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1 INTRODUCTION 

There have been several studies about Fibonacci and Lucas numbers and their 

generalizations as they have many applications on several fields, see [8, 9, 12—14, 

16, 17]. The Fibonacci sequence {𝐹𝑛}𝑛≥0 is defined by the recurrence 

 𝐹𝑛+2 = 𝐹𝑛+1 + 𝐹𝑛  

with initial conditions 𝐹0 = 0, 𝐹1 = 1. The Lucas sequence {𝐿𝑛}𝑛≥0 is defined by 𝐿0 =

2, 𝐿1 = 1 and 

 𝐿𝑛+2 = 𝐿𝑛+1 + 𝐿𝑛.  

A third order generalization of these sequences are called as Tribonacci 

sequence {𝑡𝑛}𝑛≥0 and Tribonacci-Lucas sequence {𝑣𝑛}𝑛≥0. These sequences are 

defined by the recurrences 

 𝑡𝑛+3 = 𝑡𝑛+2 + 𝑡𝑛+1 + 𝑡𝑛  

with initial conditions 𝑡0 = 0, 𝑡1 = 1, 𝑡2 = 1 and 

 𝑣𝑛+3 = 𝑣𝑛+2 + 𝑣𝑛+1 + 𝑣𝑛  

with initial conditions 𝑣0 = 3, 𝑣1 = 1, 𝑣2 = 3, respectively. The first few terms of 

{𝑡𝑛}𝑛≥0 and {𝑣𝑛}𝑛≥0  are given in Table 1. 

Table 1. The first few terms of the Tribonacci and Tribonacci-Lucas sequences. 

𝒏 0 1 2 3 4 5 6 7 8 9 10 11 12 

𝐭𝐧 0 1 1 2 4 7 13 24 44 81 149 274 504 

𝐯𝐧 3 1 3 7 11 21 39 71 131 241 443 815 1499 

 

There are many studies on Tribonacci and Tribonacci-Lucas numbers and their 

various properties in the literature. Several sums formulas of these sequences such 

as 
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 ∑  

𝑛

𝑘=1

  𝑡𝑘 =
𝑡𝑛+2 + 𝑡𝑛 − 1

2

 ∑  

𝑛

𝑘=1

 𝑣𝑘 =
𝑣𝑛+2 + 𝑣𝑛 − 6

2

  

are also obtained, see [4—6, 10, 11, 20, 24—28, 30]. 

Matrices whose entries are chosen from special numbers are also found 

interesting and some factorizations of these matrices have been considered by many 

researchers, see [1, 2, 7, 19, 21, 32]. In [31], a matrix of order 𝑛 + 1 with entries 

[𝑡𝑖,𝑗] 

 𝑡𝑖,𝑗 = {

2𝑡𝑗

𝑡𝑖+2 + 𝑡𝑖 − 1
, if 0 ≤ 𝑗 ≤ 𝑖

0, otherwise

  (1) 

is defined and the Tribonacci space sequences ℓ𝑝(𝑇) are introduced. In [22], a two 

variables generalization of the matrix given in (1) is defined and some factorizations 

of the defined matrix are obtained. 

Recently, a new regular Tribonacci-Lucas matrix 𝑉 = [𝑣𝑖,𝑗] is defined by 

 𝑣𝑖,𝑗 = {

2𝑣𝑗

𝑣𝑖+2 + 𝑣𝑖 − 6
, if 0 ≤ 𝑗 ≤ 𝑖

0, otherwise

 (2) 

see [18]. They give some relations and inclusion results between the defined matrix 

and some well-known summability matrices. In this paper, we define a generalization 

of the matrix given in (2) and present several properties. We obtain some 

factorizations of the defined matrix and give a relation with an exponential of a 

special matrix. 

2 A GENERALIZATION OF THE REGULAR TRİBONACCİ-LUCAS MATRİX 

We define a generalization of the matrix (2) for two variables. Let  𝑉𝑛(𝑥, 𝑦) = 

[𝑣𝑖,𝑗(𝑥, 𝑦)]  be the matrix of order 𝑛 + 1 with entries 
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 𝑣𝑖,𝑗(𝑥, 𝑦) = {

2𝑣𝑗

𝑣𝑖+2 + 𝑣𝑖 − 6
𝑥𝑖−𝑗𝑦𝑗 , if 0 ≤ 𝑗 ≤ 𝑖,

0, otherwise.

  

Here 𝑣𝑖,𝑗(𝑥, 𝑦) will be zero for 𝑥 or 𝑦 is zero and so we assume that 𝑥 and 𝑦 are non-

zero real numbers. It is clear that for 𝑥 = 𝑦 = 1  we have 

𝑣𝑖,𝑗(1,1) = 𝑣𝑖,𝑗 

and so, in this case we obtain the regular Tribonacci-Lucas matrix (2). 

