight 
measurements from 1 to 6 months were taken for each animal. The herd year (1 to 6), the number of 
days to weaning, and the sire were recorded for each animal. Data for analysis were prepared in 
longitudinal data format for 59 sires, with a record for the time of measurement in one column and a 
record for each time at which body weight was measured in another column. The change of the repeated 
measurement body weight data of lambs from the first month to the sixth month is depicted in Figure 1 
with a boxplot. 
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Figure 1. Boxplot of body weight by months. 

Şekil 1. Aylara göre vücut ağırlığı kutu grafiği. 

The profile graph showing the change of body weights over time (months) according to six different 
herd years is given in Figure 2. To have the correct standard errors of the estimated coefficients of the 
mean profile, it is necessary to have or know a good idea of the appropriate covariance structure of 
repeated measurements. In a Bayesian framework, the accurate covariance matrix will have appropriate 
standard deviations for the posterior distribution of the coefficients included in the mean profile of the 
repeated response over time. It should be noted that the covariance matrix of errors in the mean 
response depends on the mean response and vice versa, so these two items are related.  

 
Figure 2. Average profile graphs for body weights (hy: herd year). 

Şekil 2. Canlı ağırlık için ortalama profil grafikleri (sürü yılına göre).  
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Bayesian formulation of repeated measures 

In this study, a linear mixed model will be used. The linear mixed model is a generalized version of 
the linear model. In the general form, the linear mixed model is as follows: when the 𝑖𝑖th individual has 𝑛𝑛𝑖𝑖 
repeated measurements. 

𝒚𝒚𝑖𝑖 = 𝑿𝑿𝑖𝑖𝑿𝑿 + 𝒁𝒁𝑖𝑖𝒁𝒁𝑖𝑖 + 𝜺𝜺𝑖𝑖            𝑖𝑖 = 1,2,⋯ ,𝑚𝑚      (2.1) 

where 𝒚𝒚𝑖𝑖 is  (𝑛𝑛𝑖𝑖 × 1) dimensional observation vector for 𝑖𝑖th individual and 𝑛𝑛𝑖𝑖 is the number of 
measurements for the 𝑖𝑖th individual; 𝑿𝑿𝑖𝑖 is  (𝑛𝑛𝑖𝑖 × 𝑝𝑝) dimensional design matrix for the fixed effects; 𝑿𝑿 is 
(𝑝𝑝 × 1) dimensional vector of unknown fixed regression coefficients; 𝒁𝒁𝑖𝑖 is (𝑛𝑛𝑖𝑖 × 𝑞𝑞) dimensional a matrix of 
covariates associated with the random effect; 𝒁𝒁𝑖𝑖 is (𝑞𝑞 × 1) dimensional vector of random effects 
parameters and 𝒁𝒁𝑖𝑖~𝑁𝑁(0,𝑮𝑮𝑖𝑖); and 𝜺𝜺𝑖𝑖 is (𝑛𝑛𝑖𝑖 × 1) dimensional a vector of error terms and 𝜺𝜺𝑖𝑖~𝑁𝑁(0,𝑹𝑹𝑖𝑖) and is 
independent of 𝒁𝒁𝑖𝑖.  

When the sire effect is assumed to be a random effect, in this case, the effect of each sire on the 
response variable 𝒚𝒚𝑖𝑖,is represented by a random effect vector 𝒁𝒁𝑖𝑖. Suppose the relationship between the 
effects of all sire is described by a normal distribution with a mean of 0 and a variance of 𝜎𝜎𝑠𝑠2.  

Repeated measurements can be obtained either as multiple measurements taken from the same 
trial unit at the same time or as a single measurement taken from the same trial unit multiple times or as a 
combination of these two. In this case, suppose 𝜺𝜺𝑖𝑖 = {𝜀𝜀𝑖𝑖1, 𝜀𝜀𝑖𝑖2,⋯ , 𝜀𝜀𝑖𝑖𝑖𝑖} is a vector of measurements taken 
from 𝑚𝑚 equal time interval. Each of the measurements comes from a normal distribution and has the 
following covariance matrix. 

𝑹𝑹𝑖𝑖 = 𝑉𝑉𝑉𝑉𝑉𝑉(𝜺𝜺𝑖𝑖) = �

𝜎𝜎11
𝜎𝜎21

𝜎𝜎21
𝜎𝜎22

…
…

⋮ ⋮ ⋮
𝜎𝜎𝑖𝑖1 𝜎𝜎𝑖𝑖2 …

𝜎𝜎1𝑖𝑖
𝜎𝜎2𝑖𝑖
⋮

𝜎𝜎𝑖𝑖𝑖𝑖

� 

Since all measurements were taken from the same experimental unit, they are related to each 
other. Here 𝑹𝑹𝑖𝑖 is the covariance matrix of the errors for the ith individual. A linear mixed model extends 
the simple multiple regression model, 𝒚𝒚 = 𝑿𝑿𝑿𝑿 + 𝜺𝜺 , and allows the random effect 𝒁𝒁𝑖𝑖 to be added to the 
regression coefficients. In other words, the addition of random effects helps to distinguish between the 
conditional mean (individual-specific) 𝐸𝐸(𝒚𝒚𝒊𝒊|𝒁𝒁𝑖𝑖) = 𝑿𝑿𝑖𝑖𝑿𝑿 + 𝒁𝒁𝑖𝑖𝒁𝒁𝑖𝑖 and the marginal mean (population-mean) 
𝐸𝐸(𝒚𝒚𝑖𝑖) = 𝑿𝑿𝑖𝑖𝑿𝑿 . Similarly, the individual-specific covariance 𝐶𝐶𝑐𝑐𝑐𝑐(𝒚𝒚𝒊𝒊|𝒁𝒁𝑖𝑖) and the population-mean covariance 
𝐶𝐶𝑐𝑐𝑐𝑐(𝒚𝒚𝑖𝑖) are: 

