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ABSTRACT

Consider TM as the tangent bundle of a (pseudo-)Riemannian manifold M , equipped with
a Ricci quarter-symmetric metric connection ∇. This research article aims to accomplish two
primary objectives. Firstly, the paper undertakes the classification of specific types of vector fields,
including incompressible vector fields, harmonic vector fields, concurrent vector fields, conformal
vector fields, projective vector fields, and φ̃(Ric) vector fields within the framework of ∇ on TṀ .
Secondly, the paper establishes the necessary and sufficient conditions for the tangent bundle TM
to become as a Riemannian soliton and a generalized Ricci-Yamabe soliton with regard to the
connection ∇.
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1. Introduction

Following the introduction of the concept of a semi-symmetric linear connection on a differentiable manifold
by Friedmann and Schouten in [2], Yano [15] extended this notion to the realm of Riemannian manifolds by
introducing what is known as a semi-symmetric metric connection, abbreviated as SSMC. Yano’s inspiration
for this extension stemmed from Hayden’s work on torsional metric connections, as documented in [8]. Yano’s
contribution includes the proof that for a Riemannian manifold to possess a semi-symmetric metric connection
with a vanishing curvature tensor, it is necessary and sufficient that the manifold be conformally flat.

Subsequently, Golab introduced the concept of a quarter-symmetric connection on differentiable manifolds
in [5]. However, the most comprehensive form of quarter-symmetric metric connections on Riemannian,
Hermitian, and Kaehlerian manifolds was presented by Yano and Imai [17]. A linear connection is classified as
a quarter-symmetric connection if the torsion tensor T of any connection takes on the specific form:

T (ξ1, ξ2) = u(ξ2)ϕξ1 − u(ξ1)ϕξ2. (1.1)

Here, u represents a non-zero 1-form, ϕ stands for a (1, 1)− tensor, and ξi (i = 1, 2) denote vector fields. Notably,
when the tensor ϕ coincides with the identity tensor (ϕ = id), the quarter-symmetric connection simplifies to
the semi-symmetric connection. This reveals that the notion of a quarter-symmetric connection serves as a
broader framework encompassing the concept of a semi-symmetric connection. It is evident that a quarter-
symmetric metric connection aligns with Hayden’s connection characterized by the given torsion tensor
(1.1). This implies a connection between these different geometric structures, shedding light on the intricate
relationships among them.
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If we define the tensor ϕ as a (1, 1)-type Ricci tensor, which is specified as:

g(ϕξ1, ξ2) = R(ξ1, ξ2),

where R is the Ricci tensor of a Riemannian manifold, then the resulting connection, which maintains quarter-
symmetry, is referred to as a Ricci quarter-symmetric connection. In the case where a Ricci quarter-symmetric
connection ∇ is established on a Riemannian manifold and satisfies the condition:

(∇ξ1g)(ξ2, ξ3) = 0,

∇ is denoted as a Ricci quarter-symmetric metric connection, often abbreviated as RQSMC and this
characterization holds true for all vector fields ξ1,ξ2,ξ3 on M . The concept of RQSMC was introduced and
extensively studied by Kamilya and De [10]. They also succeeded in identifying the necessary and sufficient
conditions for the symmetry of the Ricci tensor associated with an RQSMC, providing valuable insights into
this geometric structure. Furthermore, the paper [11] derives inequalities for submanifolds in real space forms
with a Ricci quarter-symmetric metric connection. These inequalities establish the interrelation among Ricci
curvature, scalar curvature, and mean curvature under the influence of the Ricci quarter-symmetric metric
connection.

The Poincaré conjecture, a famous unresolved problem in 20th-century mathematics, was first proposed by
Henri Poincaré in the early 1900s. It was based on the idea that a closed, simply connected 3-dimensional
manifold should be isomorphic to a sphere (S3). In the 1970s, William Thurston made significant contributions
to this problem, and in 1982, he introduced the Geometrization Conjecture, a broader hypothesis suggesting
that all 3-dimensional Riemannian manifolds can be classified in a similar manner. The concept of Ricci flow
gained prominence following Grigori Perelman’s proof of the Geometrization Conjecture and Richard Brendle
and Simon Schoen’s proof of the Differentiable Sphere Theorem. Ricci flow is a mathematical process that
transforms the metric (essentially, the shape) of a manifold M into a metric with a constant curvature, often
resembling a sphere, while being proportional to the Ricci tensor. Ricci flow and other geometric flows have
diverse applications across various fields, including topology, geometry, and physics. They have been utilized
in areas such as string theory, thermodynamics, the general theory of relativity and cosmology, quantum field
theory, and the uniformization theorem, among others.

Hamilton introduced the concept of the Yamabe flow to address the Yamabe problem, which aims to find
a metric on a given compact Riemannian manifold that conforms to the original metric g while maintaining
a constant scalar curvature. It’s worth noting that while the Ricci and Yamabe flows are equivalent in two
dimensions, they exhibit fundamental differences in higher dimensions. In higher dimensions, the Yamabe
soliton preserves the conformal class of the metric, whereas the Ricci soliton typically does not. Hamilton’s
work on the Ricci and Yamabe flows inspired further exploration by mathematicians like Udrişte, who delved
into the realm of Riemannian flows. Udrişte extended the concept of the Ricci flow in a natural manner to
create a nonlinear partial differential equation (PDE) that involves the Riemannian curvature tensor. In this
framework, the metric g is interpreted as the solution to this aforementioned PDE. The notion of a Ricci soliton
is substituted with that of a Riemannian soliton in Udrişte’s approach. A Riemannian soliton can be viewed
as a kinematic solution within the context of Riemannian flow, and its profile offers a broader perspective that
encompasses spaces of constant sectional curvature, as described in [19].

The foundation of the concept of the tangent bundle TM is rooted in Sasaki’s seminal paper from 1958, which
holds a foundational role in this field [12]. In this pioneering work, Sasaki constructed a metric, denoted as g̃
on TM by leveraging the Riemannian metric g dinitially defined on a differentiable manifold M . This metric g̃
established on the tangent bundle TM is commonly referred to as the Sasaki metric. Various important metrics
on TM have been devised through classical lifting techniques, all relying on the Riemannian metric g defined
on M . These metrics include:

1. The Sasaki metric (or the metric I + III);
2. The metric II + III ;
3. The complete lift metric (or the metric II);
4. The metric I + II ; where I = gijdx

idxj , II = 2gijdx
iδyj , III = gijδy

iδyj are all quadratic differential forms
defined on TM [18]. These metrics play a pivotal role in the analysis and understanding of tangent bundles
and their geometric properties.

In our research article [4], we introduce an original concept: a RQSMC ∇ on the tangent bundle TM ,
complemented by the complete lift metric Cg, defined over a Riemannian manifold M . In our investigation,
we meticulously compute all curvature tensors associated with ∇ and conduct a comprehensive analysis of
its inherent properties. Furthermore, we define the mean connection stemming from ∇, which contributes to a
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deeper understanding of the connection’s behavior and characteristics. Our investigation extends to the realms
of Ricci and gradient Ricci solitons, which have been subjects of extensive recent research. Within this context,
we establish necessary and sufficient conditions that determine when the tangent bundle TM transforms into
a Ricci soliton or a gradient Ricci soliton with respect to the connection ∇. Finally, our study delves into the
quest for conditions under which the tangent bundle TM achieves local conformal flatness in relation to ∇.
This exploration enhances our grasp of the local geometric properties of the tangent bundle in the context
of the introduced RQSMC and provides valuable insights into the manifold’s behavior under this specific
connection.