Example 1. For 𝑛 = 5, the matrix 𝑉5(𝑥, 𝑦)  will be of the form 

𝑉5(𝑥, 𝑦) =

[
 
 
 
 
 
 
 
 
 
 
1 0 0 0 0 0
1

4
𝑥

3

4
𝑦 0 0 0 0

1

11
𝑥2

3

11
𝑥𝑦

7

11
𝑦2 0 0 0

1

22
𝑥3

3

22
𝑥2𝑦

7

22
𝑥𝑦2

11

22
𝑦3 0 0

1

43
𝑥4

3

43
𝑥3𝑦

7

43
𝑥2𝑦2

11

43
𝑥𝑦3

21

43
𝑦4 0

1

49
𝑥5

3

49
𝑥4𝑦

7

49
𝑥3𝑦2

11

49
𝑥2𝑦3

21

49
𝑥𝑦4

39

49
𝑦5]
 
 
 
 
 
 
 
 
 
 

 

2.1 Properties of the Tribonacci-Lucas Matrices 𝑽𝒏(𝒙, 𝒚) 

We give some interesting properties and applications of the matrix 𝑉𝑛(𝑥, 𝑦). 

Throughout the paper, we will denote the (𝑖, 𝑗) entry of a matrix  as (𝐴)𝑖,𝑗. For 𝑛, 𝑗 ∈

ℕ, we define 

(𝑥 ⊕ 𝑦)𝑗
𝑛: = ∑  𝑛

𝑘=0 𝑣𝑘+𝑗,𝑘+𝑗𝑥
𝑛−𝑘𝑦𝑘. 

Theorem 2.1. For any positive integer 𝑛 and any real numbers 𝑥, 𝑦, 𝑧 and 𝑤, we have 

 (𝑉𝑛(𝑥, 𝑦)𝑉𝑛(𝑤, 𝑧))𝑖,𝑗 = (𝑉𝑛((𝑥 ⊕ 𝑦𝑤)𝑗, 𝑦𝑧))
𝑖,𝑗
. (3) 
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Proof. It is clear from the definition that 𝑣𝑖,𝑗+1𝑣𝑗+1,𝑗 = 𝑣𝑗+1,𝑗+1𝑣𝑖,𝑗. Then we have 

(𝑉𝑛(𝑥, 𝑦)𝑉𝑛(𝑤, 𝑧))𝑖,𝑗 = ∑  

𝑖

𝑘=𝑗

 𝑣𝑖,𝑘(𝑥, 𝑦)𝑣𝑘,𝑗(𝑤, 𝑧)

 = 𝑣𝑖,𝑗𝑣𝑗,𝑗𝑥
𝑖−𝑗𝑦𝑗𝑧𝑗 + 𝑣𝑖,𝑗+1𝑣𝑗+1,𝑗𝑥

𝑖−𝑗−1𝑦𝑗+1𝑤𝑧𝑗 +⋯+ 𝑣𝑖,𝑖𝑣𝑖,𝑗𝑦
𝑖𝑤𝑖−𝑗𝑧𝑗

 = 𝑣𝑖,𝑗𝑦
𝑗𝑧𝑗(𝑣𝑗,𝑗𝑥

𝑖−𝑗 + 𝑣𝑗+1,𝑗+1𝑥
𝑖−𝑗−1𝑦𝑤 +⋯+ 𝑣𝑖,𝑖𝑦

𝑖−𝑗𝑤𝑖−𝑗)

 = 𝑣𝑖,𝑗𝑦
𝑗𝑧𝑗(𝑥 ⊕ 𝑦𝑤)𝑗

𝑖−𝑗

 = (𝑉𝑛((𝑥 ⊕ 𝑦𝑤)𝑗, 𝑦𝑧))
𝑖,𝑗
.

 

We can obtain the 𝑘 − th power of the matrix  𝑉𝑛(𝑥, 𝑦) by using Theorem 2.1. 

For 𝑤 = 𝑥 and 𝑧 = 𝑦 in (3), we get 

(𝑉𝑛
2(𝑥, 𝑦))𝑖,𝑗 = (𝑉(𝑥(1⊕ 𝑦)𝑗, 𝑦

2))
𝑖,𝑗

. 

Using formula (3) again, multiplying 𝑉𝑛
2(𝑥, 𝑦) and 𝑉𝑛(𝑥, 𝑦), we get 

(𝑉𝑛
3(𝑥, 𝑦))𝑖,𝑗 = (𝑉 (𝑥((1⊕ 𝑦)𝑗⊕𝑦2)

𝑗
, 𝑦3))

𝑖,𝑗

. 

Then using the mathematical induction method, we have 

(𝑉𝑛
𝑘(𝑥, 𝑦))𝑖,𝑗 = (𝑉 (𝑥 ((… ((1⊕ 𝑦)𝑗⊕𝑦2)

𝑗
⊕𝑦3)

𝑗
…⊕ 𝑦𝑘−1)

𝑗

, 𝑦𝑘))

𝑖,𝑗

. 

The inverse of the Tribonacci-Lucas matrix 𝑉𝑛(𝑥, 𝑦) which is denoted by 

𝑉𝑛
−1(𝑥, 𝑦) = [𝑣𝑖,𝑗

−1(x, y)] is given by the following theorem. 

Theorem 2.2. The (𝑖, 𝑗) − entry of the inverse of the matrix 𝑉𝑛(𝑥, 𝑦) is 

𝑣𝑖,𝑗
−1(𝑥, 𝑦) =

{
 
 

 
 
𝑣𝑖+2 + 𝑣𝑖 − 6

2𝑣𝑗𝑦𝑖
, if 𝑖 = 𝑗,

−(𝑣𝑖+2 + 𝑣𝑖 − 6)𝑥

2𝑣𝑗+2𝑦𝑖
, if 𝑖 = 𝑗 + 1,

0, otherwise.