𝐶𝐶𝑐𝑐𝑐𝑐(𝒚𝒚𝒊𝒊|𝒁𝒁𝑖𝑖) = 𝐶𝐶𝑐𝑐𝑐𝑐(𝜺𝜺𝑖𝑖) = 𝑹𝑹𝑖𝑖 

𝐶𝐶𝑐𝑐𝑐𝑐(𝒚𝒚𝑖𝑖) = 𝐶𝐶𝑐𝑐𝑐𝑐(𝒁𝒁𝑖𝑖𝒁𝒁𝑖𝑖) + 𝐶𝐶𝑐𝑐𝑐𝑐(𝜺𝜺𝑖𝑖) = 𝒁𝒁𝑖𝑖𝑮𝑮𝑖𝑖𝒁𝒁𝑖𝑖′ + 𝑹𝑹𝑖𝑖 

Finally, 𝑦𝑦𝑖𝑖~𝑁𝑁(𝑿𝑿𝑖𝑖𝑿𝑿,  𝒁𝒁𝑖𝑖𝑮𝑮𝑖𝑖𝒁𝒁𝑖𝑖′ + 𝑹𝑹𝑖𝑖)  can be written for each individual. Here, the variance of 𝒚𝒚𝒊𝒊 is 
𝑽𝑽𝑖𝑖 = 𝒁𝒁𝑖𝑖𝑮𝑮𝑖𝑖𝒁𝒁𝑖𝑖′ + 𝑹𝑹𝑖𝑖. The random part of the model was fitted by identifying the terms describing the random 
pattern matrix 𝒁𝒁𝑖𝑖 and determining the variance-covariance structures of the matrices 𝑮𝑮𝑖𝑖 and 𝑹𝑹𝑖𝑖 . Now, 
suppose we have matrix 𝒁𝒁𝑁𝑁×𝑖𝑖 = block diagonal[𝑍𝑍𝑖𝑖] where ∑ 𝑛𝑛𝑖𝑖𝑖𝑖

𝑖𝑖=1  . We assume that 𝒀𝒀 = (𝑦𝑦1′ ,𝑦𝑦2′ , … ,𝑦𝑦𝑖𝑖′ )′, 
𝑿𝑿 = (𝑋𝑋1′ ,𝑋𝑋2′ , … ,𝑋𝑋𝑖𝑖′ )′, 𝒁𝒁 = (𝛾𝛾1′ , 𝛾𝛾2′ , … , 𝛾𝛾𝑖𝑖′ )′, 𝜺𝜺 = (𝜀𝜀1′ , 𝜀𝜀2′ , … , 𝜀𝜀𝑖𝑖′ )′, 𝑮𝑮 = 𝑏𝑏𝑏𝑏𝑐𝑐𝑐𝑐𝑏𝑏𝑏𝑏𝑖𝑖𝑉𝑉𝑏𝑏𝑐𝑐𝑛𝑛𝑉𝑉𝑏𝑏[𝐺𝐺𝑖𝑖], and 
𝑹𝑹 = 𝑏𝑏𝑏𝑏𝑐𝑐𝑐𝑐𝑏𝑏𝑏𝑏𝑖𝑖𝑉𝑉𝑏𝑏𝑐𝑐𝑛𝑛𝑉𝑉𝑏𝑏[𝑅𝑅𝑖𝑖] for the sake of simplicity of notation. The linear mixed effects model in Equation 
(2.1) can be rewritten in full matrix notation. 

𝒀𝒀 = 𝑿𝑿𝑿𝑿 + 𝒁𝒁𝒁𝒁 + 𝜺𝜺             (2.2) 

The marginal probability density function of 𝒀𝒀~𝑁𝑁(𝑿𝑿𝑿𝑿,𝒁𝒁𝑮𝑮𝒁𝒁′ + 𝑹𝑹) and given γ, the conditional 
density function of 𝒀𝒀 can be written as 𝒀𝒀|𝒁𝒁~𝑁𝑁(𝑿𝑿𝑿𝑿 + 𝒁𝒁𝒁𝒁,𝑹𝑹). In addition to these assumptions, the 
𝒁𝒁~𝑁𝑁(𝟎𝟎,𝑮𝑮) and 𝜺𝜺~𝑁𝑁(𝟎𝟎,𝑹𝑹) assumptions should be considered while constructing the mixed effects 
likelihood function.  
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Prior distribution 

The most critical part of Bayesian analysis is to assign prior distributions to all unknown parameters 
(𝑿𝑿,𝒁𝒁,𝑮𝑮,𝑹𝑹) in the model. In the case of the fixed effects vector β, the multivariate normal distribution 
representing sufficient a priori information about these parameters is determined as the a priori 
distribution and can be written as following. 

 
𝛽𝛽|𝑏𝑏0,𝐵𝐵0~𝑁𝑁(𝑏𝑏0,𝐵𝐵0). 

𝑓𝑓(𝑿𝑿|𝒃𝒃𝟎𝟎,𝑩𝑩𝟎𝟎) ∝ |𝑩𝑩𝟎𝟎|−
𝑝𝑝
2𝑒𝑒𝑒𝑒𝑝𝑝 �− 1

2
(𝑿𝑿 − 𝒃𝒃𝟎𝟎)′𝑩𝑩𝟎𝟎

−1(𝑿𝑿 − 𝒃𝒃𝟎𝟎)�      (2.3) 

The random effects vector γ can be determined as the normal distribution to a priori distribution. 

𝛾𝛾|𝐺𝐺~𝑁𝑁(0,𝐺𝐺) 

𝑓𝑓(𝒁𝒁|𝑮𝑮) ∝ |𝑮𝑮|−
𝑞𝑞
2𝑒𝑒𝑒𝑒𝑝𝑝 �− 1

2
𝒁𝒁′𝑮𝑮−1𝒁𝒁�                        (2.4) 

To complete the prior distribution definitions, the variance-covariance matrices 𝑮𝑮 and 𝑹𝑹 need to be 
determined. It is possible to specify a prior probability expression for the parameters 𝑮𝑮 and 𝑹𝑹. It will be 
assumed that these parameters have an inverse-Wishart distribution. Given 𝑉𝑉𝑔𝑔 and 𝑐𝑐𝑔𝑔, the prior 
distribution of 𝑮𝑮 can be written as; 

𝐺𝐺~𝑊𝑊𝑖𝑖�𝑐𝑐𝑔𝑔 + 𝑚𝑚,𝑉𝑉𝑔𝑔 � 

𝑓𝑓�𝑮𝑮|𝑐𝑐𝑔𝑔 ,𝑉𝑉𝑔𝑔 � ∝ |𝑮𝑮|−
1
2�𝑣𝑣𝑔𝑔+𝑖𝑖+1 �𝑒𝑒𝑒𝑒𝑝𝑝 �− 1

2
𝑡𝑡𝑉𝑉 (𝑐𝑐𝑔𝑔𝑮𝑮−1𝑉𝑉𝑔𝑔)�        (2.5) 

Similarly, given 𝑉𝑉𝑟𝑟 ve 𝑐𝑐𝑟𝑟, the density function of the prior distribution of 𝑹𝑹 is the inverse-Wishart 
distribution given below. 