The primary objective of this research article is to categorize specific types of vector fields—namely,
incompressible, harmonic, concurrent, conformal, projective, and φ̃(Ric) vector fields based on their behavior
with respect to the connection ∇ defined on the tangent bundle TM . Following this classification, our
investigation delves into the establishment of conditions that govern vector fields Ṽ on TM , rendering
them compatible with the structure (Cg, Ṽ , λ), where Cg represents the complete lift metric and λ denotes a
constant. Specifically, we explore the criteria under which this structure qualifies as a Riemannian soliton and
a generalized Ricci-Yamabe soliton. In essence, our study contributes to a deeper understanding of how various
vector fields interact with the tangent bundle under the influence of the connection ∇ and sheds light on the
conditions under which certain geometric structures, such as solitons, manifest themselves in this context.

2. Preliminaries

Consider an n−dimensional differentiable manifold M . The tangent bundle TM is a construction based
on the assembly of disjoint tangent spaces, each corresponding to distinct points across M . For a given local
coordinate system {U, xh} within M and using Cartesian coordinates (yh) in each tangent space TPM at a point
P ∈ M , established through the natural basis

{
∂

∂xh |P
}

, we can define a local coordinate system in TM denoted
as {π−1(U), xh, yh}. Here, π signifies the natural projection function defined as π : TM 7−→ M and P represents
an arbitrary point belonging to U . Furthermore, the coordinate system (xh, yh) is referred to as the induced
coordinates on π−1(U), originating from the initial coordinate system {U, xh} within M .

Suppose we have a vector field ξ defined within the open subset U of M , and it can be locally expressed
as ξ = ξh ∂

∂xh . Additionally, let ∇ be a torsion-free linear connection on M . In this context, we can respectively
define the vertical lift V ξ, the horizontal lift Hξ and the complete lift Cξ of ξ by [18]

V ξ = ξh∂h,

Hξ = ξh∂h − ysΓh
skξ

k∂h

and
Cξ = ξh∂h + ys∂sξ

h∂h

according to the (xh, yh), where ∂h = ∂
∂xh , ∂h = ∂

∂yh and Γh
jk are the components of the connection ∇.

Suppose that a (p, q) tensor S is given on M by

S = S
j1...jp
li2...iq

∂j1 ⊗ ...⊗ ∂jp ⊗ dxi2 ⊗ ...⊗ dxiq .

Then, we can define a (p, q − 1) tensor γS on TM within π−1(U). The expression for γS is as follows:

γS = (ylS
j1...jp
li2...iq

)∂j1 ⊗ ...⊗ ∂jp ⊗ dxi2 ⊗ ...⊗ dxiq

according to (xi, yi) (for details, see [18]).
To facilitate tensor calculus, an adapted frame denoted as {Eβ} can be constructed over each induced

coordinate neighborhood π−1(U) ⊂ TM . The adapted frame {Eβ} on π−1(U) consists of 2n-dimensional
linearly independent vector fields Ej and Ej , organized as follows:

Ej = ∂j − ysΓh
sj∂h,

Ej = ∂j .
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The adapted frame can also be represented as {Eβ} =
{
Ej , Ej

}
. In the context of this adapted frame {Eβ}, the

vertical lift V ξ, the horizontal lift Hξ and the complete lift Cξ of ξ are respectively expressed by [18]

V ξ = ξjEj , (2.1)
Hξ = ξjEj ,
Cξ = ξjEj + ys∇sξ

jEj .

The complete lift metric Cg on TM over a Riemannian manifold (M, g) takes on the following structure:

Cg
(
Hξ,Hϑ

)
= 0,

Cg
(
Hξ,V ϑ

)
= Cg

(
Vξ,Hϑ

)
= g (ξ, ϑ) ,

Cg
(
Vξ,V ϑ

)
= 0

for all vector fields ξ and ϑ on M [18]. In the adapted local frame on TM , the covariant and contravariant
components of Cg are expressed as follows:

Cgαβ =

(
0 gij
gij 0

)
and

Cgαβ =

(
0 gij

gij 0

)
.

The RQSMC ∇ on TM according to the Cg is given as follows.

Proposition 2.1. [4] Given a tangent bundle TM endowed with the complete lift metric Cg derived from a (pseudo-
)Riemannian manifold (M, g). Then The RQSMC ∇ on TM is defined as follows:

∇Ei
Ej = Γk

ijEk + {ysR k
sij + yjR

k
i − ykRij}Ek,

∇Ei
Ej = Γk

ijEk,

∇Ei
Ej = 0, ∇Ei

Ej = 0

(2.2)

according to the adapted frame {Eβ}, where Γh
ij and R s

hji respectively represent the components of the Riemannian
connection ∇ and the Riemannian curvature tensor field R corresponding to the pseudo-Riemannian metric g on M .

Proposition 2.2. [4] Given a tangent bundle TM endowed with the complete lift metric Cg derived from a (pseudo-
)Riemannian manifold (M, g). The curvature tensor R of the RQSMC ∇ of (TM,C g) is given as follows:

R(Ei, Ej)Ek = R l
ijkEl + {ys∇sR

l
ijk}El, (2.3)

R(Ei, Ej)Ek = R l
ijkEl,

R(Ei, Ej)Ek = {R l
ijk +Rikδ

l
j − gjkR

l
i }El,

R(Ei, Ej)Ek = {R l
ijk + gikR

l
j −Rjkδ

l
i}El,

R(Ei, Ej)Ek = 0, R(Ei, Ej)Ek = 0,

R(Ei, Ej)Ek = 0, R(Ei, Ej)Ek = 0

according to the adapted frame {Eβ}.

Proposition 2.3. [4] Let Kαβ = R
σ

σαβ denote the Ricci tensor of the RQSMC ∇. Then, the tensor K is as follows:

Kjk = (3− n)Rjk, (2.4)
Kjk = 0,

K j k = 0,

Kj k = 0.
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3. Special vector fields on TM in the context of the RQSMC ∇

In this section, our initial focus lies on exploring the harmonic and incompressible properties of the elevated
vector fields. Subsequently, we proceed to deduce the overarching expressions for concurrent, conformal,
projective, and φ̃(Ric) vector fields according to the RQSMC ∇ on TM. Through this analysis, we derive
noteworthy insights concerning these vector fields and their essential characteristics.

3.1. Lifting vector field being incompressible and harmonic

Definition 3.1. Consider TM as the tangent bundle of a (pseudo-)Riemannian manifold M equipped with the
RQSMC ∇. A vector field Ṽ on TM is termed incompressible in accordance with the RQSMC ∇ if it meets the
following criterion:

tr(∇Ṽ ) = ∇αṼ
α = EαṼ

α + Γ
α

αβṼ
β = 0,

where Ṽ is expressed as Ṽ = vhEh + vhEh.

Proposition 3.1. Consider TM as the tangent bundle of a (pseudo-)Riemannian manifold M equipped with the RQSMC
∇. Then, for any vector field V on M the following statements hold:

i) V V is classified as an incompressible vector field in accordance with the RQSMC ∇;
ii) HV or CV qualifies as an incompressible vector field on TM in accordance with the RQSMC ∇ if and only if V

stands as an incompressible vector field on M in accordance with the Riemannian connection ∇.

Proof. By making use (2.1) and (2.2), we achieve the following:

tr(∇ V V ) = ∇α
V V α = ∇hv

h = 0;

tr(∇ HV ) = ∇α
HV α = ∇hv

h

= (∂h − ysΓm
sh∂m) vh + Γ

h

hm vm

= ∇hv
h = tr(∇V );

tr(∇ CV ) = ∇α
CV α = ∇hv

h +∇h vh

= (∂h − ysΓm
sh∂m) vh + Γ

h

hm vm + ∂h
(
ys∇sv

h
)

= 2∇hv
h = 2tr(∇V ),

from which it is easy to see that the results (i) and (ii).