 

Proof. It is clear that (𝑉𝑛(𝑥, 𝑦)𝑉𝑛
−1(𝑥, 𝑦))𝑖,𝑗 = 0 in the case of 𝑖 ≠ 𝑗 and 𝑖 ≠ 𝑗 + 1. For 

𝑖 = 𝑗, we obtain that 
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(𝑉𝑛(𝑥, 𝑦)𝑉𝑛
−1(𝑥, 𝑦))𝑖,𝑖 = ∑  

𝑖

𝑘=𝑖

 𝑣𝑖,𝑘(𝑥, 𝑦)𝑣𝑘,𝑖
−1(𝑥, 𝑦) = 𝑣𝑖𝑖(𝑥, 𝑦)𝑣𝑖𝑖

−1(𝑥, 𝑦)

 =
2𝑣𝑖𝑦

𝑖

𝑣𝑖+2 + 𝑣𝑖 − 6

𝑣𝑖+2 + 𝑣𝑖 − 6

2𝑣𝑖𝑦𝑖
= 1

 

and for 𝑖 = 𝑗 + 1 we get 

(𝑉𝑛(𝑥, 𝑦)𝑉𝑛
−1(𝑥, 𝑦))𝑖,𝑗 = ∑  

𝑖

𝑘=𝑗

 𝑣𝑖,𝑘(𝑥, 𝑦)𝑣𝑘,𝑗
−1(𝑥, 𝑦)

 = 𝑣𝑖𝑗(𝑥, 𝑦)𝑣𝑗𝑗
−1(𝑥, 𝑦) + 𝑣𝑖,𝑗+1(𝑥, 𝑦)𝑣𝑗+1,𝑗

−1 (𝑥, 𝑦)

 =
2𝑣𝑗𝑥

𝑖−𝑗𝑦𝑗

𝑣𝑖+2 + 𝑣𝑖 − 6

𝑣𝑗+2 + 𝑣𝑗 − 6

2𝑣𝑗𝑦𝑗
+
2𝑣𝑗+1𝑥

𝑖−𝑗−1𝑦𝑗+1

𝑣𝑖+2 + 𝑣𝑖 − 6

(𝑣𝑗+2 + 𝑣𝑗 − 6)(−𝑥)

2𝑣𝑗+1𝑦𝑗+1

 =
(𝑣𝑗+2 + 𝑣𝑗 − 6)𝑥

𝑖−𝑗

𝑣𝑖+2 + 𝑣𝑖 − 6
−
(𝑣𝑗+2 + 𝑣𝑗 − 6)𝑥

𝑖−𝑗

𝑣𝑖+2 + 𝑣𝑖 − 6

 = 0.

 

Thus, the result follows. 

2.2 Factorizations of the Tribonacci-Lucas Matrices 𝑽𝒏(𝒙, 𝒚) 

We give some factorizations of the matrix 𝑉𝑛(𝑥, 𝑦). For this purpose, we need 

to define the following matrices of order 𝑛 + 1 

(𝑆𝑛(𝑥, 𝑦))𝑖,𝑗 = {
𝑣𝑖,𝑗+1(𝑥, 𝑦)𝑣𝑗,𝑗−1

−1 (𝑥, 𝑦) + 𝑣𝑖,𝑗(𝑥, 𝑦)𝑣𝑗−1,𝑗−1
−1 (𝑥, 𝑦), if 0 ≤ 𝑗 ≤ 𝑖,

0, otherwise

𝑉‾𝑛−1(𝑥, 𝑦) = [
1 0
0 𝑉𝑛−1

] ,

𝐺𝑘 = [
𝐼𝑛−𝑘−1 0
0 𝑆𝑘

]   for 1 ≤ 𝑘 ≤ 𝑛 − 1,   and 𝐺𝑛(𝑥, 𝑦) = 𝑆𝑛(𝑥, 𝑦).

 

Lemma 2.1. For any positive integer  and any real numbers 𝑥 and 𝑦, we have 

𝑉𝑛(𝑥, 𝑦) = 𝑆𝑛(𝑥, 𝑦)𝑉‾𝑛−1(𝑥, 𝑦). 

Proof. We denote the inverse of the matrix  𝑉‾𝑛(𝑥, 𝑦) as 𝑉‾𝑛
−1(𝑥, 𝑦): = [𝑣‾𝑖,𝑗

−1(𝑥, 𝑦)]. Then 

(𝑉𝑛(𝑥, 𝑦)𝑉‾𝑛−1
−1 (𝑥, 𝑦))𝑖,𝑗 = ∑  𝑖

𝑘=𝑗 𝑣𝑖,𝑘(𝑥, 𝑦)𝑣‾𝑘,𝑗
−1(𝑥, 𝑦) = ∑  𝑖

𝑘=𝑗 𝑣𝑖,𝑘(𝑥, 𝑦)𝑣𝑘−1,𝑗−1
−1 (𝑥, 𝑦). 