𝑹𝑹~𝑊𝑊𝑖𝑖(𝑐𝑐𝑟𝑟 + 𝑚𝑚,𝑽𝑽𝑟𝑟 ) 

𝑓𝑓(𝑹𝑹|𝑐𝑐𝑟𝑟 ,𝑽𝑽𝑟𝑟 ) ∝ |𝑹𝑹|−
1
2(𝑣𝑣𝑟𝑟+𝑖𝑖+1 )𝑒𝑒𝑒𝑒𝑝𝑝 �− 1

2
𝑡𝑡𝑉𝑉 (𝑐𝑐𝑟𝑟𝑹𝑹−1𝑽𝑽𝑟𝑟)�       (2.6) 

Here, 𝑽𝑽𝑔𝑔 and 𝑽𝑽𝑟𝑟 are hyperparameters of (𝑚𝑚 × 𝑚𝑚) dimensional and can be interpreted as initial 
values of prior distributions of variance-covariance parameters 𝑮𝑮 and 𝑹𝑹, respectively. 𝑐𝑐𝑔𝑔 and 𝑐𝑐𝑟𝑟 are also 
hyperparameters of the prior distribution of the variance-covariance matrix, and these are as a measure 
of the degree of belief in 𝑽𝑽𝑔𝑔 and 𝑽𝑽𝑟𝑟 or as integer values that can be interpreted as degrees of freedom. 
When 𝑽𝑽𝑔𝑔 = 0 and 𝑽𝑽𝑟𝑟 = 0, in the absence of a priori information, the priori distributions of G and R given in 
equations (2.5) and (2.6) will be noninformative as follows. 

𝑓𝑓(𝑮𝑮) ∝ |𝑮𝑮|−
1
2(𝑖𝑖+1 ) 

𝑓𝑓(𝑹𝑹) ∝ |𝑹𝑹|−
1
2(𝑖𝑖+1 ) 

Likelihood function 

Model (2.2) states that given 𝑿𝑿,𝒁𝒁,𝑮𝑮, and 𝑹𝑹, the observation vector 𝒀𝒀 has the following likelihood 
function. 

𝑓𝑓(𝒀𝒀|𝑿𝑿,𝒁𝒁,𝑮𝑮,𝑹𝑹) = (2𝜋𝜋)−𝑁𝑁 2⁄ |𝑹𝑹|−𝑁𝑁 2⁄ 𝑒𝑒𝑒𝑒𝑝𝑝 �− 1
2

(𝒀𝒀 − 𝑿𝑿𝑿𝑿 − 𝒁𝒁 𝒁𝒁)′𝑹𝑹−1(𝒀𝒀 − 𝑿𝑿𝑿𝑿 − 𝒁𝒁 𝒁𝒁)�  (2.7) 
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Joint posterior density function 

The prior distributions given in equations (2.3), (2.4), (2.5) and (2.6) for 𝑿𝑿,𝒁𝒁,𝑮𝑮 and 𝑹𝑹, respectively, 
are multiplied by the likelihood function given in (2.7) for the model in (2.2). Given Y according to Bayes’ 
rule, the joint posterior density function of the parameters can be obtained as follows. 

𝑓𝑓(𝑿𝑿,𝒁𝒁,𝑮𝑮,𝑹𝑹|𝒀𝒀) = 𝑓𝑓(𝑿𝑿|𝑏𝑏0,𝐵𝐵0) × 𝑓𝑓(𝒁𝒁|𝑮𝑮) ×  𝑓𝑓�𝑮𝑮|𝑐𝑐𝑔𝑔 ,𝑉𝑉𝑔𝑔 � × 𝑓𝑓(𝑹𝑹|𝑐𝑐𝑟𝑟  ,𝑉𝑉𝑟𝑟  ) × 𝑓𝑓(𝒀𝒀|𝑿𝑿,𝒁𝒁,𝑮𝑮,𝑹𝑹) 

∝ |𝑩𝑩𝟎𝟎|−
𝑝𝑝
2exp �−

1
2

(𝑿𝑿 − 𝒃𝒃𝟎𝟎)′𝑩𝑩𝟎𝟎
−1(𝑿𝑿 − 𝒃𝒃𝟎𝟎)� × |𝑮𝑮|−

𝑞𝑞
2exp �−

1
2
𝒁𝒁′𝑮𝑮−1𝒁𝒁� 

× |𝑮𝑮|−
1
2�𝑣𝑣𝑔𝑔+𝑖𝑖+1 �exp �−

1
2
𝑡𝑡𝑉𝑉�𝑐𝑐𝑔𝑔𝑮𝑮−1𝑉𝑉𝑔𝑔�� × |𝑹𝑹|−

1
2(𝑣𝑣𝑟𝑟+𝑖𝑖+1 )exp �−

1
2
𝑡𝑡𝑉𝑉(𝑐𝑐𝑟𝑟𝑹𝑹−1𝑉𝑉𝑟𝑟)� 

× |𝑹𝑹|−𝑁𝑁 2⁄ exp �−
1
2

(𝒀𝒀 − 𝑿𝑿𝑿𝑿 − 𝒁𝒁 𝒁𝒁)′𝑹𝑹−1(𝒀𝒀 − 𝑿𝑿𝑿𝑿 − 𝒁𝒁 𝒁𝒁)� 

which can be rewritten as 

𝑓𝑓(𝑿𝑿,𝒁𝒁,𝑮𝑮,𝑹𝑹|𝒀𝒀) ∝ |𝑩𝑩𝟎𝟎|−
𝑝𝑝
2|𝑮𝑮|−

1
2�𝑞𝑞+𝑣𝑣𝑔𝑔+𝑖𝑖+1 �|𝑹𝑹|−

1
2(𝑁𝑁+𝑣𝑣𝑟𝑟+𝑖𝑖+1 ) 

× exp �−
1
2

(𝑿𝑿 − 𝒃𝒃𝟎𝟎)′𝑩𝑩𝟎𝟎
−1(𝑿𝑿 − 𝒃𝒃𝟎𝟎)�  exp �−

1
2
𝑡𝑡𝑉𝑉�𝑮𝑮−1�𝑐𝑐𝑔𝑔𝑉𝑉𝑔𝑔 + 𝒁𝒁′𝒁𝒁��� 

    × exp �− 1
2
𝑡𝑡𝑉𝑉�𝑹𝑹−1�𝑐𝑐𝑟𝑟𝑉𝑉𝑟𝑟 + (𝒀𝒀 − 𝑿𝑿𝑿𝑿 − 𝒁𝒁 𝒁𝒁)′(𝒀𝒀 − 𝑿𝑿𝑿𝑿 − 𝒁𝒁 𝒁𝒁)���     (2.8) 

Let’s denote all parameters 𝑿𝑿,𝒁𝒁,𝑮𝑮 and 𝑹𝑹, with θ and let 𝜋𝜋(𝜃𝜃) be the function of interest. Bayesian 
interpretation aims to obtain the expected mean under the posterior density function. 

