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Abstract
The aim of this paper is to study characterization of tube surfaces (called directional tube surfaces) with
respect to the q-frame in Euclidean 4-space E4. First, a parametrization of these directional tube surfaces in
E4 is established. Then, the normals of the directional tube surfaces, denoted as U1 and U2, are determined
respectively. Furthermore, the Gaussian curvature K and the mean curvature H of the directional tube surfaces
are investigated. Subsequently, an example of a directional tube surface is given in E4, together with visual
representations of this tube surfaces in projection space.
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1. Introduction
The canal surfaces, a special type of surfaces, have been originally introduced by Monge in 1850. Tube surfaces, a special case
of canal surfaces, arise as the envelope of a moving sphere with a constant radius function, denoted r(t) [1,2]. The tube surfaces
which is also called as a pipe were parameterized using the Frenet frame [3]. Blaga (2005) introduced a method to parameterize
tube surfaces in which one of the parameters is traced along the generating curve, and a point on the surface is denoted by the
position vector ψ [4]. Relatively simple analytical and functional descriptions of tube surfaces have generated considerable
interest in various fields, including medicine and computer-aided design etc., due to their potential applications. This interest
arises from their potential applications in different fields. Many researchers have been interested in relations between the
curvatures and characterizations of these surfaces in different spaces. In the field of differential geometry, the Frenet frame
has been a very important tool in the analysis of curves and surfaces. However, there are other alternative frame to the Frenet
frame, such as the Darboux frame and the Bishop frame etc. [5]. Bishop showed that we can define more frame along a space
curve [6]. In addition, singularities of parallel surface and directional tubes are investigated in [7–9]. Several geometers have
explored tubes in both Euclidean 3-space and Minkowski 3-space, by exploring equations in terms of Gaussian curvature, mean
curvature, and second Gaussian curvature [10–12]. In addition to these frames Coquillart introduced an alternative approach
known as the q-frame, obtained by using the quasi-normal vector in 1987 [13]. Dede et al. have introduced the q-frame adapted
along a spatial curve and have established its connection with the Frenet frame [14] . This q-frame has been employed for
parametric representations of directional tube surfaces, referred to as directional tubular surfaces, in various spaces [10, 15, 16].
Gezer and Ekici (2023) have introduced the q-frame, q-frame formulas, and the relation between the q-frame and Frenet frame
in Euclidean 4-space [17]. Gluck (1966) has presented a simple algorithm, by using a single formula for all curvature, based on
the Gram-Schmidt orthonormalization process for determining curvatures of the curve in Euclidean n-space and has provided an
example to illustrate these concepts in Euclidean 4-space [18]. Focusing on Euclidean 4-space E4, researchers have investigated
Frenet elements and derivative equations for space curves with unit speed [19–26]. The canal surface can be parametrized using
Frenet frame and alternative frame in both 3-dimensional Euclidean space E3 and 4-dimensional Euclidean space E4 [5,27–32].
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Also in Euclidean 4-space, the ruled surfaces with quasi-vectors are studied by Coşkun and Akça [33], and Weingarten map of
the hypersurface is given by Yüce [34]. It is worth remarking that one of the main challenges with surfaces is to visualize their
images in Euclidean 4-space E4, and researchers such as Mello (2009) have investigated the properties and conditions of such
surfaces [35]. Besides, Kişi (2018) has studied canal surfaces in E4 under parallel transport frame vectors, exploring conditions
for flatness, minimality, linear Weingarten conditions, and providing normal vectors [27]. The research done by Bulca (2012)
offers characterizations of surfaces in E4 based on the coefficients of the first and second fundamental forms [28]. Additionally,
Yağbasan et al. (2023) have determined as some algebraic invariants of the parametrization of the tube surfaces according to the
Frenet frame in E4 [36, 37].

In this study, firstly, basic definitions and theorems about q-frame and tube surface are mentioned. Then, the parametrization
of directional tube surfaces is given in Euclidean 4-space. Then, the normals of the directional tube surfaces are established
respectively. Furthermore, Gaussian curvature K and mean curvature H of the directional tube surfaces are given. Subsequently,
this study has been made more understandable with an example of directional tube surfaces in E4. The figures of these
directional tube surfaces are presented in projection spaces.