Here the sum is nonzero only for 𝑘 − 1 = 𝑗 − 1 and 𝑘 − 1 = 𝑗. So we get 



BITLIS EREN UNIVERSITY JOURNAL OF SCIENCE AND TECHNOLOGY 13(2), 2023, 170-186 

176 

∑ 

𝑖

𝑘=𝑗

𝑣𝑖,𝑘(𝑥, 𝑦)𝑣𝑘−1,𝑗−1
−1 (𝑥, 𝑦) = 𝑣𝑖,𝑗+1(𝑥, 𝑦)𝑣𝑗,𝑗−1

−1 (𝑥, 𝑦) + 𝑣𝑖,𝑗(𝑥, 𝑦)𝑣𝑗−1,𝑗−1
−1 (𝑥, 𝑦) = 𝑆𝑛(𝑥, 𝑦). 

Example 2. 

𝑆5(𝑥, 𝑦)𝑉‾4(𝑥, 𝑦) = 

[
 
 
 
 
 
 
 
 
1 0 0 0 0 0
1

4
𝑥

3

4
𝑦 0 0 0 0

1

11
𝑥2

2

33
𝑥𝑦

28

11
𝑦 0 0 0

1

22
𝑥3

1

33
𝑥2𝑦

32

231
𝑥𝑦

11

14
𝑦 0 0

1

43
𝑥4

2

129
𝑥3𝑦

64

903
𝑥2𝑦 −

26

301
𝑥𝑦

42

43
𝑦 0

1

49
𝑥5

2

147
𝑥4𝑦

64

1029
𝑥3𝑦 −

26

343
𝑥2𝑦

8

343
𝑥𝑦

559

343
𝑦]
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
1 0 0 0 0 0
0 1 0 0 0 0

0
1

4
𝑥

3

4
𝑦 0 0 0

0
1

11
𝑥2

3

11
𝑥𝑦

7

11
𝑦2 0 0

0
1

22
𝑥3

3

22
𝑥2𝑦

7

22
𝑥𝑦2

11

22
𝑦3 0

0
1

43
𝑥4

3

43
𝑥3𝑦

7

43
𝑥2𝑦2

11

43
𝑥𝑦3

21

43
𝑦4]
 
 
 
 
 
 
 

 =

[
 
 
 
 
 
 
 
 
1 0 0 0 0 0
1

4
𝑥

3

4
𝑦 0 0 0 0

1

11
𝑥2

3

11
𝑥𝑦

7

11
𝑦2 0 0 0

1

22
𝑥3

3

22
𝑥2𝑦

7

22
𝑥𝑦2

11

22
𝑦3 0 0

1

43
𝑥4

3

43
𝑥3𝑦

7

43
𝑥2𝑦2

11

43
𝑥𝑦3

21

43
𝑦4 0

1

49
𝑥5

3

49
𝑥4𝑦

7

49
𝑥3𝑦2

11

49
𝑥2𝑦3

21

49
𝑥𝑦4

39

49
𝑦5]
 
 
 
 
 
 
 
 

=𝑉5(𝑥, 𝑦).

 

Theorem 2.3. The matrix 𝑉𝑛(𝑥, 𝑦) can be factorized as 

𝑉𝑛(𝑥, 𝑦) = 𝐺𝑛(𝑥, 𝑦)𝐺𝑛−1(𝑥, 𝑦)…𝐺1(𝑥, 𝑦). 

In particular, 

𝑉𝑛 = 𝐺𝑛𝐺𝑛−1…𝐺1 

where 𝑉𝑛: = 𝑉𝑛(1,1), 𝐺𝑘: = 𝐺𝑘(1,1), 𝑘 = 1,2, … , 𝑛. 

Proof. By the definition of the matrices 𝐺𝑘(𝑥, 𝑦) and Lemma 2.1, we get the desired 

decomposition of the matrix 𝑉𝑛(𝑥, 𝑦). 

It is clear that the inverse matrix 𝑉𝑛
−1(𝑥, 𝑦) can be factorized as 

𝑉𝑛
−1(𝑥, 𝑦) = 𝐺1

−1(𝑥, 𝑦)𝐺2
−1(𝑥, 𝑦)…𝐺𝑛

−1(𝑥, 𝑦). 
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Example 3. Since 

𝑉5(𝑥, 𝑦) =

[
 
 
 
 
 
 
 
 
 
 
1 0 0 0 0 0
1

4
𝑥

3

4
𝑦 0 0 0 0

1

11
𝑥2

3

11
𝑥𝑦

7

11
𝑦2 0 0 0

1

22
𝑥3

3

22
𝑥2𝑦

7

22
𝑥𝑦2

11

22
𝑦3 0 0

1

43
𝑥4

3

43
𝑥3𝑦

7

43
𝑥2𝑦2

11

43
𝑥𝑦3

21

43
𝑦4 0

1

49
𝑥5

3

49
𝑥4𝑦

7

49
𝑥3𝑦2

11

49
𝑥2𝑦3

21

49
𝑥𝑦4

39

49
𝑦5]
 
 
 
 
 
 
 
 
 
 

 

we can factorize this matrix as 

𝐺5(𝑥, 𝑦)𝐺4(𝑥, 𝑦)𝐺3(𝑥, 𝑦)𝐺2(𝑥, 𝑦)𝐺1(𝑥, 𝑦)= 

[
 
 
 
 
 
 
 
 
 