𝐸𝐸[𝜋𝜋(𝜃𝜃) ] = ∫ 𝑓𝑓(𝑌𝑌|𝜃𝜃)𝑓𝑓(𝜃𝜃)𝑏𝑏𝜃𝜃            (2.9) 

Where 𝑓𝑓(𝜽𝜽) = 𝑓𝑓(𝑿𝑿|𝑏𝑏0,𝐵𝐵0) × 𝑓𝑓(𝒁𝒁|𝑮𝑮) ×  𝑓𝑓�𝑮𝑮|𝑐𝑐𝑔𝑔 ,𝑉𝑉𝑔𝑔 � × 𝑓𝑓(𝑹𝑹|𝑐𝑐𝑟𝑟  ,𝑉𝑉𝑟𝑟  ), 𝑓𝑓(𝒀𝒀|𝜽𝜽) is the conditional density 
function of Y given the parameters or the likelihood function given in (2.7). There are at least two 
difficulties in obtaining this. In particular, (2.9) is analytically challenging to obtain. Second, although the 
standard Monte Carlo approach can be a solution for such a high-dimensional integral problem, it is not 
easy to apply. Because the marginal posterior density function may be of an unknown form and it is not 
easy to draw a sample from such a density function. Fortunately, the Gibbs sampling approach can be 
applied to overcome this problem, which allows the user to draw samples from the joint distribution using 
the conditional posterior distribution of each parameter, given the other parameters.  

Full conditional posterior densities 

To apply Gibbs sampling for the model given in Equation (2.2), fully conditional posterior 
distributions of 𝑿𝑿,𝒁𝒁,𝑮𝑮 and 𝑹𝑹 are required, given the remaining parameters. Considering the conditional 
posterior distribution gives an idea about the structure of the posterior distribution and provides the basis 
for an effective calculation. The full conditional posterior distributions of 𝑿𝑿,𝒁𝒁,𝑮𝑮, and 𝑹𝑹 are obtained from 
the joint posterior probability density function given in (2.8). To obtain the full conditional distributions of 
𝑿𝑿,𝒁𝒁, the following rule is used. Let the probability density function of the vector 𝜽𝜽 be proportional to the 
following exponential expression; 

exp �−
1

2𝜎𝜎2
(𝜽𝜽′𝑨𝑨𝜽𝜽 − 2𝜽𝜽′𝑉𝑉)� 

Where 𝑨𝑨 is a positive definite matrix, the distribution of 𝜽𝜽 is 𝑁𝑁(𝑨𝑨−1𝑉𝑉,𝑨𝑨−1) in this case. 

Conditional posterior distribution of 𝑿𝑿: The conditional posterior probability density function of 𝑿𝑿 is 
proportional to the following exponential expression. 

exp �−
1
2
�𝑿𝑿′�𝑿𝑿′𝑹𝑹−1𝑿𝑿 + 𝑩𝑩𝟎𝟎

−1�𝑿𝑿 − 2𝑿𝑿′�𝑿𝑿′𝑹𝑹−1(𝒀𝒀 − 𝒁𝒁𝒁𝒁) + 𝑩𝑩𝟎𝟎
−1𝑏𝑏0��� 
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Thus, the conditional posterior distribution of 𝑿𝑿 is as follows. 

[𝑿𝑿|𝒁𝒁,𝑮𝑮,𝑹𝑹,𝒀𝒀]~𝑁𝑁 ��𝑿𝑿′𝑹𝑹−1𝑿𝑿 + 𝑩𝑩𝟎𝟎
−1�−1�𝑿𝑿′𝑹𝑹−1(𝒀𝒀 − 𝒁𝒁𝒁𝒁) + 𝑩𝑩𝟎𝟎

−1𝑏𝑏0�, �𝑿𝑿′𝑹𝑹−1𝑿𝑿 + 𝑩𝑩𝟎𝟎
−1�−1�  (2.10) 

Conditional posterior distribution of 𝒁𝒁: The conditional posterior probability density function of 𝒁𝒁 is 
proportional to the following exponential expression.  

exp �−
1
2
�𝒁𝒁′(𝑮𝑮 + 𝒁𝒁′𝑹𝑹−1𝒁𝒁)𝒁𝒁 − 𝟐𝟐𝒁𝒁′�𝒁𝒁′𝑹𝑹−1(𝒀𝒀 − 𝑿𝑿𝑿𝑿)��� 

Thus, the conditional posterior distribution of 𝒁𝒁 is as follows. 

[𝒁𝒁|𝑿𝑿,𝑮𝑮,𝑹𝑹,𝒀𝒀]~𝑁𝑁�(𝑮𝑮 + 𝒁𝒁′𝑹𝑹−1𝒁𝒁)−1�𝒁𝒁′𝑹𝑹−1(𝒀𝒀 − 𝑿𝑿𝑿𝑿)�, (𝑮𝑮 + 𝒁𝒁′𝑹𝑹−1𝒁𝒁)−1�     (2.11) 

Conditional posterior distribution of 𝑮𝑮: The posterior probability density function of 𝑮𝑮 is proportional 
to the following expression. 

|𝑮𝑮|−
1
2�𝑣𝑣𝑔𝑔+𝑖𝑖+1 �𝑒𝑒𝑒𝑒𝑝𝑝 �−

1
2
𝑡𝑡𝑉𝑉�𝑮𝑮−1�𝑐𝑐𝑔𝑔𝑉𝑉𝑔𝑔 + 𝒁𝒁′𝒁𝒁��� 

Thus, the conditional posterior distribution of 𝑮𝑮 is as follows. 

[𝑮𝑮|𝑿𝑿,𝒁𝒁,𝑹𝑹,𝒀𝒀]~𝑊𝑊−1�𝑞𝑞 + 𝑐𝑐𝑔𝑔,𝒁𝒁′𝒁𝒁 + 𝑐𝑐𝑔𝑔𝑉𝑉𝑔𝑔�          (2.12) 

Conditional posterior distribution of R: The posterior probability density function of R is proportional 
to the following expression. 

|𝑹𝑹|−
1
2(𝑁𝑁+𝑣𝑣𝑟𝑟+𝑖𝑖+1 )exp �−

1
2
𝑡𝑡𝑉𝑉�𝑹𝑹−1�𝑐𝑐𝑟𝑟𝑉𝑉𝑟𝑟 + (𝒀𝒀 − 𝑿𝑿𝑿𝑿 − 𝒁𝒁 𝒁𝒁)′(𝒀𝒀 − 𝑿𝑿𝑿𝑿 − 𝒁𝒁 𝒁𝒁)��� 

Thus, the full conditional posterior distribution of R is obtained as follows. 