Definition 3.2. Consider TM as the tangent bundle of a (pseudo-)Riemannian manifold M equipped with the
RQSMC ∇. A vector field Ṽ on TM is termed a harmonic vector field according to the RQSMC ∇ if it fulfills
the condition: (

∇iṼ
ϵ
)
g̃ϵj −

(
∇j Ṽ

ϵ
)
g̃ϵi = 0

according to the adapted frame. In here, g̃ij represents the components of the complete lift metric on TM and
Ṽ = vhEh + vhEh.

The following lemma is derived directly from straightforward calculations.

Lemma 3.1. Consider TM as the tangent bundle of a (pseudo-)Riemannian manifold M equipped with the RQSMC ∇.
Then

i) For V V , we obtain (
∇α

V V ϵ
)
g̃ϵβ −

(
∇β

V V ϵ
)
g̃ϵα =

(
∇ivj −∇jvi 0

0 0

)
; (3.1)

ii) For HV , we obtain (
∇α

HV ϵ
)
g̃ϵβ −

(
∇β

HV ϵ
)
g̃ϵα (3.2)

=

(
ys [Rsiaj −Rsjai + gsiRja − gsjRia] v

a ∇ivj
−∇jvi 0

)
;
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iii) For CV , we obtain

(3.3)(
∇α

CV ϵ
)
g̃ϵβ −

(
∇β

CV ϵ
)
g̃ϵα

=

(
ys [∇s (∇ivj −∇jvi) + (Rsiaj −Rsjai + gsiRja − gsjRia) v

a] ∇ivj −∇jvi
∇ivj −∇jvi 0

)
.

Therefore, as a consequence of Lemma 3.1, we arrive at the subsequent result.

Proposition 3.2. Consider TM as the tangent bundle of a (pseudo-)Riemannian manifold M equipped with the RQSMC
∇. Then, for any vector field V on M we establish the followings:

i) V V is a harmonic vector field on TM in accordance with the RQSMC ∇ if and only if V qualifies as a harmonic
vector field in accordance with the Riemannian connection ∇;

ii) CV is a harmonic vector field on TM in accordance with the RQSMC ∇ if and only if V is a harmonic vector field
according to the Riemannian connection ∇ and satisfies the condition Rsiaj −Rsjai + gsiRja − gsjRia = 0;

iii) HV is a harmonic vector field on TM in accordance with the RQSMC ∇ if and only if V is parallel in accordance
with the Riemannian connection ∇ and satisfies the condition Rsiaj −Rsjai + gsiRja − gsjRia = 0.

3.2. Concurrent vector field

Consider a vector field Ṽ = vhEh + vhEh on TM . If vh depend solely on the base manifold’s coordinates(
xh

)
, Ṽ is termed a fiber-preserving vector field on TM .

Definition 3.3. A vector field Ṽ on TM is referred to as a concurrent vector field in accordance with the
RQSMC ∇ if it adheres to the condition:

∇βṼ
ϵ = ∇Eβ

Ṽ ϵ = k̃δϵβ , (3.4)

where k̃ represents a function defined on TM , δϵβ denotes the Kronecker delta symbol and Ṽ is expressed as
Ṽ = vhEh + vhEh.

Proposition 3.3. Consider TM as the tangent bundle of a (pseudo-)Riemannian manifold M equipped with the RQSMC
∇. The vector field Ṽ on TM is identified as a fiber-preserving concurrent vector field in accordance with the RQSMC ∇
if and only if it takes the form:

Ṽ =

(
vh

1
n [tr (∇V )] yh

)
and satisfies the subsequent condition:

1

n

[
∇j (tr (∇V )) yh

]
+
(
ysR h

sja + yaR
h
j − yhRja

)
va = 0.

Proof. Initially, by considering ϵ = h, β = j in (3.4) within the adapted frame, we obtain:

∇jv
h = Ejv

h + Γ
h

jav
a + Γ

h

jav
a = k̃δh

j

⇒ ∂jv
h = 0

⇒ vh = vh
(
xh

)
.

Similarly, when considering ϵ = h, β = j and ϵ = h, β = j, we respectively acquire the following:

∇jv
h = Ejv

h + Γ
h

jav
a + Γ

h

jav
a = k̃δhj

⇒ ∂jv
h + Γh

jav
a = k̃δhj

⇒ ∇jv
h = k̃δhj (h → j)

⇒ 1

n
∇jv

j = k̃
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and

∇jv
h = Ejv

h + Γ
h

jav
a + Γ

h

jav
a = k̃δh

j

⇒ ∂jv
h =

1

n
∇jv

jδh
j

⇒ ∂jv
h =

1

n

[
tr (∇V ) δh

j

]
⇒ ∂jv

h =
1

n

[
tr (∇V )

(
∂jy

h
)]

⇒ ∂jv
h = ∂j

[
1

n
tr (∇V ) yh

]
⇒ vh =

1

n
[tr (∇V )] yh.

Finally, by putting ϵ = h, β = j, we arrive at:

∇jv
h = Ejv

h + Γ
h

jav
a + Γ

h

jav
a = k̃δhj

⇒ Ej

[
1
n [tr (∇V )] yh

]
+
(
ysR h

sja + yaR
h
j − yhRja

)
va

+Γh
ja

[
1
n [tr (∇V )] ya

]
= 0

⇒
(
∂j − ysΓm

sj∂m
) [

1
n [tr (∇V )] yh

]
+
(
ysR h

sja + yaR
h
j − yhRja

)
va + yaΓh

ja

[
1
n [tr (∇V )]

]
= 0

⇒
1
n

[
∂j (tr (∇V )) yh

]
− ysΓh

sj

[
1
n [tr (∇V )]

]
+
(
ysR h

sja + yaR
h
j − yhRja

)
va + yaΓh

ja

[
1
n [tr (∇V )]

]
= 0

⇒ 1

n

[
∂j (tr (∇V )) yh

]
+
(
ysR h

sja + yaR
h
j − yhRja

)
va = 0

⇒ 1

n

[
∇j (tr (∇V )) yh

]
+
(
ysR h

sja + yaR
h
j − yhRja

)
va = 0.

3.3. Conformal vector fields

This section focuses on the study of fiber-preserving conformal vector fields on the tangent bundle TM
over a (pseudo-)Riemannian manifold (M, g) using the the RQSMC ∇. These vector fields are a special class
of transformations defined on a Riemannian manifold (M, g). A conformal transformation is a vector field V
on M such that its local flows ϕt preserve the conformal class of the metric g for every t. Moreover, when the
tangent bundle TM is equipped with a Riemannian metric g, a conformal transformation V of g is considered
fiber-preserving if its local flows also preserve the fibers of TM . This section provides a characterization of
infinitesimal fiber-preserving conformal transformations, often referred to as conformal vector fields, on the
tangent bundle TM . It establishes a necessary and sufficient condition for a vector field V to be an infinitesimal
fiber-preserving conformal transformation concerning the RQSMC ∇. This condition is expressed through a
set of relationships involving specific tensor fields on M with type (1, 0) and (1.1). It’s worth noting that for
fiber-preserving conformal vector fields on TM concerning the complete lift metric Cg and the synectic lift
metric, we can refer to the papers [3] and [13].