 
1 0 0 0 0 0
1

4
𝑥

3

4
𝑦 0 0 0 0

1

11
𝑥2

2

33
𝑥𝑦

28

11
𝑦 0 0 0

1

22
𝑥3

1

33
𝑥2𝑦

32

231
𝑥𝑦

11

14
𝑦 0 0

1

43
𝑥4

2

129
𝑥3𝑦

64

903
𝑥2𝑦 −

26

301
𝑥𝑦

42

43
𝑦 0

1

49
𝑥5

2

147
𝑥4𝑦

64

1029
𝑥3𝑦 −

26

343
𝑥2𝑦

8

343
𝑥𝑦

559

343
𝑦]
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 
1 0 0 0 0 0
0 1 0 0 0 0

0
1

4
𝑥

3

4
𝑦 0 0 0

0
1

11
𝑥2

2

33
𝑥𝑦

28

11
𝑦 0 0

0
1

22
𝑥3

1

33
𝑥2𝑦

32

231
𝑥𝑦

11

14
𝑦 0

0
1

43
𝑥4

2

129
𝑥3𝑦

64

903
𝑥2𝑦 −

26

301
𝑥𝑦

42

43
𝑦]
 
 
 
 
 
 
 
 
 

 

[
 
 
 
 
 
 
 
 
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

0 0
1

4
𝑥

3

4
𝑦 0 0

0 0
1

11
𝑥2

2

33
𝑥𝑦

28

11
𝑦 0

0 0
1

22
𝑥3

1

33
𝑥2𝑦

32

231
𝑥𝑦

11

14
𝑦]
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0

0 0 0
1

4
𝑥

3

4
𝑦 0

0 0 0
1

11
𝑥2

2

33
𝑥𝑦

28

11
𝑦]
 
 
 
 
 
 
 

[
 
 
 
 
 
 
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

0 0 0 0
1

4
𝑥

3

4
𝑦]
 
 
 
 
 
 

. 

 

We can also separate the variables 𝑥 and 𝑦 from the matrices 𝑉𝑛(𝑥, 𝑦) and 

𝑉𝑛(−𝑥, 𝑦). 

Theorem 2.4. Let 𝐷𝑛(𝑥): = diag (1, 𝑥, 𝑥
2, 𝑥3, … , 𝑥𝑛) be a diagonal matrix. For any 

positive integer 𝑘 and any non-zero real numbers 𝑥 and 𝑦 , we have 

𝑉𝑘(𝑥, 𝑦) = 𝑉𝑘(𝑥, 1)𝐷𝑘(𝑦),

𝑉𝑘(−𝑥, 𝑦) = 𝑉𝑘(−𝑥, 1)𝐷𝑘(𝑦).
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Now, we present a relation between the matrices 𝑉𝑛(𝑥, 𝑎𝑦) and 𝑉𝑛(𝑥, −𝑦) for a 

nonzero real number 𝑎. 

Theorem 2.5. For a nonzero real number 𝑎, the matrices 𝑉𝑛(𝑥, 𝑎𝑦) and 𝑉𝑛(𝑥, −𝑦) 

satisfy the following 

𝑉𝑛 (𝑥,
𝑦

𝑎
)
−1

= 𝑉𝑛
−1(𝑥, −𝑦)𝑉𝑛(𝑥, 𝑎𝑦)𝑉𝑛

−1(𝑥, −𝑦). 

Proof. The proof can be done easily by definition of the matrices and matrix 

multiplication. 

Theorem 2.6. Let 𝐾𝑛(𝑥, 𝑦) = [𝑘𝑖,𝑗] be a matrix with entries 𝑘𝑖,𝑗 = 𝑣𝑗𝑥
𝑖−𝑗𝑦𝑗 and 𝐷𝑛

′ =

[𝑑𝑖,𝑗
′ ] be a diagonal matrix with diagonal entries 𝑑𝑖,𝑖

′ =
2

𝑣𝑖+2+𝑣𝑖−6
. Then we have 

𝑉𝑛(𝑥, 𝑦) = 𝐷𝑛
′𝐾𝑛(𝑥, 𝑦). 

Proof. By matrix multiplication, we have 

(𝐷𝑛
′𝐾𝑛(𝑥, 𝑦))𝑖,𝑗 = ∑  

𝑛

𝑘=0

 𝑑𝑖,𝑘
′ 𝑘𝑘,𝑗(𝑥, 𝑦) = 𝑑𝑖,𝑖

′ 𝑘𝑖,𝑗(𝑥, 𝑦)

 =
2

𝑣𝑖+2 + 𝑣𝑖 − 6
𝑣𝑗𝑥

𝑖−𝑗𝑦𝑗

 =
2𝑣𝑗

𝑣𝑖+2 + 𝑣𝑖 − 6
𝑥𝑖−𝑗𝑦𝑗 = (𝑉𝑛(𝑥, 𝑦))𝑖,𝑗.