[𝑹𝑹|𝑿𝑿,𝒁𝒁,𝑮𝑮,𝒀𝒀]~𝑊𝑊−1(𝑁𝑁 + 𝑐𝑐𝑟𝑟 , (𝒀𝒀 − 𝑿𝑿𝑿𝑿 − 𝒁𝒁 𝒁𝒁)′(𝒀𝒀 − 𝑿𝑿𝑿𝑿 − 𝒁𝒁 𝒁𝒁) + 𝑐𝑐𝑟𝑟𝑉𝑉𝑟𝑟)     (2.13) 

The 𝑾𝑾−1 in (2.12) and (2.13) shows the inverse Wishart distribution with 𝑚𝑚 variables. The Wishart 
distribution is parameterized according to the degrees of freedom (𝑐𝑐𝑔𝑔 and 𝑐𝑐𝑟𝑟) and the precision matrix (𝑽𝑽𝑔𝑔 
and 𝑽𝑽𝑟𝑟). The inverse-Wishart distribution is a conjugate prior for the covariance matrix of the multivariate 
normally distributed variables. This means that when combined with the likelihood function, it will result in 
a posterior distribution belonging to the same family of distributions. Another significant advantage of the 
inverse Wishart distribution is that it provides positive precision of the covariance matrix (Schuurman et 
al., 2016). 

Bayesian analysis of data set using proc BGLIMM 

The mixed-effects model used for the dataset is as follows. 

𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1ℎ𝑦𝑦𝑖𝑖 + 𝛽𝛽2𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑠𝑠𝑖𝑖 + 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 

Where, 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖: monthly body weights; ℎ𝑦𝑦𝑖𝑖: herd year; 𝛽𝛽0,  𝛽𝛽1,  𝛽𝛽2: regression coefficients; 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖: days to 
weaning; 𝑠𝑠𝑖𝑖: sire; and 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖: error. The effect of the sire, which is a random effect, follows a normal 
distribution 𝑠𝑠𝑖𝑖~𝑁𝑁�0𝑞𝑞 ,𝜎𝜎𝑏𝑏2𝐼𝐼𝑞𝑞�. 

For all regression coefficients, 𝛽𝛽𝑖𝑖  (𝑗𝑗 = 1,2), fixed effect herd year ℎ𝑦𝑦𝑖𝑖, and weaning days 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 were 
determined as a noninformative prior distribution with large variance Normal (0; var=1e4). These 
noninformative prior distributions were solved by the Proc BGLIMM procedure. A single chain of size 
10,000 iterations was run. The initial 500 iterations were discarded as a burn-in, and every second 
sample was recorded to reduce autocorrelation. In total, 5,000 samples were recorded for each 
parameter, and the means of the sample values were used as an estimate of the parameters. Basically, 
12 different models were created for 12 different variance-covariance structures. These 12 models are 



Modeling of different covariance structures with the Bayesian method in repeated measurements 

619 

modeled with noninformative prior selection. In addition, variance components and unstructured variance-
covariance structures from these models were remodeled with informative priors. To compare models, a 
Bayesian comparison criterion Deviance Information Criteria (DIC) was used, based on the relationship 
between the fit of the data to the model and the complexity of the model. The Deviance Information 
Criteria (DIC) (Spiegelhalter et al., 2002) is a model comparison tool similar to the well-known probability-
based information criterion Akaike Information Criterion (AIC) (Akaike, 1973), and Bayesian Information 
Criteria (BIC) (Schwarz, 1978). This criterion, which uses the posterior distributions of the models 
obtained by the MCMC method, is useful in Bayesian model selection and has been used in many studies 
(Fikse et al., 2003; Rekaya et al., 2003; Legarra et al., 2005; François & Laval, 2011; Holand et al., 2013). 
DIC is defined as 𝐷𝐷𝐼𝐼𝐶𝐶 = 𝐷𝐷�(𝜃𝜃) + 𝑝𝑝𝐷𝐷, where 𝑝𝑝𝐷𝐷 = 𝐷𝐷�(𝜃𝜃) − 𝐷𝐷(�̅�𝜃). And 𝐷𝐷�(𝜃𝜃) is the mean of the deviation in 
iterations. It measures how well the data fit the model using the likelihood function �−2𝑏𝑏𝑐𝑐𝑏𝑏𝑙𝑙(𝐷𝐷|𝜃𝜃)� and 
sampled parameter values at each iteration. 

 
RESULTS 
For all models, the posterior distributions of the parameters were calculated one by one, and 

convergence was checked. A special care should be given while interpreting the results when the chain does 
not have MCMC convergence of posterior distribution. In this study, there was a general convergence in the 
posterior distributions of all parameters, and different diagnostic tests, such as the Geweke test, Monte Carlo 
standard errors, and effective sample size, were evaluated together with trace charts. Therefore, reliable 
posterior statistics of parameters for body weight data have been obtained and can be interpreted. 

The twelve models using different variance-covariance structures with informative prior and two 
models with noninformative prior specification were created in this study, and the results were evaluated. 
The DIC values of the models are given in Table 1. These values are calculated using the equation 
𝐷𝐷𝐼𝐼𝐶𝐶 = 𝐷𝐷𝑏𝑏𝑉𝑉𝑉𝑉 + 𝑝𝑝𝐷𝐷 = 𝐷𝐷ℎ𝑉𝑉𝑡𝑡 + 2𝑝𝑝𝐷𝐷. Where 𝑝𝑝𝐷𝐷 is the number of effective parameters that should be included 
in the model, the mean of the posterior distribution of the deviation 𝐷𝐷𝑏𝑏𝑉𝑉𝑉𝑉, and the log-likelihoods 
calculated from the Gibbs sampling iteration. Assuming the unknown parameters of the model is θ, the 
deviation from the posterior mean of θ is 𝐷𝐷ℎ𝑉𝑉𝑡𝑡. 