2. Preliminaries
A canal surface is defined as an envelope of a non-parameter set of spheres, centered at a spine curve α (t) with radius r (t) .
The canal surface is parametrized by

C(t,v) = α(t)+ r(t)
(√

(1− r′(t))2 cosvN(t)+
√
(1− r′(t))2 sinvB(t)−r′(t)T(t)

)
,

where {T,N,B} is the Frenet frame of the spine curve α (t) [1]. The tube surface, a special case taken at a constant distance r
from the canal surface, with Frenet frame can be parametrized as

ψ(t,v) = α(t)+ r cosvN(t)+ r sinvB(t).

A tube surface can often be parameterized by using the Frenet frame of a space curve [15]. However, various alternative
methods such as by using the Bishop frame, the Darboux frame, the q-frame etc. have been proposed for computing the tube
surfaces Dede et al. [14] introduced the directional q-frame

{
T,Nq,Bq,k

}
of a regular curve α(t) as follows

T =
α ′

∥α ′∥ , Nq =
T∧k
∥T∧k∥

, Bq = T∧Nq,

where k is the projection vector. In Euclidean 3-space; the q-frame and Frenet frame vectors are shown in Fig. 1.
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Fig. 1. The quasi frame and Frenet frame

The variation equations of the directional q-frame is given by T′

N′
q

B′
q

=
∥∥α

′∥∥ 0 k1 k2
−k1 0 k3
−k2 −k3 0

 T
Nq
Bq

 ,
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where the q-curvatures are expressed as follows

k1 =

〈
T′,Nq

〉
∥α ′∥ ,k2 =

〈
T′,Bq

〉
∥α ′∥ ,k3 =−

〈
Nq,B′

q
〉

∥α ′∥ .

Let X = (x1,x2,x3,x4), Y = (y1,y2,y3,y4) and Z = (z1,z2,z3,z4) be three vectors in E4. The inner product of the two vectors
X and Y is defined as < X,Y >= x1y1 + x2y2 + x3y3 + x4y4. The norm of the vector X ∈ E4 is given by ||X||=

√
< X,X >.

The vector product of the three vectors X,Y and Z is given by the determinant as follows

X×Y×Z =

∣∣∣∣∣∣∣∣
e1 e2 e3 e4
x1 x2 x3 x4
y1 y2 y3 y4
z1 z2 z3 z4

∣∣∣∣∣∣∣∣ ,
where e1 × e2 × e3 = e4, e2 × e3 × e4 = e1, e3 × e4 × e1 = e2 and e3 × e2 × e1 =− e4 [19, 20] .

Let α(t) = α : I ⊂R→ E4 be any space curve in E4. The curve is said to be parameterized by arc length s if < α ′,α ′ >= 1.
Let {T,N,B1,B2} be a Frenet frame where T,N,B1 and B2 are called the tangent, normal, first and second binormal vector
fields, respectively. The Frenet formulas of a unit speed curve α(t) is written as

T′

N′

B′
1

B′
2

=


0 κ 0 0
−κ 0 τ 0
0 −τ 0 η

0 0 −η 0




T
N
B1
B2

 ,

where the functions

κ =< T′,N >,τ =< N′,B1 >,η =< B′
1,B2 >

are called the first, second and third curvatures, respectively [18]. The tube surface with respect to the Frenet frame in E4 is
parametrized as follows [28]:

ψ(t,v) = α(t)+ r(B1(t)cosv+B2(t)sinv).

Let α = α(s) be a space curve with according to the quasi-frame {T,Nq,Bq,Cq} is introduced by Gezer and Ekici (2023)
where T is the unit tangent vector field, Nq is the quasi-normal vector field, Bq and Cq are the first and second quasi-binormal
vector fields respectively in E4 [17]. The q-frame is given by

T =
α ′(s)
∥α ′(s)∥

, Nq =
T∧kx ∧ky∥∥T∧kx ∧ky

∥∥ ,
Bq = Cq ∧T∧Nq, Cq =

α ′(s)∧Nq (s)∧α
′′′
(s)∥∥α ′(s)∧Nq (s)∧α

′′′
(s)

∥∥ ,
where kx = (1,0,0,0) and ky = (0,1,0,0) are the projection vectors [17, 20].