Definition 3.4. Consider TM as the tangent bundle of a (pseudo-)Riemannian manifold M equipped with the
RQSMC ∇. A vector field Ṽ = vhEh + vhEh on TM is a fiber-preserving conformal vector field in accordance
with the RQSMC ∇ if it satisfies

LṼ g̃αβ = (∇αṼ
∈)g̃∈β + (∇βṼ

∈)g̃∈α = 2Ω̃g̃αβ . (3.5)

In here, LṼ g̃ is the Lie derivative of the Riemannian metric g̃ according to Ṽ and Ω̃ is a scalar function on TM .
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When we consider the indices (α, β) = (i, j), (i, j) and (i, j) in the previous equation (3.5), the following
relationships can be written:

i)
(
∇iv

h
)
ghj +

(
Ejv

h
)
ghi = 2Ω̃gij ,

ii)
(
Eiv

h
)
ghj +

(
∇jv

h
)
ghi = 2Ω̃gij ,

iii)

[
Eiv

h +
(
ysR h

sia + yaR
h
i − yhRia

)
va + Γ h

ia v
a
]
ghj

+
[
Ejv

h +
(
ysR h

sja + yaR
h
j − yhRja

)
va + Γ h

jav
a
]
ghi

= 0.

(3.6)

Proposition 3.4. The scalar function Ω̃ on TM depends only on the variables
(
xh

)
according to

(
xh, yh

)
.

Proof. Applying the operator Ek to each side of the equation (ii) in (3.6), we arrive at:

ghjEkEiv
h = 2Ek

(
Ω
)
gij .

From this, we deduce:
Ek

(
Ω
)
gij = Ei

(
Ω
)
gkj ,

which further leads to:
(n− 1)Ek

(
Ω
)
= 0.

This conclusion implies that the scalar function Ω̃ on TM is exclusively dependent on the variables
(
xh

)
in

terms of the coordinates
(
xh, yh

)
. As a consequence, we can treat Ω̃ as a function on M . For the sake of clarity,

we will denote Ω̃ by ρ in the subsequent discussions.

Drawing upon equation (3.6), Proposition 3.4, and the observation that Ei

(
vh

)
only depends on the

variables
(
xh

)
, we can express the following:

vh = yaAh
a +Bh, (3.7)

where Ah
a and Bh are certain functions which depend only on the variable

(
xh

)
.

In the context of a (pseudo-)Riemannian manifold (M, g), a vector field V is referred to as a Killing vector
field if it satisfies:

LV gij = ∇ivj +∇jvi = 0.

This condition implies that the Lie derivative of the metric tensor g with respect to the vector field V vanishes,
indicating that V generates an isometry, i.e., it preserves the metric structure of the manifold under its flow.

Proposition 3.5. If we consider

B = Bh ∂

∂xh
,

then the vector field B is a Killing vector field in accordance with the Riemannian connection ∇ on M .

Proof. Substituting (3.7) into the equation (iii) in (3.6) we get

∇iBj +∇jBi = 0 (3.8)

and
va(Rsiaj +Rsjai + gsaRij − gsjRia + gsaRji − gsiRja) +∇iAsj +∇jAsi = 0, (3.9)

where Bi = gimBm and Asj = ghjA
h
s . Hence, by (3.8) it follows

LBgij = ∇iBj +∇jBi = 0.

This demonstrates that the vector field B is a Killing vector field on M according to the Riemannian connection
∇.
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Substituting (3.7) into the equation (ii) in (3.6), we have

Ei

(
vh

)
ghj +

(
∇jv

h
)
ghi = 2ρgij (3.10)

⇒ ∂i
(
ysAh

s +Bh
)
ghj +

(
∇jv

h
)
ghi = 2ρgij

⇒ Ah
i ghj +

(
∇jv

h
)
ghi = 2ρgij

⇒ ghjA
h
i = 2ρgij − ghi

(
∇jv

h
)
.

Given a linear connection ∇ on a manifold M , a vector field V on M is classified as a projective vector field
if there exists a 1-form θ such that for any vector fields X and Y on M , the following condition holds:

(LV ∇)(X,Y ) = θ(X)Y + θ(Y )X.

In this context, θ is referred to as the associated 1-form of V . Locally, it can be expressed as:

LV Γ
h
ij = θiδ

h
j + θjδ

h
i .

Here, Γh
ij represents the Christoffel symbols associated with the connection ∇, and δhi is the Kronecker delta.

Proposition 3.6. The vector field V , represented by its components as
(
vh

)
, is a projective vector field on M in accordance

with the Riemannian connection ∇ if the following equation holds: 2δhaRij −Riaδ
h
j −Rjaδ

h
i = 0.

Proof. Taking the covariant derivative ∇k of both sides of equation (3.10), we obtain

ghj∇kA
h
i = ∇k

[
2ρgij − ghi

(
∇jv

h
)]

(3.11)

= 2 (∇kρ) gij − ghi∇k∇jv
h

= 2ρkgij − ghi
(
LV Γ

h
kj −R h

akjv
a
)

∇kAij = 2ρkgij − LV Γ
h

kjghi −Rakijv
a.

When we substitute equation (3.11) into equation (3.9), we obtain:

va(Rsiaj +Rsjai + gsaRij − gsjRia + gsaRji − gsiRja) +∇iAsj +∇jAsi = 0

⇒ va(Rsiaj +Rsjai + gsaRij − gsjRia + gsaRji − gsiRja)
+2ρigsj − LV Γ

h
ij ghs −Raisjv

a + 2ρjgsi − LV Γ
h

ji ghs −Rajsiv
a = 0

⇒ va (gsaRij − gsjRia + gsaRji − gsiRja) + 2 (ρigsj + ρjgsi) = 2LV Γ
h

ij ghs

⇒ LV Γ
h

ij = ρiδ
h
j + ρjδ

h
i +

1

2
va

(
2δhaRij −Riaδ

h
j −Rjaδ

h
i

)
,

where ρi = ∇iρ. Hence, V is a projective vector field on M in accordance with the Riemannian connection ∇ if
2δhaRij −Riaδ

h
j −Rjaδ

h
i = 0.

Now, let us examine the converse problem. Suppose that the manifold M admits a projective vector field
V = vh ∂

∂xh in accordance with the Riemannian connection ∇. In this context, we can state the following
proposition:

Proposition 3.7. The vector field Ṽ on TM , defined as

Ṽ = vhEh +
(
ysAh

s +Bh
)
Eh

constitutes a fiber-preserving conformal vector field on TM in accordance with the RQSMC ∇, where Ah
i = ghaAai,

Aij = 2ρgij +∇ivj − LV gij , and gjiB
j = Bi, ∇iBj = LBgij −∇jBi.

Proof. Given Bh, v
h and Ah

i that satisfy the conditions outlined above, it is evident that the vector field
Ṽ = vhEh +

(
ysAh

s +Bh
)
Eh qualifies as a fiber-preserving conformal vector field on TM in accordance with

the RQSMC ∇. The detailed calculations supporting this assertion are omitted for brevity.
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3.4. Projective vector fields

In [14], a comprehensive classification of fiber-preserving projective vector fields on TM was presented
based on the complete lift metric Cg by Yamauchi. Additionally, Hasegawa and Yamauchi, [7], provided a
classification of projective vector fields considering the lift connections. In the upcoming section, we will delve
into the examination of fiber-preserving projective vector fields on classified fiber-preserving projective vector
fields on TM according to the RQSMC ∇. To begin, let us introduce the following lemma, which will be
essential for our subsequent analysis:

Lemma 3.2. The Lie derivations of the adapted frame in accordance with the fiber-preserving vector field Ṽ = vhEh +

vhEh are given as follows [13]:

LṼ Eh = −(∂hv
a)Ea +

{
ybvcRa

hcb − vbΓa
bh − (Ehv

a
}
Ea,

LṼ Eh
=

{
vbΓa

bh − (Ehv
a)
}
Ea.