Table 1. Summary of DIC comparison values of models 

Çizelge 1. Modellerin DIC karşılaştırma değerlerinin özeti 

 Model DIC Dbar Dhat pD 

N
on

in
fo

rm
at

iv
e 

 VC 3320.31 3269.89 3219.47 50.42 
CS 3327.76 3280.51 3233.27 47.25 

CSH 3014.26 2966.70 2919.13 47.57 
HF 2895.96 2891.27 2886.59 4.68 

AR (1) 3290.40 3249.74 3209.08 40.66 
ARH (1) 2965.02 2913.68 2862.34 51.34 
FA (1) 2551.29 2481.55 2411.80 69.74 
ANTE 2533.23 2475.89 2418.55 57.34 
TOEP 3214.28 3163.33 3112.38 50.95 

TOEPH 2910.90 2872.92 2834.93 37.98 
UN 2499.38 2460.82 2422.27 38.55 

ARMA 3278.50 3234.29 3190.08 44.21 

Informative 
VC 3320.20 3270.73 3221.27 49.47 
UN 2482.95 2459.34 2435.74 23.60 
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The model with the smallest DIC value is accepted to be the most suitable model. When the models 
with noninformative prior distributions are evaluated, the model with the lowest DIC value among 12 
different models is the unstructured (UN) variance-covariance structure. The variance-covariance matrix of 
the model with the unstructured structure determined as the most suitable model is tabulated in Table 2. 

Table 2. 𝑹𝑹 variance-covariance matrix for the unstructured model 

Çizelge 2. Yapılandırılmamış model için 𝑹𝑹 varyans-kovaryans matrisi 

R Matrix 
Row Column 1 Column 2 Column 3 Column 4 Column 5 Column 6 

1 0.18840 -0.0684 0.0177 0.0201 -0.0416 -0.1385 
2 -0.06837 4.1512 3.1752 4.0258 5.4634 1.5813 
3 0.01771 3.1752 3.9813 4.4706 4.7099 1.2691 
4 0.02012 4.0258 4.4706 5.9967 6.5966 1.8482 
5 -0.04155 5.4634 4.7099 6.5966 9.1552 3.4360 
6 -0.13850 1.5813 1.2691 1.8482 3.4360 10.4639 

The rows and columns of the variance-covariance matrix R represent the repeated measurement 
time value. The diagonal elements of the matrix in Table 2 are variance components, and it can be easily 
seen that this matrix has a heterogeneous covariance structure. It can easily be seen that the variance of 
the body weight data increases from the first month to the sixth month. While the body weight variability in 
the first month was 0.1884, the body weight variability in the sixth month was 10.4639. It is expected that 
the variability will increase as the body weights increase over the months. The correlation matrix for the 
model in the unstructured variance-covariance structure is given in Table 3. 

Table 3. 𝑹𝑹 correlation matrix for the unstructured model 

Çizelge 3. Yapılandırılmamış model için 𝑹𝑹 korelasyon matrisi 

R Correlation Matrix 
Row Column 1 Column 2 Column 3 Column 4 Column 5 Column 6 

1 1.00000 -0.0773 0.0205 0.0189 -0.0316 -0.0986 
2 -0.07730 1.0000 0.7810 0.8069 0.8862 0.2399 
3 0.02045 0.7810 1.0000 0.9150 0.7801 0.1966 
4 0.01892 0.8069 0.9150 1.0000 0.8903 0.2333 
5 -0.03164 0.8862 0.7801 0.8903 1.0000 0.3510 
6 -0.09865 0.2399 0.1966 0.2333 0.3510 1.0000 

It can easily be seen from Table 3 that the correlation is generally higher between pairs of 
observations close to each other and lower between pairs of observations far from each other. It is clear 
from Table 1 that the unstructured model DIC value is also smaller in two covariance structures examined in 
the informative prior specifications. Therefore, the unstructured model was determined as the most 
appropriate covariance structure for the body weight data used in this study for informative and 
noninformative prior specifications. For the model whose covariance structure is unstructured, the 
parameters and the mean, standard deviations, and highest posterior density (HPD) of the posterior 
distributions are given in Table 4. 

The HPD intervals can be examined to determine if the model parameters have a significant effect. 
As can be seen from Table 4, no significant effect of all herd years was found on monthly body weights 
since their HPD intervals include 0 value. Likewise, the days to weaning do not have a statistically 
significant effect on body weight. However, the measurement months have statistically significant effects. 
Trace, autocorrelation, and posterior density graphs of each parameter are given in Appendix. It is 
understood from these graphs that the Markov chain converges successfully for all parameters, as there is 
no autocorrelation, and the posterior distributions are almost normally distributed. 
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Table 4. Posterior statistics and intervals for model parameters 

Çizelge 4. Model parametreleri için sonsal istatistikler ve aralıklar 

Parametre N Mean Standard 
Deviation 95% HPD1 intervals 

Intercept 5000 36.1302 0.9449 34.2900 37.9510 
hy 1 5000 0.1255 0.5489 -0.9809 1.1454 
hy 2 5000 0.0515 0.3336 -0.6091 0.7105 
hy 3 5000 0.0673 0.1288 -0.1846 0.3186 
hy 4 5000 0.0498 0.1294 -0.2018 0.3039 
hy 5 5000 0.0709 0.1284 -0.1790 0.3234 
M 1 5000 -32.0588 0.2823 -32.6451 -31.5284 
M 2 5000 -21.2220 0.2908 -21.7861 -20.6364 
M 3 5000 -16.1885 0.2956 -16.7883 -15.6217 
M 4 5000 -10.2416 0.3064 -10.8593 -9.6554 
M 5 5000 -5.9175 0.3088 -6.5463 -5.3426 
iDW2 5000 0.0103 0.0185 -0.0257 0.0464 
Residual UN (1,1) 5000 0.1884 0.0467 0.1148 0.2837 
Residual UN (2,1) 5000 -0.0684 0.2352 -0.5124 0.3892 
Residual UN (2,2) 5000 4.1512 0.6856 2.9183 5.5409 
Residual UN (3,1) 5000 0.0177 0.1988 -0.3649 0.4043 
Residual UN (3,2) 5000 3.1752 0.5996 2.0616 4.3649 
Residual UN (3,3) 5000 3.9813 0.6122 2.8819 5.1980 
Residual UN (4,1) 5000 0.0201 0.2541 -0.4623 0.5307 
Residual UN (4,2) 5000 4.0258 0.7194 2.7390 5.4758 
Residual UN (4,3) 5000 4.4706 0.7123 3.1413 5.8562 
Residual UN (4,4) 5000 5.9967 0.8755 4.3278 7.6887 
Residual UN (5,1) 5000 -0.0416 0.3308 -0.6591 0.6392 
Residual UN (5,2) 5000 5.4634 0.8971 3.8913 7.3130 
Residual UN (5,3) 5000 4.7099 0.8224 3.1916 6.3807 
Residual UN (5,4) 5000 6.5966 1.0159 4.7490 8.6818 
Residual UN (5,5) 5000 9.1552 1.2841 6.8359 11.7349 
Residual UN (6,1) 5000 -0.1385 0.3007 -0.7204 0.4517 
Residual UN (6,2) 5000 1.5813 0.6737 0.2997 2.9111 
Residual UN (6,3) 5000 1.2691 0.6302 0.0680 2.5371 
Residual UN (6,4) 5000 1.8482 0.7606 0.4526 3.4623 
Residual UN (6,5) 5000 3.4360 0.9687 1.6401 5.3816 
Residual UN (6,6) 5000 10.4639 1.3865 7.8027 13.1404 
Random Var 5000 0.1402 0.0307 0.0866 0.1993 