Let α(s) be a curve that is parameterized by arc length s. The variation equations of the quasi-frame are given as [17]
T′

N′
q

B′
q

C′
q

=


0 k1 k2 0

−k1 0 k3 0
−k2 −k3 0 k4

0 0 −k4 0




T
Nq
Bq
Cq

 ,

where q-curvatures are
k1 =

〈
T′,Nq

〉
∥α ′∥ , k2 =

〈
T′,Bq

〉
∥α ′∥ ,

k3 =

〈
N′

q,Bq
〉

∥α ′∥ , k4 =

〈
B′

q,Cq
〉

∥α ′∥ .

A point lies on a circle of radius r normal to the generating curve at a point s, with its center at point α(s) from the curve.
Denote by

{
T,Nq,Bq,k

}
the q-frame moving along the unit velocity curve α(s). Suppose a vector ρ and an angle θ are
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denoted respectively by the vector connecting the point from the curve to the point from the surface and the vector Nq(s) to the
vector ρ lying in the plane normal to the surface. A parameterization of the tube surface

ψ(s,θ) = α(s)+ rNq(s)cosθ + rBq(s)sinθ (1)

is obtained by [15].
Let M be a regular surface given with the parameterization ψ(u,v) in E4 such that where ψ : U ⊂ E2 → E4. The tangent

space of M at an arbitrary point is spanned by the vectors ψu and ψv. The first fundamental form I of the surface M are,
respectively, given by

I = Edu2 +2Fdudv+Gdv2,

where the equations

E =< ψu,ψu >, F =< ψu,ψv > and G =< ψv,ψv > (2)

are the coefficients of the first fundamental form, <,> is the inner product and ∧ is the vector product [23, 35].
Let ψuu,ψuv,ψvv be the second order partial derivatives and let U1,U2, ...,Un−2 be the normal vector fields of M such that

the second fundamental form coefficients of M are

Lk =< ψuu,Uk >, Mk =< ψuv,Uk > and Nk =< ψvv,Uk >, 1 ≤ k ≤ n−2. (3)

Let M ⊂ En be a surface defined by the regular patch ψ(u,v) : (u,v) ∈ D ⊂ R2. Then, Gaussian curvature function of the
surface M is defined by

K =
1

W 2

n−2

∑
k=1

(LkNk − (Mk)
2), (4)

where W 2 = EG−F2 [26, 28, 35, 38].
Let M ⊂ En be a surface defined by the regular patch ψ(u,v) : (u,v) ∈ D ⊂R2. In this case, for every {X1,X2} ∈ χ(M) and

orthonormal bases {U1, U2, ...,Un−2}, the mean curvature vector field of the surface M is given by

−→
H =

1
W 2

n−2

∑
i=1

HiUi,

where W 2 = EG−F2 and function

Hi =
1

W 2

n−2

∑
k=1

(GLk −2FMk +ENk) (5)

is the i-th mean curvature function of M. Additionally, the mean curvature function of M is H = ||−→H || [26, 28, 35, 38].
Let M ⊂ En be a surface defined by the regular patch ψ : U ⊂ R2 → En. Thus the vectors X1 and X2 being an orthonormal

base of Tp(M) are defined by
X1 =

ψu
||ψu||

,

X2 =

√
E

W

(
ψu−< ψv,ψu >

ψu
||ψu||2

)
,

where W 2 = EG−F2 [28].

3. Directional tube surfaces in E4

Let M ⊂ E4 be tube surface with respect to the q-frame {T,Nq,Bq,Cq} and r ∈ R moving along the unit velocity curve α(t) in
E4. Let the center curve α(t) be on the directional tube surface ψ and let the angle between the vector Bq(s) and the vector ρ

that lies in the normal plane be denoted by v. Then, we have

ρ = r(cosvBq + sinvCq). (6)

From (6), we see that a parameterization of directional tube surface at a distance r with the q-frame can be introduced as

ψ(t,v) = α(t)+ r(cosvBq + sinvCq).
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Theorem 1. For the directional tube surface at a distance r from the spin curve α(t) with respect to the q-frame {T,Nq,Bq,Cq}
and parametrization ψ(t,v), the first and second unit normal vectors U1 and U2 are given as, respectively,

U1 =
rk3 cosvT+(1− rk2 cosv)Nq + cosvBq + sinvCq√

(1− rk2 cosv)2 +1+ r2k2
3 cos2 v

and

U2 =

√
(1− rk2 cosv)2 + r2k2

3 cos2 v√
(1− rk2 cosv)2 + r2k2

3 cos2 v+1

[
rk3 cosvT

(1− rk2 cosv)2 + r2k2
3 cos2 v

+
(1− rk2 cosv)Nq

(1− rk2 cosv)2 + r2k2
3 cos2 v

−cosvBq − sinvCq

]
.