Definition 3.5. Consider TM as the tangent bundle of a (pseudo-)Riemannian manifold M equipped with the
RQSMC ∇. A vector field Ṽ = vhEh + vhEh on TM is a fiber-preserving projective vector field in accordance

with the RQSMC ∇ if and only if there exist a 1-form θ̃ =
(
θ̃i, θ̃i

)
on TM such that(

LṼ ∇
)
(Ỹ , Z̃) = LṼ (∇Ỹ Z̃)−∇Ỹ (LṼ Z̃)−∇(L

Ṽ
Ỹ )Z̃

= θ̃(Ỹ )Z̃ + θ̃(Z̃)Ỹ (3.12)

for any vector fields Ỹ and Z̃ on TM .

In accordance with the RQSMC ∇, the general expression for fiber-preserving projective vector fields on TM
can be stated as follows:

Theorem 3.1. Consider TM as the tangent bundle of a (pseudo-)Riemannian manifold M equipped with the RQSMC
∇. A vector field Ṽ = vhEh + vhEh on TM is a fiber-preserving projective vector field with the associated 1-form θ on
TM in accordance with the RQSMC ∇ if and only if Ṽ takes the form

Ṽ =H V +V B + γA,

where the vector fields V = (vh), B = (Bh), the (1, 1)−tensor field A = (Ah
i ) and 1-form θ satisfy the following

conditions
(i) θ = θidx

i,
(ii) ∇iθj = 0,

(iii) ∇jA
h
i = θjδ

h
i − vcR h

cji,

(iv) R h
aijB

a = BhRij −BjR
h
i ,

(v)LV Γ
h
ij = θiδ

h
j + θjδ

h
i .

Proof. With help of (3.12) , we can write the following system(
LṼ ∇

)
(Ei, Ej) = LṼ (∇Ei

Ej)−∇
E

i
(LṼ Ej)−∇(L

Ṽ
Ei)

Ej (3.13)

= θ̃(Ei)Ej + θ̃(Ej)Ei,

(
LṼ ∇

)
(Ei, Ej) = LṼ (∇Ei

Ej)−∇
E

i
(LṼ Ej)−∇(L

Ṽ
Ei)

Ej (3.14)

= θ̃(Ei)Ej + θ̃(Ej)Ei,(
LṼ ∇

)
(Ei, Ej) = LṼ (∇Ei

Ej)−∇
Ei
(LṼ Ej)−∇(L

Ṽ
Ei)Ej (3.15)

= θ̃(Ei)Ej + θ̃(Ej)Ei.

From (3.13), by virtue of (2.2) and Lemma 3.2 we get{
∂i(∂jv

a
}
Ea = θ̃iEj + θ̃jEi. (3.16)
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Similarly, from (3.14) we obtain{
−vcR a

jci + (Eiv
b)Γa

bj + Ei(Ejv
a)
}
Ea = θ̃iEj + θ̃jEi, (3.17)

from which we have
θ̃i = 0. (3.18)

Due to θ̃i = 0, (3.16) reduces to
∂i(∂jv

a) = 0

and we obtain
va = ysAa

s +Ba, (3.19)

where Aa
s and Ba are certain functions which depend only

(
xh

)
. Hence, the fiber-preserving projective vector

field Ṽ on TM can be expressed as

Ṽ = vhEh + vhEh = vhEh + {ysAa
s +Ba}Eh (3.20)

= HV +V B + γA.

Substituting (3.19) into (3.17), we obtain

R h
aji v

a +∇jA
h
i = δhi θj . (3.21)

Substituting (3.19) and (3.21) into (3.15), we have

{∇i∇jv
h +R h

aijv
a}Eh + {∇i∇jB

h + (3.22)

R h
aijB

a +BjR
h
i −BhRij + ys[∇i∇jA

h
s +Aa

sR
h

aij −R a
sijA

h
a +

va∇aR
h

sij − va∇iR
h

jas +∇jv
aR h

sia +∇iv
aR h

sja

−δhs [v
a∇aRij +∇iv

aRaj +∇jv
aRia] + vagsj∇aR

h
i

+∇jv
agsaR

h
i +∇iv

agsjR
h
a +Aa

sgajR
h
i − gsjR

a
iA

h
a ]}Eh

= θ̃iEj + θ̃jEi.

From (3.22), we have
∇i∇jv

h +R h
aijv

a = θ̃iδ
h
j + θ̃jδ

h
i , (3.23)

∇i∇jB
h +R h

aijB
a +BjR

h
i −BhRij = 0, (3.24)

∇i∇jA
h
s +Aa

sR
h

aij −R a
sijA

h
a + va∇aR

h
sij

−va∇iR
h

jas +∇jv
aR h

sia +∇iv
aR h

sja

−δhsLV Rij + vagsj∇aR
h
i +∇jv

agsaR
h
i

+∇iv
agsjR

h
a +Aa

sgajR
h
i − gsjR

a
iA

h
a = 0.

(3.25)

From the equation (3.23), we can say that the induced vector field V = vh ∂
∂xh denotes a projective vector field

in accordance with the Riemannian connection ∇. By using the relation on the Lie derivative of the curvature
tensor, we get

LV R
h

ijk = ∇i(LvΓjk)−∇j(LvΓik)

LV Rij = −(n− 1)∇iθj . (3.26)

Contracting h and s in (3.25) and using (3.21) and (3.26), we find for n ̸= 2,

∇iθj = 0. (3.27)

This showes θaθ
a = c (constant). By using (3.27) in (3.24), we get

R h
aijB

a = BhRij −BjR
h
i .

Conversely, without prejudice to the above steps, if Bh, vh, θh and Ah
i are taken to satisfy (i)-(vi), we obtain

X̃ =H V +V B + γA is a fiber-preserving projective vector field on TM in accordance with the RQSMC ∇.
Hence, the proof is completed.
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It is a well-established fact that every fiber-preserving vector field Ṽ induces a vector field V on M with
components (vh), where V = (vh, vh) represents the fiber-preserving vector field on TM . The following result
directly emerges from Theorem 3.1 and its proof.

Corollary 3.1. Consider TM as the tangent bundle of a (pseudo-)Riemannian manifold M equipped with the RQSMC
∇. Every fiber-preserving projective vector field Ṽ is of the form (3.20) and it naturally induces a projective vector field
V on M.

If we have Ṽ = (vh, vh) as a vector field on TM according to {Eβ} and vh = 0, Ṽ is referred to as a
vertical vector field on TM . In the present case, the vector field Ṽ in Theorem 3.1 simplifies to Ṽ =V B + γA.
Consequently, based on Theorem 3.1, we can draw the following conclusion.

Corollary 3.2. Consider TM as the tangent bundle of a (pseudo-)Riemannian manifold M equipped with the RQSMC
∇. If TM possesses a vertical projective vector field Ṽ , then the vector field Ṽ can be expressed as:

Ṽ =V B + γA,

where the vector field B =
(
Bh

)
, the (1, 1)-tensor field A =

(
Ah

i

)
and 1-form θ̃ satisfy the following conditions

(i) θ = θidx
i,

(ii) ∇iθj = 0,
(iii)∇jA

h
i = θjδ

h
i ,

(iv) R h
aijB

a = BhRij −BjR
h
i .