1 HPD: Highest Posterior Density; 2iDW: days to weaning; hy: herd year; M: Months 

Geweke test, Monte Carlo standard errors and effective sample size, autocorrelation time, and 
efficiency are reported in Table 5 to evaluate the convergence of the Markov Chain. At a probability level of 
95% (p ≤ 0.05) significance level, the Geweke diagnostic rejects the null hypothesis that the means from the 
beginning and end parts of each chain are equal only for the model parameters hy2, hy3, hy4, and Residual 
UN (6,6). All the other chains pass Gweke’s test for stationary. The standard error of the mean, also known 
as the Monte Carlo standard error (MCSE) provides the accuracy of the posterior estimates of the 
parameters. The Monte Carlo standard errors of each parameter in Table 5 are significantly small relative to 
the posterior standard deviations (MCSE/SD), indicating that the Markov chain has stabilized and the mean 
estimates do not vary much over time. As a result of the examination of both autocorrelation graphs and 
diagnostic tests for each parameter, it was concluded that although some parameters show that there may 
be slight problems with convergence as a result of the diagnostic tests, the values are very close to the 
desired results, and the trace plots also confirm the convergence of the Markov chain for all parameters. 
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Table 5. Diagnostic tests of model parameters 
Çizelge 5. Model parametrelerinin teşhis testleri 

Parametre 

Geweke Monta Carlo Standard Error Effective Sample Size 

z Pr > |z| MCSE1 Standard 
Deviation MCSE/SD ESS2 Auto-correlation 

time Efficiency 

Intercept 0.7386 0.4601 0.036800 0.9449 0.0389 660.4 7.5707 0.1321 

hy 1 2.1697 0.0300 0.028000 0.5489 0.0509 385.3 12.9761 0.0771 

hy 2 1.0568 0.2906 0.018000 0.3336 0.0540 342.5 14.5970 0.0685 

hy 3 0.4737 0.6357 0.002990 0.1288 0.0232 1852.2 2.6995 0.3704 

hy 4 0.2222 0.8242 0.002820 0.1294 0.0218 2105.5 2.3748 0.4211 

hy 5 -2.3034 0.0213 0.003160 0.1284 0.0246 1648.4 3.0332 0.3297 

M 1 0.9224 0.3563 0.003860 0.2823 0.0137 5338.8 0.9365 1.0678 

M 2 0.4914 0.6232 0.004040 0.2908 0.0139 5175.3 0.9661 1.0351 

M 3 1.0284 0.3038 0.004100 0.2956 0.0139 5209.2 0.9598 1.0418 

M 4 0.4652 0.6418 0.004260 0.3064 0.0139 5177.5 0.9657 1.0355 

apM 5 -0.4156 0.6777 0.004290 0.3088 0.0139 5193.6 0.9627 1.0387 

iDW -0.9838 0.3252 0.000788 0.0185 0.0426 550.3 9.0865 0.1101 

Residual UN (1,1) 0.9388 0.3478 0.001760 0.0467 0.0377 701.8 7.1245 0.1404 

Residual UN (2,1) 1.2021 0.2293 0.015000 0.2352 0.0637 246.2 20.3062 0.0492 

Residual UN (2,2) 0.8443 0.3985 0.032400 0.6856 0.0472 448.3 11.1533 0.0897 

Residual UN (3,1) 1.9431 0.0520 0.011500 0.1988 0.0578 299.8 16.6754 0.0600 

Residual UN (3,2) 1.1207 0.2624 0.027300 0.5996 0.0455 483.0 10.3518 0.0966 

Residual UN (3,3) 1.4806 0.1387 0.023900 0.6122 0.0390 657.4 7.6058 0.1315 

Residual UN (4,1) 1.7864 0.0740 0.015400 0.2541 0.0605 273.2 18.3042 0.0546 

Residual UN (4,2) 1.0768 0.2816 0.031700 0.7194 0.0441 514.3 9.7213 0.1029 

Residual UN (4,3) 1.2615 0.2071 0.027900 0.7123 0.0392 650.0 7.6923 0.1300 

Residual UN (4,4) 1.1345 0.2566 0.030600 0.8755 0.0349 819.2 6.1038 0.1638 

Residual UN (5,1) 1.2450 0.2131 0.020500 0.3308 0.0621 259.6 19.2584 0.0519 

Residual UN (5,2) 0.8187 0.4129 0.038300 0.8971 0.0426 550.0 9.0903 0.1100 

Residual UN (5,3) 0.9584 0.3378 0.033900 0.8224 0.0412 589.8 8.4768 0.1180 

Residual UN (5,4) 0.8988 0.3687 0.039000 1.0159 0.0384 679.4 7.3591 0.1359 

Residual UN (5,5) 0.5851 0.5585 0.042300 1.2841 0.0330 920.7 5.4305 0.1841 

Residual UN (6,1) -1.6937 0.0903 0.013600 0.3007 0.0451 491.7 10.1681 0.0983 

Residual UN (6,2) -1.5670 0.1171 0.017200 0.6737 0.0256 1530.8 3.2662 0.3062 

Residual UN (6,3) -1.4985 0.1340 0.014200 0.6302 0.0226 1965.7 2.5436 0.3931 

Residual UN (6,4) -1.4446 0.1486 0.016900 0.7606 0.0222 2029.2 2.4641 0.4058 

Residual UN (6,5) -1.5982 0.1100 0.022500 0.9687 0.0232 1851.2 2.7010 0.3702 

Residual UN (6,6) -2.2862 0.0222 0.030300 1.3865 0.0219 2093.4 2.3884 0.4187 

Random Var -0.8471 0.3969 0.000470 0.0307 0.0153 4262.9 1.1729 0.8526 

1MCSE: Monta Carlo Standard Error; 2ESS: Effective Sample Size; hy: herd year; M: Monthly body weights. 
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DISCUSSION and CONCLUSION 
The distinguishing feature of the repeated measure analysis model from other models is its 

assumptions about error variance and covariance structure. Therefore, repeated measurement data 
analysis relies on appropriately calculating the correlations between observations within the same unit and 
the potential heterogeneous variances over time within the same unit. Based on this assumption, it was 
aimed for a wide range of covariance selections to make more accurate calculations, hence facilitating the 
selection of the most suitable model. As per the literature reviews, the GLM was chosen to analyze body 
weight data, considering that general linear mixed models that allow for covariance structures are 
appropriate for repeated measurement data. In determining the variance-covariance structure, it is effective 
whether it is homogeneous or heterogeneous, whether there is data with missing observations or not, 
whether the time intervals are equal or not, and whether the number of repeated measurements is more or 
less. Therefore, it cannot be directly stated that a particular variance-covariance structure is appropriate. 
Selecting the most suitable model for repeated measurement models containing complicated dynamics is 
more accurate by trying different covariance structures. The number of parameters for different covariance 
structures differs. It has been shown in this study that the convergence problem can be solved for a complex 
covariance structure when the number of data is large enough. 