Proof. Let the parametrization of the general equation of the directional tube surface be given as the following equation

ψ(t,v) = α(t)+ r(cosvBq + sinvCq). (7)

The first partial derivatives of the equation (7), with respect to s and v, are determined respectively as

ψ t = (1− rk2 cosv)T− rk3 cosvNq − rk4 sinvBq + rk4 cosvCq (8)

and

ψv = r(−sinvBq + cosvCq). (9)

For the first and second unit normal vectors U1 and U2 of the directional tube surface, the following equations must be satisfied

 < ψ t ,U1 >= 0, < ψ t ,U2 >= 0,
< ψv,U1 >= 0, < ψv,U2 >= 0,
< U1,U1 >= 1, < U2,U2 >= 1, < U1,U2 >= 0.

(10)

Assuming that the equation of the vector U1 is given as

U1 =
a1T+a2Nq +a3Bq +a4Cq√

a2
1 +a2

2 +a2
3 +a2

4

. (11)

If equations (8), (9), (10) and (11) are used with the coefficients a3 = cosv and a1 = rk3 cosv, the coefficients a4 = sinv and
a2 = 1− rk2 cosv are obtained. Therefore, the first normal vector U1 is seen to be as

U1 =
rk3 cosvT+(1− rk2 cosv)Nq + cosvBq + sinvCq√

(1− rk2 cosv)2 +1+ r2k2
3 cos2 v

.

Hence, it is easy to clear that the first unit normal vector U1 satisfies the equations < ψ t ,U1 >= 0, < ψv,U1 >= 0 and
< U1,U1 >= 1.

For the second unit normal vector, let the vector Y be taken as

Y =
b1T+b2Nq +b3Bq +b4Cq√

b2
1 +b2

2 +b2
3 +b2

4

. (12)

By considering the coefficients b3 = 0 and b1 = rk3 cosv, we derive the coefficients b4 = 0 and b2 = (1− rk2 cosv). Then,
expressed in (12), the coefficients give the vector

Y =
rk3 cosvT+(1− rk2 cosv)Nq√
(1− rk2 cosv)2 + r2k2

3 cos2 v
.
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So, it is easily seen that the first normal vector U1 satisfies the equations < ψ t ,Y >= 0, < ψv,Y >= 0 and < U1,Y ≯= 1. As
the vectors U1 and Y are linearly independent, a second unit normal vector U2 orthogonal to the vector U1 is represented using
the Gram-Schmidt method as follows

U2 =

√
(1− rk2 cosv)2 + r2k2

3 cos2 v√
(1− rk2 cosv)2 + r2k2

3 cos2 v+1

[
rk3 cosvT

(1− rk2 cosv)2 + r2k2
3 cos2 v

+
(1− rk2 cosv)Nq

(1− rk2 cosv)2 + r2k2
3 cos2 v

−cosvBq − sinvCq

]
.

Consequently, it is clearly seen that the first and second normal vectors U1 and U2 satisfy equation (10). ■

Theorem 2. For the directional tube surface at a distance r from the spin curve α(t) with respect to the q-frame {T,Nq,Bq,Cq}
and parametrization ψ(t,v) in E4,

i) Gaussian curvatures according to the first and second normal vectors U1 and U2 are respectively as follows:

K1 =
1

2r−6r2k2 cosv+ r3 cos2 v(7k2
2 +3k2

3)− r4(k2
2 + k2

3)cos3 v(4k2 − r cosv(k2
2 + k2

3))
[−k1 + rk3k4 sinv

+r cos2 v(rk′2k3 − rk2k′3 − rk1k2
3 +2k2

3 − rk1k2
2)− rk2

3 + cosv(2rk1k2 + rk2
2 − k2 + rk′3)]