3.5. φ̃(Ric) vector fields

The vector field φ, locally represented as φ = φm ∂
∂xm on a Riemannian manifold M , is identified as a φ(Ric)

vector field under the condition:

∇(φ) = λRic,

where λ is a non-zero scalar function,∇ signifies the Riemannian connection associated with the metric g, Ric
represents the Ricci tensor of (M, g) and g(φ, ξ) = φξ. This equation can be expressed locally as:

∇jφi = λRij , (3.28)

where φi = gimφm and Rij is the Ricci tensor [9].

Definition 3.6. A vector field φ̃ = φ̃hEh + φ̃hEh on TM is said to be a φ̃(Ric)-vector field in accordance with
the RQSMC ∇ if it satisfies

∇KφM = λ̃R̃KM ,

where λ̃ is a non-zero scalar function and R̃KM is the Ricci tensor on TM . Here φM = g̃MK φ̃K .

Proposition 3.8. Consider TM as the tangent bundle of a (pseudo-)Riemannian manifold M equipped with the RQSMC
∇. The vector field φ̃ on TM is a fiber-preserving φ̃(Ric)-vector field in accordance with the RQSMC ∇ if and only if φ̃
has the form

φ̃ =

(
φ̃h(xh)

φ̃h(xh)

)
and the following conditions are satisfied

(i)∇iφ̃
h = 0,

(ii)∇iφ̃j = λRij ,

(iii)(R h
sia + gsaR

h
i − δhsRia)φ̃

a = 0.

Proof. By using (2.4) if we take K = i,M = j in (3.28), it follows that

∇iφ̃j = λ̃R̃ij ⇒ ∇i(φ̃
ϵg̃ϵj) = 0

⇒ ∇i(φ̃
hg̃hj) = 0

⇒ (∇iφ̃
h)g̃hj = 0

⇒ (Eiφ̃
h + Γh

ia
φ̃a + Γh

ia
φ̃a)ghj = 0

⇒ (Eiφ̃
h)ghj = 0

⇒ φ̃h = φ̃h(xh).
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Similarly putting K = i,M = j and K = i,M = j, we respectively get

∇iφ̃j = λ̃R̃ij ⇒ ∇i(φ̃
ϵg̃ϵj) = 0

⇒ ∇i(φ̃
hg̃hj) = 0

⇒ (∇iφ̃
h)g̃hj = 0

⇒ (Eiφ̃
h + Γh

ia
φ̃a + Γh

ia
φ̃a)ghj = 0

⇒ (Eiφ̃
h)ghj = 0

⇒ φ̃h = φ̃h(xh)

and

∇iφ̃j = λ̃R̃ij ⇒ ∇i(φ̃
ϵg̃ϵj) = 0

⇒ ∇i(φ̃
hg̃hj) = 0

⇒ (∇iφ̃
h)g̃hj = 0

⇒ (Eiφ̃
h + Γh

iaφ̃
a + Γh

iaφ̃
a)ghj = 0

⇒ (∂iφ̃
h + Γh

iaφ̃
a)ghj = 0

⇒ (∇iφ̃
h)ghj = 0.

Finally putting K = i,M = j, we find

∇iφ̃j = λ̃R̃ij ⇒ ∇i(φ̃
ϵg̃ϵj) = λ̃R̃ij

⇒ ∇i(φ̃
hg̃hj) = λ̃(3− n)Rij

⇒ (∇iφ̃
h)g̃hj = λ̃(3− n)Rij

⇒ (Eiφ̃
h + Γ

h

iaφ̃
a + Γ

h

iaφ̃
a)ghj = λ̃(3− n)Rij

⇒
[
(∂i − ysΓh

si∂h)φ̃
h + (ysRh

sia + yaR
h
i − yhRia)φ̃

a + Γh
iaφ̃

a
]
ghj

= λ̃(3− n)Rij

⇒
[
∂iφ̃

h + Γh
iaφ̃

a + (ysRh
sia + yaR

h
i − yhRia)φ̃

a
]
ghj

= λ̃(3− n)Rij

⇒ (∇iφ̃
h)ghj +

[
ys(R h

sia + gsaR
h
i − δhsRia)φ̃

a
]
ghj

= λ̃(3− n)Rij

⇒ ∇iφ̃j = λ̃(3− n)Rij and ys(R h
sia + gsaR

h
i − δhsRia)φ̃

a = 0

⇒ ∇iφ̃j = λRij .

4. Soliton structures on TM in the context of the RQSMC ∇

4.1. Generalized Ricci-Yamabe soliton structure

The concept of Ricci solitons emerged after Hamilton introduced the Ricci flow in 1982. The Ricci flow is
represented as:

∂

∂t
g(t) = −2Ric(g(t)),

where g is the Riemannian metric, t denotes time, and Ric signifies the Ricci tensor of M . Ricci solitons
correspond to self-similar solutions of the Ricci flow and provide a model for understanding the development
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of singularities in the flow. A smooth vector field V on a Riemannian manifold (M, g) is considered to define a
Ricci soliton if it fulfills:

1

2
LV g +Ric = λg,

where LV g represents the Lie derivative of the metric tensor g with respect to V , Ric is the Ricci tensor of (M, g)
and λ is a constant. The vector field V is termed the potential vector field of the Ricci soliton.

Hamilton introduced the notion of Yamabe flow inspired by Yamabe’s conjecture, which states that a metric
of a complete Riemannian manifold can be conformally related to a metric with constant scalar curvature. The
Yamabe flow takes the form:

∂

∂t
g (t) = −r(t)g(t),

where r(t) denotes the scalar curvature of the metric g(t). This flow is employed to find solutions for the Yamabe
problem. Yamabe solitons are special solutions of the Yamabe flow. A smooth vector field V on a Riemannian
manifold (M, g) defines a Yamabe soliton if it satisfies:

1

2
LV g = (r − λ)g,

where r is the scalar curvature of M . A Yamabe soliton (or Ricci soliton) is categorized as shrinking, steady or
expanding based on whether λ > 0, λ = 0, or λ < 0, respectively.

In recent decades, geometric flows and their associated solitons have captured the attention of numerous
geometers. In 2018, Chen and Deshmukh [1] introduced the concept of quasi-Yamabe solitons, defined on a
Riemannian manifold as follows:

(LV g)(X,Y ) = 2(λ− r)g(X,Y ) + 2ρV #(X)V #(Y ),

where V # is the dual 1−form of V, λ is a constant and ρ is a smooth function.
In 2019, Güler and Crâşmǎreanu [6] introduced a novel geometric flow named the Ricci-Yamabe map on a

Riemannian manifold (M, g). This flow is a combination of the Ricci flow and the Yamabe flow, formulated as:

∂g

∂t
(t) + 2αRic(t) + βr(t)g(t) = 0, (4.1)

where g,Ric, r are the (pseudo-)Riemannian metric, Ricci tensor and scalar curvature, respectively. Also, α and
β are two constants whose signs can be chosen arbitrarily. Depending on the signs of the associated scalars,
the Ricci-Yamabe flow can be Riemannian, semi-Riemannian or singular Riemannian. This variety of options
is very useful in differential geometry and theory of relativity.

Now, we aim to extend these concepts to a more generalized framework as follows:

Definition 4.1. A (pseudo-)Riemannian manifold (M, g) of dimension n > 2 is deemed to admit a generalized
Ricci-Yamabe soliton (g, V, λ, α, β, ρ) if it satisfies the following equation:

LV g + 2αRic = (2λ− βr)g + 2ρV # ⊗ V #, (4.2)

where λ, α, β, ρ ∈ R and V # is the 1-form dual to V . This notion provides a generalization encompassing a
broad class of soliton-like equations. Specifically, a generalized Ricci-Yamabe soliton can be categorized as:

* proper Ricci-Yamabe soliton if ρ = 0 and α ̸= 0, 1;
* Ricci soliton if α = 1, β = ρ = 0;
* Yamabe soliton if α = ρ = 0, β = 2;
* Quasi-Yamabe soliton if α = 0 and β = 2;
* Einstein soliton if α = 1, β = −1 and ρ = 0;
* ϵ−Einstein soliton if α = 1, β = −2ϵ and ρ = 0.