Bayes Monte Carlo methods offer an attractive alternative as compared to other statistical 
methods. Some advantages of the Bayesian approach are greater flexibility in model specification, 
incorporation of prior information, and straightforward interpretation of uncertainty. Many academic 
studies have adopted Bayesian methods in various research fields (e.g., (Calus et al., 2018; Gevrekçi & 
Akbaş, 2014; Lemoine, 2019; Milkevych et al., 2021; Theobald et al., 1997)). In order to interpret 
Bayesian analysis correctly, the researcher should have sufficient knowledge about MCMC. In cases 
where MCMC convergence of the posterior distribution does not occur, care should be taken when 
interpreting the results. Convergence can be achieved, and analysis accuracy can be increased by 
creating longer chains or choosing different priors. Trace plots are the most efficient convergence test 
used in the literature for convergence diagnosis. However, different diagnostic tests will give more 
accurate results instead of relying on only one convergence tool. In this study, different diagnostic tests, 
the Geweke test, Monte Carlo standard errors, and effective sample size, were evaluated together with 
trace charts. There was a general convergence in the posterior distributions of all parameters for the 
study data. Thus, reliable posterior statistics of parameters for body weight data were obtained, and their 
interpretations were given. 

The Bayesian approach has some advantages. For example, there is no negative estimation 
problem of the variance components, and the sample size is increased by the simulation method in data 
sets with small sample sizes. Başar and Fırat (Başar & Fırat, 2016) emphasized that the Bayesian 
estimation method using the Gibbs sampling approach is suitable for estimating variance components 
under a balanced two-way nested design, especially for small sample datasets, compared to traditional 
methods. Yomi-Owojori et al. (Yomi-Owojori et al.,2020.) argued that the Bayesian approach is suitable 
for small sample-size experiments, which are common for repeated measurement designs. They indicate 
that the differences for different covariance structures are more than when the sample size is small but 
converge to the same results when the sample sizes are large. However, while Bayesian methods are 
better equipped to model data with small sample sizes, the estimates are susceptible to the properties of 
the a priori distribution. McNeish (McNeish, 2016) emphasized that Bayesian estimations may be worse 
than classical methods if this aspect is not considered. 

Despite the many advantages of Bayesian analysis, there is an ongoing debate about its 
application in practice. The two main disadvantages of Bayesian analysis are assumed subjectivity in 
selecting informative priors and computational difficulties in applying Bayesian methods. A sufficiently 
large sample selection can relatively eliminate the subjectivity of an informative prior selection. The new 
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procedure of the SAS program, PROC BGLIMM, allows Bayesian analysis to be calculated more easily, 
easing the computational difficulties relatively. The fact that this new procedure is more user-friendly than 
PROC MCMC, which requires more programming knowledge, indicates that Bayesian analysis will be 
preferred by more researchers. PROC BGLIMM uses efficient sampling parallelized algorithms for 
performance, resulting in good mixing and faster computation (SAS Institute, 2019).  

It was observed that the DIC values of the models created for the 12 different variance-covariance 
structures determined were relatively close to each other for UN (DIC: 2499.38), ANTE (DIC: 2533.23), 
and FA (DIC: 2551.29), with significant differences, compared to other models. Lunn et al. (Lunn et al., 
2012) discussed “approximate” rules for interpreting differences in DIC value when choosing a preferred 
model. They concluded that while choosing the model according to the difference between the DIC values 
of the compared models, the model with higher DIC should be excluded if there are more than 10 
differences between them. They also concluded that differences between 5 and 10 reflect “significant” 
differences in favor of the smaller DIC value model, and choosing a preferred model for discrepancies 
between models less than 5 may have misleading results. Because the difference of 33.85 between the 
models in the UN and ANTE variance-covariance structures with the closest DIC values to each other is 
greater than 10, it was found to be appropriate to prefer the model with the smallest DIC value, which is 
UN (see Table 1). This study proved that the Bayesian approach is suitable for repeated measurement 
designs of different variance-covariance structures and can easily model repeated data in animal science, 
such as body weight. As a result of the literature review, no variance-covariance structure model was 
found in this diversity, which was solved by Bayesian methods. In the case of the UN structure, this is a 
heterogeneous variance covariances structure with no assumptions. It can also be a good choice for the 
researcher when the number of repeated measurements is low. However, as with traditional regression, 
the best model is parsimonious with as few parameters as possible. The larger the number of 
parameters, the more complex the model, and the more specific the data and, therefore, less 
generalizable. The decision should be made with the belief that we should prefer the simpler model 
whenever possible. As a result, the UN covariance structure was considered preferable and suitable for 
biological data in repeated measurement analyses. Having few repeated measures and balanced data 
with equal time intervals led to choosing this model. In this study, the UN model also has a smaller DIC 
value for the two covariance structures examined in the informative prior selection. The results of 
noninformative and informative prior selections have been observed to be very similar. Therefore, the UN 
model was determined as the most appropriate covariance structure for the body weight data used in this 
study in selecting both informative prior and noninformative prior. This is the conclusion that if the sample 
size is large enough, the posterior distribution will not be affected much by informative or noninformative 
prior specifications. Although there are studies on modeling variance-covariance structures with classical 
methods in the literature, there are limited number of studies that involve modeling variance-covariance 
structures with Bayesian methods. This study presents the most comprehensive variety among the 
studies on modeling the variance-covariance structure whose parameter estimation method is Bayesian. 
It was proved that the complex formulations can be analyzed using Markov chain Monte Carlo 
approaches for any variance-covariance structure. 

Twelve different covariance structures were modeled with PROC BGLIMM, and this new procedure 
was introduced. It was concluded that the PROC BGLIMM procedure is an effective and suitable method 
for repeated measurement analysis of Bayesian solutions. Based on the logic that progress in scientific 
research is based on accumulated knowledge, it is believed that the Bayesian solutions will find more 
place in many fields. 
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