(13)

and

K2 =
(r2(1− rk2 cosv)2 + r4 cos2 vk2

3)
−1

2−6rk2 cosv+ r2 cos2 v(7k2
2 +3k2

3)−4r3k2 cos3 v(k2
2 + k2

3)+ r2(k2
2 cos2 v+ k2

3 cos2 v)2 [r
2k2k3k4 sin2v

+r3 cos3 v(2k2k′2k3 −4k1k2k2
3 − k2

3k′3 −4k1k3
2 −3k2

2k′3)+ r5 cos6 v(k6
2 + k6

3 +3k4
2k2

3 +3k2
2k4

3)− rk2
3

−r3k3k4 cos2 vsinv(k2
2 + k2

3)− cosv(k2 + rk′3 +4rk1k2)− r2k2 cos3 v(10k2
2 −6k2

3)− rk3k4 sinv+ k1

+r3 cos4 v(10k4
2 +12k2

2k2
3 +2k4

3)+ r2 cos2 v(6k1k2
2 +3k2k′3 − k′2k3 +2k1k2

3)+ r cos2 v(5k2
2 +2k2

3)

−5r4 cos5 v(k5
2 −2k3

2k2
3 − k2k4

3)+ r4 cos4 v(k3
2k′3 − k2

2k′2k3 +2k1k2
2k2

3 + k2k2
3k′3 − k′2k3

3 + k1k4
3 + k1k4

2)].

(14)

ii) The mean curvatures according to the first and second normal vectors U1 and U2 are respectively as follows:

H1 =
((1− r cosv)2 + r2k2

3 cos2 v)−1√
1+ r2k2

3 cos2 v+(1− rk2 cosv)2

[
2r2k1k2 − r2k3k4 sinv+ rk1 − r2k′3 cosv−2r2 cos2 v(k2

2 + k2
3)

−1+3rk2 cosv+ r3 cos2 v(k1k2
2 − k′2k3 + k1k2

3 + k2k′3)
] (15)

and

H2 =
r((1− rk2 cosv)2 + r2k2

3 cos2 v)3/2√
(1− rk2 cosv)2 + r2k2

3 cos2 v+1

[
1+ rk1 −5rk2 cosv+2r4(k2

2 cos2 v+ k2
3 cos2 v)2 −2r2k1k2 cosv (16)

−r2k′3 cosv+ r2 cos2 v(3k2
3+9k2

2 − rk′2k3 + rk1k2
3 + rk1k2

2 + rk2k′3)−7r3k2 cos3 v(k2
2 + k2

3)− r2k3k4 sinv
]
.

Proof. Let ψ(t,v) be parametrized the directional tube surface in Euclidean 4-space. Substituting equations (8) and (9) into
equation (2), the components of the first fundamental form of directional tube surface are get as

E = (1− rk2 cosv)2 + r2k2
3 cos2 v+ r2k2

4,
F = r2k4,
G = r2,

(17)

where W 2 = EG−F2 = r2(1− rk2 cosv)2 + r4k2
3 cos2 v.
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The second partial derivatives of the equation (7), with respect to s and v, are obtained as respectively as


ψ tt = (−rk′2 cosv+ rk2k4 sinv+ rk1k3 cosv)T+(k1 − rk1k2 cosv−rk′3 + rk3k4 sinv)Nq

+(k2 − rk2
2 − rk2

3 cosv− rk2
4)Bq +(rk′4 cosv− rk2

4 sinv)Cq,
ψ tv = rk2 sinvT+ rk3 sinvNq − rk4 cosv,Bq − rk4 sinvCq,

ψvv = r(−cosvBq − sinvCq).

(18)

From equation (3) and (18), the components of the second fundamental form according to the normal vectors U1 and U2 are
respectively determined as



L1 =
1√

1+ r2k2
3 cos2 v+(1− rk2 cosv)2

[rk3k4 sinv+ k1 − rk2
4 + cosv(k2 −2rk1k2 − rk′3)− r2k′2k3)

+cos2 v(r2k1k2
3 − rk2

2 − rk2
3 + r2k1k2

2 + r2k2k′3],

M1 =
rk3 sinv− rk4√

1+ r2k2
3 cos2 v+(1− rk2 cosv)2

,

N1 = − r√
1+ r2k2

3 cos2 v+(1− rk2 cosv)2

(19)

and



L2 =
((1− rk2 cosv)2 + r2k2

3 cos2 v)−1/2√
(1− rk2 cosv)2 + r2k2

3 cos2 v+1
[rk2

4 + rk3k4 sinv+ k1 − k2 cosv+ r3 cos4 v(k4
2 + k4

3 +2k2
2k2

3)