Theorem 4.1. Consider TM as the tangent bundle of a (pseudo-)Riemannian manifold M equipped with the RQSMC
∇. The (Cg, Ṽ , λ, α, β, ρ) is a generalized Ricci-Yamabe soliton if and only if following conditions are satisfying:

i)CV = (va, vā) = (va, ys∇sv
a),

ii) λ = 1
n [∇hv

h − ρ(ys∇svj)v
j ],

iii)Rij = 0,
iv)(∇i∇sv

h +R h
sia va)ghj + (∇j∇sv

h +R h
sja va)ghi = 0,

v)∇svi∇tvj = 0,

where the potential vector field is the complete lift CV of a vector field V on M to the tangent bundle TM .

371 dergipark.org.tr/en/pub/iejg

https://dergipark.org.tr/en/pub/iejg


Classification of Vector Fields and Soliton Structures on a Tangent Bundle with a Ricci Quarter-Symmetric Metric Connection

Proof. To establish the existence of the scalar λ, we start from the definition (4.2) and proceed as follows:

LṼ g̃εδ + 2αR̃
εδ

= (2λ− βr)g̃εδ + 2ρ(V # ⊗ V #)
εδ

(4.3)

If we consider (ε, δ) = (i, j), the previous equation gives

LṼ g̃ij + 2αR̃
ij

= (2λ− βr)g̃
ij
+ 2ρ(V # ⊗ V #)

ij

and from the expression of LṼ g̃ in (3.6) we have(
Eiv

h
)
ghj +

(
∇jv

h
)
ghi = 2λgij + 2ρ(V # ⊗ V #)

ij
, (4.4)

where the potential vector field CV and 1−form dual to CV are written as

CV =

(
vm

vm̄

)
=

(
vm

ys∇sv
m

)
(4.5)

and
V #
j = V I g̃Ij = vig̃ij + vīgīj = vi.0 + ys∇sv

igij = ys∇svj ,

V #
j̄

= V I g̃Ij̄ = vig̃ij̄ + vı̄gı̄j̄ = vi.gij + 0 = vj ,

from which (
V #

)
=

(
ys∇svj

vj

)
. (4.6)

If equations (4.5) and (4.6) are used in (4.4), we get

[Ei(y
s∇sv

h)ghj +
(
∇jv

h
)
ghi = 2λgij + 2ρ(ys∇svj)vi,

which gives
δsi (∇sv

h)ghj +
(
∇jv

h
)
ghi = 2λgij + 2ρ(ys∇svj)vi.

Contracting with gij both sides of the last equation we have

λ =
1

n
[∇hv

h − ρ(ys∇svj)v
j ].

If we consider (ε, δ) = (i, j) in (4.3), we write

LṼ g̃ij + 2αR̃ij = (2λ− βr)g̃
ij
+ 2ρ(V # ⊗ V #)ij .

From (3.6), we have [
Eiv

h +
(
ysR h

sia + yaR
h
i − yhRia

)
va + Γ h

ia v
a
]
ghj

+
[
Ejv

h +
(
ysR h

sja + yaR
h
j − yhRja

)
va + Γ h

jav
a
]
ghi

+2α(3− n)Rij = 2ρ(ys∇svi)(y
t∇tvj)

and it follows [
ys∇i∇sv

h +
(
ysR h

sia + yaR
h
i − yhRia

)
va
]
ghj

+
[
ys∇j∇sv

h +
(
ysR h

sja + yaR
h
j − yhRja

)
va
]
ghi

+2α(3− n)Rij = 2ρysyt(∇svi)(∇tvj),

from which we get
n ̸= 3, Rαδ = 0,

(∇svi)(∇tvj) = 0

and
(∇i∇sv

h +R h
siav

a)ghj + (∇j∇sv
h +R h

sjav
a)ghi = 0.

If we reverse the above calculations, it becomes evident that the sufficiency of the theorem can be readily
demonstrated.

dergipark.org.tr/en/pub/iejg 372

https://dergipark.org.tr/en/pub/iejg


E. Karakas & A. Gezer

Theorem 4.2. Consider TM as the tangent bundle of a (pseudo-)Riemannian manifold M equipped with the RQSMC
∇. (Cg, Ṽ , λ, α, β, ρ) is a generalized Ricci-Yamabe soliton if and only if following conditions are satisfying:

i) V V = (va, vā) = (0, va),
ii) λ = 0,

iii) (LV g)ij = 2[ρvivj − α(3− n)Rij ],

where the potential vector field is the vertical lift V V of a vector field V on M to the tangent bundle TM .

Proof. We will show the existence of the scalar λ. From the definition (4.2) we write

LṼ g̃εδ + 2αR̃
εδ

= (2λ− βr)g̃εδ + 2ρ(V # ⊗ V #)
εδ
. (4.7)

If we consider (ε, δ) = (i, j), from the previous equation we find

LṼ g̃ij + 2αR̃
ij

= (2λ− βr)g̃
ij
+ 2ρ(V # ⊗ V #)

ij

and using the expression of LṼ g̃ in (3.6) we have(
Eiv

h
)
ghj +

(
∇jv

h
)
ghi = 2λgij + 2ρ(V # ⊗ V #)

ij
, (4.8)

where the potential vector field V V and 1−form dual to V V are written as

V V =

(
vm

vm

)
=

(
0
vm

)
(4.9)

and
V #
j = V I g̃Ij = vig̃ij + vīgīj = 0 + vigij = vj ,

V #
j̄

= V I g̃Ij̄ = vig̃ij̄ + vīgīj̄ = 0 + 0 = 0,

from which (
V #

)
=

(
vj
0

)
. (4.10)

If equations (4.9) and (4.10) are used in (4.8), we get

2λgij + 2ρ.0 = 0

λ = 0.

When we consider (ε, δ) = (i, j) in (4.7), we get

LṼ g̃ij + 2αR̃ij = (2λ− βr)g̃
ij
+ 2ρ(V # ⊗ V #)ij .

From (3.6) we have [
Eiv

h +
(
ysR h

sia + yaR
h
i − yhRia

)
va + Γ h

ia v
a
]
ghj

+
[
Ejv

h +
(
ysR h

sja + yaR
h
j − yhRja

)
va + Γ h

jav
a
]
ghi

+2α(3− n)Rij = 2ρvivj

and it follows
[Eiv

h + Γ h
ia v

a]ghj + [Ejv
h + Γ h

jav
a]ghi + 2α(3− n)Rij = 2ρvivj .

From above equation we obtain
∇ivj +∇jvi + 2α(3− n)Rij = 2ρvivj

and
(LV g)ij = 2[ρvivj − α(3− n)Rij ].

If the above calculations are followed in reverse, the sufficiency of the theorem can be easily proved.
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Theorem 4.3. Consider TM as the tangent bundle of a (pseudo-)Riemannian manifold M equipped with the RQSMC
∇. (Cg, Ṽ , λ, α, β, ρ) is a generalized Ricci-Yamabe soliton if and only if following conditions are satisfying:

i) HV = (va, vā) = (va, 0),
ii) λ = 1

2n (∇hv
h),

iii) For n ̸= 3, Rij = 0,
iv) va(Rsiaj +Rsjai) = 0,

where the potential vector field is the horizontal lift HV of a vector field V on M to the tangent bundle TM .