 

 

Example 4. For 𝑛 = 5, we have 

𝑉5(𝑥, 𝑦) =

[
 
 
 
 
 
 
 
 
 
 
1 0 0 0 0 0
1

4
𝑥

3

4
𝑦 0 0 0 0

1

11
𝑥2

3

11
𝑥𝑦

7

11
𝑦2 0 0 0

1

22
𝑥3

3

22
𝑥2𝑦

7

22
𝑥𝑦2

11

22
𝑦3 0 0

1

43
𝑥4

3

43
𝑥3𝑦

7

43
𝑥2𝑦2

11

43
𝑥𝑦3

21

43
𝑦4 0

1

49
𝑥5

3

49
𝑥4𝑦

7

49
𝑥3𝑦2

11

49
𝑥2𝑦3

21

49
𝑥𝑦4

39

49
𝑦5]
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 =

[
 
 
 
 
 
 
 
 
 
 
1 0 0 0 0 0

0
1

4
0 0 0 0

0 0
1

11
0 0 0

0 0 0
1

22
0 0

0 0 0 0
1

43
0

0 0 0 0 0
1

49]
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
1 0 0 0 0 0
𝑥 3𝑦 0 0 0 0

𝑥2 3𝑥𝑦 7𝑦2 0 0 0

𝑥3 3𝑥2𝑦 7𝑥𝑦2 11𝑦3 0 0

𝑥4 3𝑥3𝑦 7𝑥2𝑦2 11𝑥𝑦3 21𝑦4 0

𝑥5 3𝑥4𝑦 7𝑥3𝑦2 11𝑥2𝑦3 21𝑥𝑦4 39𝑦5]
 
 
 
 
 
 

  = 𝐷5
′𝐾5(𝑥, 𝑦).

 

3 SOME APPLICATIONS OF THE TRIBONACCI-LUCAS MATRIX 𝑽𝒏(𝒙, 𝒚) 

The following result gives the sum of squares of the first 𝑛 Tribonacci-Lucas 

numbers. 

Lemma 3.1 ([23]). For 𝑛 ≥ 1, the Tribonacci-Lucas numbers 𝑣𝑛 satisfy 

∑ 

𝑛

𝑘=1

𝑣𝑘
2 =

−𝑣𝑛+1
2 − 𝑣𝑛−1

2 + 𝑣2𝑛+3 + 𝑣2𝑛−2 − 4

2
. 

Now, we consider a matrix whose Cholesky factorization includes the matrix 

𝑉𝑛(1,1). 

Theorem 3.1. A matrix 𝑄𝑛 = [𝑐𝑖,𝑗] with entries 

𝑐𝑖,𝑗 =
2(−𝑣𝑘+1

2 − 𝑣𝑘−1
2 + 𝑣2𝑘+3 + 𝑣2𝑘−2 − 4)

(𝑣𝑖+2 + 𝑣𝑖 − 6)(𝑣𝑗+2 + 𝑣𝑗 − 6)
, 

where 𝑘 = min{𝑖, 𝑗}, is a symmetric matrix and its Cholesky factorization is 

𝑉𝑛(1,1)𝑉𝑛(1,1)
𝑇. 

Proof. Since 

𝑐𝑖,𝑗 =
2(−𝑣𝑘+1

2 − 𝑣𝑘−1
2 + 𝑣2𝑘+3 + 𝑣2𝑘−2 − 4)

(𝑣𝑖+2 + 𝑣𝑖 − 6)(𝑣𝑗+2 + 𝑣𝑗 − 6)
= 𝑐𝑗,𝑖 

the matrix 𝑄𝑛 is symmetric. We now show that 𝑄𝑛 = 𝑉𝑛(1,1)𝑉𝑛(1,1)
𝑇. 
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𝑉𝑛(1,1)𝑉𝑛(1,1)
𝑇 = ∑  

𝑛

𝑘=0

 𝑣𝑖,𝑘𝑣𝑗,𝑘 =∑  

𝑛

𝑘=0

 
2𝑣𝑘

𝑣𝑖+2 + 𝑣𝑖 − 6

2𝑣𝑘
𝑣𝑗+2 + 𝑣𝑗 − 6

 =
4

(𝑣𝑖+2 + 𝑣𝑖 − 6)(𝑣𝑗+2 + 𝑣𝑗 − 6)
∑  

𝑛

𝑘=0

 𝑣𝑘
2

 =
4

(𝑣𝑖+2 + 𝑣𝑖 − 6)(𝑣𝑗+2 + 𝑣𝑗 − 6)

−𝑣𝑛+1
2 − 𝑣𝑛−1

2 + 𝑣2𝑛+3 + 𝑣2𝑛−2 − 4

2

 =
2(−𝑣𝑘+1

2 − 𝑣𝑘−1
2 + 𝑣2𝑘+3 + 𝑣2𝑘−2 − 4)

(𝑣𝑖+2 + 𝑣𝑖 − 6)(𝑣𝑗+2 + 𝑣𝑗 − 6)

 = 𝑄𝑛.

 

Hence, we obtain the result. 

For any square matrix 𝑀, the exponential of 𝑀 is defined to be the matrix 

𝑒𝑀 = 𝐼 +𝑀 +
𝑀2

2!
+
𝑀3

3!
+ ⋯+

𝑀𝑘

𝑘!
+ ⋯ 

Thus, we have the following result for a square matrix 𝑀. 

Theorem 3.2 ([3, 29]). (i) For any numbers 𝑟 and 𝑠, we have  𝑒(𝑟+𝑠)𝑀 = 𝑒𝑟𝑀𝑒𝑠𝑀. 

(ii) (𝑒𝑀)−1 = 𝑒−𝑀. 