+r cos2 v(3k2
2 + k2

3 + r(k1k2
3 + k1k2

2 + k2
2(

k3

k2
)′)+ r2k2

4(k
2
2 + k2

3))− r cosv(2k1k2 + k′3 +2rk2k2
4)

−3r2k2 cos3 v(k2
2 + k2

3)],

M2 =
rk3 sinv+ rk4 −2r2k2k4 cosv+ r3k4 cos2 v(k2

2 + k2
3)√

(1− rk2 cosv)2 + r2k2
3 cos2 v

√
(1− rk2 cosv)2 + r2k2

3 cos2 v+1
,

N2 =
r
√

(1− rk2 cosv)2 + r2k2
3 cos2 v√

(1− rk2 cosv)2 + r2k2
3 cos2 v+1

,

(20)

respectively. In addition, using equations (17), (19), (20) and (4), the Gaussian curvatures of the directional tube surfaces with
respect to the normal vectors U1 and U2 are determined as presented in equations (13) and (14), respectively. Similarly, using
the same steps by substituting equations (17), (19) and (20) in equation (5), the mean curvatures with respect to the first and
second normal vectors U1 and U2 are obtained as equations (15) and (16), respectively. ■

Theorem 3. For the directional tube surface at a distance r from the spin curve α(t) with respect to the q-frame {T,Nq,Bq,Cq}
and parametrization ψ(t,v) in E4, the Gaussian and mean curvatures are presented as

K =
r cos2 v(2k2

3 +3k2
2)+ r3 cos4 v(k2

2 + k2
3)

2 − rk2
3 −3r2k2 cos3 v(k2

2 + k2
3)− k2 cosv

r−4r2k2 cosv(1+ cos2 v(k2
2 + k2

3))+2r3 cos2 v(k2
3 +3k2

2)+ r5 cos4 v(k2
2 + k2

3)
2 (21)

and
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H =
1

r2(1− rk2 cosv)2 + r4k2
3 cos2 v

 r2√
(1− r cosv)2 + r2k2

3 cos2 v+1

[
rk3k4 sinv+ k1 − rk2

4 (22)

−r cos2 v(k2
2 + k2

3)+ r2 cos2 v(k1(k2
3 + k2

2)− k′2k3 + k2k′3)+ cosv(k2 − rk′3 −2rk1k2)]

−
((1− r cosv)2 + r2k2

3 cos2 v)−1/2√
(1− r cosv)2 + r2k2

3 cos2 v+1
[2r3k3k4 sinv+2r3k2

4 −4r4k2k2
4 cosv+2r5k2

4 cos2 v(k2
2 + k2

3)]

+
((1− r cosv)2 + r2k2

3 cos2 v)−1/2√
(1− r cosv)2 + r2k2

3 cos2 v+1
[r2k1 + r3k2

4 −3r3k2 cos3 v(k2
3 + k2

2)+ r4(k2
2 cos2 v+ k2

3 cos2 v)2

+r4k2
4 cos2 v(k2

2 + k2
3)− r3 cosv(2k2k2

4 +2k1k2 + k′3)+ r3 cos2 v(3k2
2 + k2

3 + k1(k2
3 + k2

2)+ k2k′3
−k′2k3)+ r3k3k4 sinv− r2k2 cosv]

+
r
√
(1− r cosv)2 + r2k2

3 cos2 v((1− rk2 cosv)2 + r2 cos2 vk2
3 + r2k2

4))√
(1− r cosv)2 + r2k2

3 cos2 v+1

+
r3k2

4 −2r3k4k3 sinv− r3k2
3 cos2 v− r(1− rk2 cosv)2√

(1− r cosv)2 + r2k2
3 cos2 v+1

 ,

respectively.

Proof. Substituting equations (13), (14), (15) and (16) into equation (4) and (5), it can be easily seen that the Gaussian and
mean curvatures of the directional tube surface in E4 are as in equations (21) and (22), respectively.