Proof. Let us demonstrate the existence of the scalar λ. Starting from the definition (4.2) we have:

LṼ g̃εδ + 2αR̃
εδ

= (2λ− βr)g̃εδ + 2ρ(V # ⊗ V #)
εδ
.

Considering (ε, δ) = (i, j), we obtain:

LṼ g̃ij + 2αR̃
ij

= (2λ− βr)g̃
ij
+ 2ρ(V # ⊗ V #)

ij
.

Using the expression of LṼ g̃ in (3.6) we have(
Eiv

h
)
ghj +

(
∇jv

h
)
ghi = 2λgij + 2ρ(V # ⊗ V #)

ij
, (4.11)

where the potential vector field HV and 1−form dual to HV are written as

HV =

(
vm

vm

)
=

(
vm

0

)
(4.12)

and
V #
j = V I g̃Ij = vig̃ij + vīgīj = 0,

V #
j̄

= V I g̃Ij̄ = vig̃ij̄ + vīgīj̄ = vigij + 0 = vj ,

which yields (
V #

)
=

(
0
vj

)
. (4.13)

By substituting equations (4.13) and (4.12) into equation (4.11), we get(
Eiv

h
)
ghj +

(
∇jv

h
)
ghi = 2λgij + 2ρ.0(

∇jv
h
)
ghi = 2λgij .

Contracting both sides of the last equation with gij , we obtain

λ =
1

2n
(∇hv

h).

Now, considering (ε, δ) = (i, j) in equation (4.7), we find

LṼ g̃ij + 2αR̃ij = (2λ− βr)g̃
ij
+ 2ρ(V # ⊗ V #)ij .

From (3.6), we have [
Eiv

h +
(
ysR h

sia + yaR
h
i − yhRia

)
va + Γ h

ia v
a
]
ghj

+
[
Ejv

h +
(
ysR h

sja + yaR
h
j − yhRja

)
va + Γ h

jav
a
]
ghi

+2α(3− n)Rij = 2ρvivj ,

which gives [(
ysR h

sia + yaR
h
i − yhRia

)
va
]
ghj

+
[(
ysR h

sja + yaR
h
j − yhRja

)
va
]
ghi + 2α(3− n)Rij

= 0.
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From the above equation, for n ̸= 3, we deduce:

Rij = 0

and
va(Rsiaj +Rsjai) = 0.

If we follow the above calculations in reverse, we can easily establish the sufficiency of the theorem.

4.2. Riemannian soliton

A natural generalization of the Hamilton-Ricci flow is the concept of a Riemannian flow, defined by:
∂
∂tG (t) = −2Rg(t), G = 1

2g ∧ g, where R is the Riemannian curvature tensor and ∧ represents the Kulkarni-
Nomizu product. For C,D ∈ ℑ0

2 (M), the Kulkarni-Nomizu product is defined as:

(C ∧D) (W,X, Y, Z) = C (W,Z)D (X,Y ) + C (X,Y )D (W,Z)

−C (W,Y )D (X,Z)− C (X,Z)D (W,Y ) .

In local coordinates, this can be expressed as:

C ∧D = CilDjk + CjkDil − CikDjl − CjlDik.

The notion of a Riemannian soliton, similar to the Ricci soliton, was introduced by Hirica and Udriste [20]. A
Riemannian metric g on a smooth manifold M is considered a Riemannian soliton if there exists a differentiable
vector field X and a real constant λ such that

R+
1

2
g ∧ LXg = λG,

where LX is the Lie derivative along X, λ is a constant and R is the Riemannian tensor of g. Such a vector field
X is known as the potential of the soliton. A Riemannian soliton is referred to as the potential of the soliton. A
Riemannian soliton can further be classified as shrinking, steady, or expanding depending on whether λ > 0,
λ = 0, or λ < 0, respectively. Moreover, R = Rijkl is the Riemannian curvature tensor and G = Gijkl = g ∧ g =
gilgjk − gikgjl.

Theorem 4.4. Consider TM as the tangent bundle of a (pseudo-)Riemannian manifold M equipped with the RQSMC
∇.The (TM,Cg, X̃, λ) is a Riemannian soliton if and only if the following conditions are satisfying:

i)X̃ = (vl, vl) = (vl, yaAl
a +Bl),

ii)λ = 1
n

(
∇hv

h + Ehv
h
)
,

iii) ∇sRijkl = 0,

where X̃ = vaEa + vāEā be a fiber-preserving vector field on TM, λ ∈ R, B =
(
Bl

)
and A = (Ah

s ) are the (1, 0) and
(1, 1) tensor fields on M , respectively.

Proof. We will begin by stating that we will only calculate the expressions:

i) R̃ijkl +
1

2
(Cg)ij ∧

(
LX̃

Cg
)
kl

= λG̃ijkl,

ii) R̃ijkl +
1

2
(Cg)ij ∧

(
LX̃

Cg
)
kl

= λG̃ijkl.

These calculations will suffice for our purposes, as the other components beyond these will yield the same
results as these equations. Therefore, it is adequate for us to work with these expressions.

Given that G̃ = G̃IJKL = (Cg)IL(
Cg)JK − (Cg)IK(Cg)JL, the Kulkarni-Nomizu products we will employ in

our proof are as follows:

G̃ijkl = gilgjk − gikgjl, G̃ijkl = −gikgjl, G̃ijkl = gilgjk,

G̃ijkl = gilgjk − gikgjl, G̃ijkl = gilgjk, G̃ij̄kl = −gikgjl

and other components are zero.
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Starting from:

R̃ijkl +
1

2
(Cg)ij ∧

(
LX̃

Cg
)
kl

= λG̃ijkl,

we derive:

1

2
[(Cg)il(LX̃

Cg)jk + (Cg)jk(LX̃
Cg)il

−(Cg)ik(LX̃
Cg)jl − (Cg)jl(LX̃

Cg)ik]

= λgilgjk

[gil(LX̃
Cg)jk + gjk(LX̃

Cg)il] = 2λgilgjk.

Contracting both sides with gij , we obtain:

δlj(LX̃
Cg)jk + δik(LX̃

Cg)il = 2λδjl gjk

and using the expression of (LX̃
Cg) in (3.6):

δlj [(Ejv
h)ghk + (∇kv

h)ghj ] + δik[(Elv
h)ghi + (∇iv

h)ghl] = 2λglk.

Contracting both sides with glk, we get:

δlj [(Ejv
h)δlh + (∇kv

h)ghjg
lk] + δik[(Elv

h)ghig
lk + (∇iv

h)δkh] = 2λn,

which leads to:
2(Ehv

h +∇hv
h) = 2λn

and
λ =

1

n
(Ehv

h +∇hv
h). (4.14)

Applying Eh to both sides in the equation (4.14), we obtain

vl = yaAl
a +Bl.

Furthermore, starting from:

R̃ijkl +
1

2
(Cg)ij ∧

(
LX̃

Cg
)
kl

= λG̃ijkl,

we can derive:

ys∇sRijkl +
1

2
[(Cg)il

(
LX̃

Cg
)
jk

+ (Cg)jk
(
LX̃

Cg
)
il

−(Cg)ik
(
LX̃

Cg
)
jl
− (Cg)

jl

(
LX̃

Cg
)
ik
]

= 0

and it follows that:
∇sRijkl = 0.

This is easily derived from the obtained results, completing the proof of the necessity of the theorem. It
demonstrates that the base manifold M is a local symmetric manifold (∇sRijkl = 0). The sufficiency of the
theorem can be easily proven by reversing the above calculations.
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