(iii) By taking the derivative with respect to 𝑥 of each entry of 𝑒𝑀𝑥, we get the matrix 

 
𝑑

𝑑𝑥
𝑒𝑀𝑥 = 𝑀𝑒𝑀𝑥. 

In the last part of this section, we will give a relation between the matrix 

𝑉𝑛(𝑥, 𝑦) and the exponential of a special matrix. 

Definition 1. The matrix 𝑀𝑛 = [𝑚𝑖,𝑗] is defined by 

 𝑚𝑖,𝑗 = {

𝑣𝑗

𝑣𝑖
, if 𝑖 = 𝑗 + 1,

0, otherwise.

 (4) 

 

We want to obtain a relation between 𝑉𝑛(𝑥, 𝑦) and 𝑒𝑀𝑛𝑥, so we prove the 

following auxiliary result. 
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Lemma 3.2. For every nonnegative integer 𝑘, the entries of the matrix 𝑀𝑛
𝑘 are given 

by 

(𝑀𝑛
𝑘)𝑖,𝑗 = {

𝑣𝑗

𝑣𝑖
, if 𝑖 = 𝑗 + 𝑘

0, otherwise.

 

Theorem 3.3. For 𝑛 ∈ ℕ and 𝑥 ∈ ℝ, we have 

(𝑉𝑛
−1(0,1)𝑉𝑛(𝑥, 1))𝑖,𝑗 = (𝑖 − 𝑗)! (𝑒

𝑀𝑛𝑥)𝑖,𝑗. 

Proof. Suppose that there is a matrix 𝑌𝑛 such that  (𝑉𝑛
−1(0,1)𝑉𝑛(𝑥, 1))𝑖,𝑗 = (𝑖 − 

𝑗)! (𝑒𝑀𝑛𝑥)𝑖,𝑗. Then we have 

𝑑

𝑑𝑥
(𝑉𝑛

−1(0,1)𝑉𝑛(𝑥, 1))𝑖,𝑗 = 𝑌𝑛(𝑖 − 𝑗)(𝑒
𝑌𝑛𝑥)𝑖,𝑗 = 𝑌𝑛(𝑉𝑛

−1(0,1)𝑉𝑛(𝑥, 1))𝑖,𝑗 

and so 

𝑑

𝑑𝑥
(𝑉𝑛

−1(0,1)𝑉𝑛(𝑥, 1))𝑖,𝑗|
𝑥=0

= 𝑌𝑛. 

Thus, there is at most one matrix 𝑌𝑛 such that (𝑉𝑛
−1(0,1)𝑉𝑛(𝑥, 1))𝑖,𝑗 = (𝑖 − 𝑗)! (𝑒𝑌𝑛𝑥)𝑖,𝑗. 

It can be easily seen that 𝑌𝑛  = 𝑀𝑛, where 𝑀𝑛 is the matrix given Definition 1, by 

calculating 
𝑑

𝑑𝑥
(𝑉𝑛

−1(0,1)𝑉𝑛(𝑥, 1))𝑖,𝑗|
𝑥=0

. We conclude that 𝑀𝑛
𝑘 = 0 for 𝑛 + 1 ≤ 𝑘, thus 

𝑒𝑀𝑛𝑥 =∑  

𝑛

𝑘=0

𝑀𝑛
𝑘
𝑥𝑘

𝑘!
. 

For 𝑖 < 𝑗, we see that (𝑒𝑀𝑛𝑥)𝑖,𝑗 = 0 and we also have (𝑒𝑀𝑛𝑥)𝑖,𝑖 = 1. Now, suppose that 

𝑖 > 𝑗 and let 𝑖 = 𝑗 + 𝑘 

(𝑒𝑀𝑛𝑥)𝑖,𝑗 = (𝑀𝑛
𝑘)𝑖,𝑗

𝑥𝑘

𝑘!
=

𝑣𝑗

𝑣𝑗+𝑘

𝑥𝑘

𝑘!
=
1

𝑘!
(𝑉𝑛

−1(0,1)𝑉𝑛(𝑥, 1))𝑖,𝑗. 
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Example 5. We obtain the matrix 
𝑑

𝑑𝑥
(𝑉5

−1(0,1)𝑉5(𝑥, 1)) by taking the derivative of 

each entry of the matrix 𝑉5
−1(0,1)𝑉5(𝑥, 1) with respect to 𝑥. Thus, 

𝑑

𝑑𝑥
(𝑉5

−1(0,1)𝑉5(𝑥, 1)) =

[
 
 
 
 
 
 
 
 
 
 
0 0 0 0 0 0
1

3
0 0 0 0 0

2

7
𝑥

3

7
0 0 0 0

3

11
𝑥2

6

11
𝑥

7

11
0 0 0

4

21
𝑥3

9

21
𝑥2

14

21
𝑥

11

21
0 0

5

39
𝑥4

12

39
𝑥3

21

39
𝑥2

22

39
𝑥

21

39
0]
 
 
 
 
 
 
 
 
 
 

, 

Hence, we have 

𝑀5 = 𝑉5
−1(0,1)

𝑑

𝑑𝑥
𝑉5(𝑥, 1)|

𝑥=0
=

[
 
 
 
 
 
 
 
 
 
 
0 0 0 0 0 0
1

3
0 0 0 0 0

0
3

7
0 0 0 0

0 0
7

11
0 0 0

0 0 0
11

21
0 0

0 0 0 0
21

39
0]
 