■

4. Example
In this section, we give an example of directional tube surface in Euclidean 4-space.

Example 4. Let us consider a curve parameterized by

α(s) =
(

cos
s√
5
−2,1+ sin

s√
5
,cos

2s√
5
,sin

2s√
5
−3

)
with respect to the Frenet vectors

T =

(
− 1√

5
sin

s√
5
,

1√
5

cos
s√
5
,− 2√

5
sin

2s√
5
,

2√
5

cos
2s√

5

)
,

N =

(
− 1√

17
cos

s√
5
,− 1√

17
sin

s√
5
,− 4√

17
cos

2s√
5
,− 4√

17
sin

2s√
5

)
,

B2 =

(
− 4√

17
cos

s√
5
,− 4√

17
sin

s√
5
,

1√
17

cos
2s√

5
,

1√
17

sin
2s√

5

)
,

B1 =

(
2√
5

sin
s√
5
,− 2√

5
cos

s√
5
,− 1√

5
sin

2s√
5
,

1√
5

cos
2s√

5

)
,

where the curvatures are κ(s) =
17

5
√

17
, τ(s) =− 6

5
√

17
and η(s) =− 2√

17
. From equation (1), for r = 2 the tube surface in

E4 is parametrized as

ψ(s,v) =

(
cos

s√
5
−2+

4√
5

cosvcos
s√
5
− 8√

17
sinvcos

s√
5
,1+ sin

s√
5
− 4√

5
cosvcos

s√
5
− 8√

17
sinvsin

s√
5
,

cos
2s√

5
− 2√

5
cosvsin

2s√
5
+

2√
17

sinvcos
2s√

5
,sin

2s√
5
−3+

2√
5

cosvsin
2s√

5
+

2√
17

sinvsin
2s√

5

)
.
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Finally for r = 2, the tube surfaces with respect to the Frenet frame are shown in Fig. 2.(a) and Fig. 2.(b) in projection spaces
xyz and xyt, respectively.

Fig. 2. (a) Tube surface in space xyz (b) Tube surface in space xyt

Similarly, in Fig. 3.(a) and Fig. 3.(b), these tube surfaces are shown in projection space xzt and yzt, respectively.

Fig. 3. (a) Tube surface in space xzt (b) Tube surface in space yzt

Instead, when considering calculations for directional tube surfaces, the q-frame vectors can be determined as

T =

(
− 1√

5
sin

s√
5
,

1√
5

cos
s√
5
,− 2√

5
sin

2s√
5
,

2√
5

cos
2s√

5

)
,

Nq =

(
0,0,−cos

2s√
5
,−sin

2s√
5

)
,

Bq =

(
cos

s√
5
,sin

s√
5
,0,0

)
,

Cq =

(
2√
5

sin
s√
5
,− 2√

5
cos

s√
5
,− 1√

5
sin

2s√
5
,

1√
5

cos
2s√

5

)
,

where q-curvatures are k1(s) =
4
5

, k2(s) =−1
5

, k3(s) = 0 and k4(s) =−2
5
. If we calculate for the q-frame, the directional tube

surface in E4 from equation (7) is parametrized as follows

ψ(s,v) =

(
cos

s√
5
−2+ r(cosvcos

s√
5
+

2
5

sinvsin
s√
5
),1+ sin

s√
5
+ r(cosvsin

s√
5
− 2

5
sinvcos

s√
5
),

cos
2s√

5
− 1

5
r sinvsin

2s√
5
,sin

2s√
5
−3+

1
5

r sinvcos
2s√

5

)
.
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Here, for r = 2 it is clearly seen as

ψ(s,v) =

(
cos

s√
5
−2+2cosvcos

s√
5
+

4
5

sinvsin
s√
5
,1+ sin

s√
5
+2cosvsin

s√
5
− 4

5
sinvcos

s√
5
,

cos
2s√

5
− 2

5
sinvsin

2s√
5
,sin

2s√
5
−3+

2
5

sinvcos
2s√

5

)
.

Then for r = 2, the first and second normal vectors U1 and U2 of the directional tube surface are respectively given as

U1 =
1√

1+(1+
2
5

cosv)2

(
0,1+

2
5

cosv,cosv,sinv
)

and

U2 =
1√

1+(1+
2
5

cosv)2

(
0,1,−cosv(1+

2
5

cosv),−sinv(1+
2
5

cosv)
)
.