 
 
 
 
 
 
 
 
 

 

and 

𝑀5
2 =

[
 
 
 
 
 
 
 
 
 
0 0 0 0 0 0
0 0 0 0 0 0
1

7
0 0 0 0 0

0
3

11
0 0 0 0

0 0
7

21
0 0 0

0 0 0
11

39
0 0]
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𝑀5
3 =

[
 
 
 
 
 
 
 
 
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1

11
0 0 0 0 0

0
3

21
0 0 0 0

0 0
7

39
0 0 0]

 
 
 
 
 
 
 
 

𝑀5
4 =

[
 
 
 
 
 
 
 
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1

21
0 0 0 0 0

0
3

39
0 0 0 0]

 
 
 
 
 
 
 

𝑀5
5 =

[
 
 
 
 
 
 
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1

39
0 0 0 0 0]

 
 
 
 
 
 

 

Let 𝑀𝑛 be the matrix defined in (4) and 𝑈𝑛(𝑥) = 𝑒𝑀𝑛𝑥. At the end of this 

section, we will find the explicit inverse of the matrix 𝑅𝑛(𝑥) = [𝐼𝑛 − 𝜆𝑈𝑛(𝑥)]
−1 for a 

real number 𝜆 such that |𝜆| < 1. To achieve this, we need the following result. 

Lemma 3.3 ([15], Corollary 5.6.16). A matrix 𝐴 of order 𝑛 is nonsingular if there is a 

matrix norm ∥⋅∥ such that ∥ 𝐼 − 𝐴 ∥< 1. If this condition is satisfied, 

𝐴−1 =∑  

∞

𝑘=0

(𝐼 − 𝐴)𝑘. 

Theorem 3.4. The matrix 𝑅𝑛(𝑥) is defined for real number 𝜆 such that |𝜆| < 1. The 

entries of the matrix are 

(𝑅𝑛(𝑥))𝑖,𝑖 =
1

1 − 𝜆
 

and 

(𝑅𝑛(𝑥))𝑖,𝑖 = (𝑈𝑛(𝑥))𝑖,𝑗𝐿𝑖𝑗−𝑖(𝜆), 
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for 𝑖 > 𝑗, where 𝐿𝑖𝑛(𝑧) is the polylogarithm function 

𝐿𝑖𝑛(𝑧) = ∑  

∞

𝑘=1

𝑧𝑘

𝑘𝑛
. 

Proof. By Lemma 3.3, for |𝜆| < 1 , we have 

(𝑅𝑛(𝑥))𝑖,𝑖 =∑  

∞

𝑘=0

(𝑈𝑛(𝑥))
𝑘𝜆𝑘 =∑  

∞

𝑘=0

(𝑈𝑛(𝑥𝑘))𝑖,𝑗𝜆
𝑘 = (𝑈𝑛(𝑥))𝑖,𝑗∑ 

∞

𝑘=0

𝜆𝑘𝑘𝑖−𝑗 . 

We get the result by writing the sum for 𝑖 = 𝑗 and 𝑖 > 𝑗. 

 

Example 6. 

𝐼4 − 𝜆𝑈4(𝑥) = 𝐼4 − 𝜆

[
 
 
 
 
 
 
 
 
 
1 0 0 0 0
𝑥

3
1 0 0 0

𝑥2

14

3𝑥

7
1 0 0

𝑥3

66

3𝑥2

22

7𝑥

11
1 0

𝑥4

528

3𝑥3

132

7𝑥2

44

11𝑥

22
1]
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
1 − 𝜆 0 0 0 0
−𝜆𝑥

3
1 − 𝜆 0 0 0

−𝜆𝑥2

14

−3𝜆𝑥

7
1 − 𝜆 0 0

−𝜆𝑥3

66

−3𝜆𝑥2

22

−7𝜆𝑥

11
1 − 𝜆 0

−𝜆𝑥4

528

−3𝜆𝑥3

132

−7𝜆𝑥2

44

−11𝜆𝑥

22
1 − 𝜆]

 
 
 
 
 
 
 
 
 

. 

The inverse of this matrix equals 

[
 
 
 
 
 
 
 
 
 
 
 

1

1 − 𝜆
0 0 0 0

𝜆𝑥

3(1 − 𝜆)2
1

1 − 𝜆
0 0 0

(𝜆 + 𝜆2)𝑥2

14(1 − 𝜆)3
3𝜆𝑥

7(1 − 𝜆)2
1

1 − 𝜆
0 0

(𝜆 + 4𝜆2 + 𝜆3)𝑥3

66(1 − 𝜆)4
(𝜆 + 𝜆2)3𝑥2

22(1 − 𝜆)3

7𝜆𝑥

11(1 − 𝜆)2
1

1 − 𝜆
0

(𝜆 + 11𝜆2 + 11𝜆3 + 𝜆4)𝑥4

528(1 − 𝜆)5
(𝜆 + 4𝜆2 + 𝜆3)3𝑥3

132(1 − 𝜆)4
(𝜆 + 𝜆2)7𝑥2

44(1 − 𝜆)3
11𝜆𝑥

22(1 − 𝜆)2
1

1 − 𝜆]
 
 
 
 
 
 
 
 
 
 
 

. 
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