In addition, for r = 2, the Gaussian and mean curvatures with the first and second normal vectors U1 and U2 of the directional
tube surface are respectively computed as

K1 =− 5(3cosv+20)
4(4cos3 v+30cos2 v+100cosv+125)

, H1 =− 4cosv−15
2(2cosv+5)

√
50+20cosv+4cos2 v

and

K2 =
2cos2 v+5cosv+20

4(25+10cosv+2cos2 v)
, H2 =

8cos2 v+30cosv+65
2(2cosv+5)

√
50+20cosv+4cos2 v

.

From (4) and (5), for r = 2 the Gaussian and mean curvatures of the directional tube surface are respectively determined as

K =
cosv

2(5+2cosv)
, H =

25
8

√
16cos2 v+40cosv+89

(2cosv+5)(25+20cosv+4cos2 v)
.

Finally, the directional tube surfaces shown in Fig. 4. (a) and Fig. 4. (b) are parametrized as

ψ1(s,v) =
(

cos
s√
5
−2+2cosvcos

s√
5
+

4
5

sinvsin
s√
5
,1+sin

s√
5
+2cosvsin

s√
5
− 4

5
sinvcos

s√
5
,cos

2s√
5
− 2

5
sinvsin

2s√
5

)
,

ψ2(s,v) =
(

cos
s√
5
−2+2cosvcos

s√
5
+

4
5

sinvsin
s√
5
,1+sin

s√
5
+2cosvsin

s√
5
− 4

5
sinvcos

s√
5
,sin

2s√
5
−3+

2
5

sinvcos
2s√

5

)

for r = 2 in projection spaces xyz and xyt, respectively.

Fig. 4. (a) Directional tube surface in space xyz (b) Directional tube surface in space xyt
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Likewise, the directional tube surfaces shown in Fig. 5. (a) and Fig. 5. (b) are parametrized as

ψ3(s,v) =
(

cos
s√
5
−2+2cosvcos

s√
5
+

4
5

sinvsin
s√
5
,cos

2s√
5
− 2

5
sinvsin

2s√
5
,sin

2s√
5
−3+

2
5

sinvcos
2s√

5

)
,

ψ4(s,v) =
(

1+ sin
s√
5
+2cosvsin

s√
5
− 4

5
sinvcos

s√
5
,cos

2s√
5
− 2

5
sinvsin

2s√
5
,sin

2s√
5
−3+

2
5

sinvcos
2s√

5

)
for r = 2 in projection spaces xzt and yzt, respectively.

Fig. 5. (a) Directional tube surface in space xzt (b) Directional tube surface in space yzt

All the figures in this study were created by using maple programme.

5. Conclusions
In this study, the tube surface was parametrized using the q-frame. Additionally, tube surfaces parametrized with the q-frame
are called directional tube surfaces. Parametrizing with the q-frame offers advantages over the Frenet frame in terms of avoiding
singularity and unnecessary torsion. A directional tube surface is formed by joining an infinite number of circles drawn on
planes generated by the q-frame vector fields of the centre curve, where the radius remains constant. The centres of these circles
are oriented along the centre curve of the directional tube surface.

After introducing directional tube surfaces in Euclidean 4-space, unit normal vectors, fundamental form coefficients,
Gaussian, and mean curvatures are computed. Finally, an example is provided by taking a center curve in Euclidean 4-space.
First, a general equation for tube surface is formulated and drawn using the Frenet frame. Subsequently, the directional tube
surface is parametrized with respect to the q-frame, and the normal vectors, Gaussian and mean curvatures of the directional
tube surface are calculated. Finally, the Gaussian and mean curvatures are determined using coefficients of the fundamental
form and the directional tube surface is represented in projection spaces.
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[28] Bulca, B., Arslan, K., Bayram, B., & Öztürk, G. (2017). Canal surfaces in 4-dimensional Euclidean space. An International
Journal of Optimization and Control: Theories & Applications, 7(1), 83-89.

[29] Kaymanlı G. U., Ekici, C., & Dede, M. (2018). Directional canal surfaces in E3. 5th International Symposium on
Multidisciplinary Studies (p.90-107).

29 Vol. 5, No. 2, 18-30, 2023



[30] Kim, Y. H., Liu, H., & Qian, J. (2016). Some characterizations of canal surfaces. Bulletin of the Korean Mathematical
Society, 53(2), 461-477.
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