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1 INTRODUCTION

There have been several studies about Fibonacci and Lucas numbers and their
generalizations as they have many applications on several fields, see [8, 9, 12—14,

16, 17]. The Fibonacci sequence {F, },s, is defined by the recurrence
Fppo =Fo + K

with initial conditions F, = 0, F; = 1. The Lucas sequence {L,},so is defined by L, =
2,L; =1and

Lytiz = Lpyqr + L.

A third order generalization of these sequences are called as Tribonacci
sequence {t,},>o and Tribonacci-Lucas sequence {v,},s,. These sequences are

defined by the recurrences

tnt3 = thtz Tl t iy
with initial conditions t, = 0,t; = 1,t, = 1 and

Unt+3 = Uny2 + Vntr T 0

with initial conditions v, = 3,v, = 1,v, = 3, respectively. The first few terms of

{t,}ns0 and {v,},s0 are given in Table 1.

Table 1. The first few terms of the Tribonacci and Tribonacci-Lucas sequences.

n 0123 4 5 6 7 8 9 10 11 12

t, 01 1 2 4 7 13 24 44 81 149 274 504
v, 3 1 3 7 11 21 39 71 131 241 443 815 1499

There are many studies on Tribonacci and Tribonacci-Lucas numbers and their
various properties in the literature. Several sums formulas of these sequences such

as
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thiz Tt — 1

tk: 2

Vngz + U, — 6
2

RN

Vg

==
1l
=

are also obtained, see [4—6, 10, 11, 20, 24—28, 30].

Matrices whose entries are chosen from special numbers are also found
interesting and some factorizations of these matrices have been considered by many

researchers, see [1, 2, 7, 19, 21, 32]. In [31], a matrix of order n + 1 with entries
[i]

2t;
tij =tz +t; =1’

0, otherwise

ifo<j<i

(1)

is defined and the Tribonacci space sequences ¢, (T) are introduced. In [22], a two
variables generalization of the matrix given in (1) is defined and some factorizations

of the defined matrix are obtained.

Recently, a new regular Tribonacci-Lucas matrix V = [v; ;] is defined by

2v; 0 <i<i
—_— ifo<j<i

Vij = {Vies + Vi — 6 ! (2)
0, otherwise

see [18]. They give some relations and inclusion results between the defined matrix
and some well-known summability matrices. In this paper, we define a generalization
of the matrix given in (2) and present several properties. We obtain some
factorizations of the defined matrix and give a relation with an exponential of a

special matrix.
2 A GENERALIZATION OF THE REGULAR TRIBONACCIi-LUCAS MATRIX

We define a generalization of the matrix (2) for two variables. Let V,(x,y) =

[vi;(x,y)] be the matrix of order n + 1 with entries
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—  x , ifo<sj<i,
vy =i, fvi—6 7 /
0, otherwise.

Here v, ;(x,y) will be zero for x or y is zero and so we assume that x and y are non-

zero real numbers. It is clear that for x =y =1 we have
171"]'(1,1) = vi,j

and so, in this case we obtain the regular Tribonacci-Lucas matrix (2).

Example 1. For n = 5, the matrix Vs(x,y) will be of the form

-1 0 0 0 0 0

! 3 0 0 0 0
2* 7Y

ix2 ixy lyz 0 0 0

11 11 11

Vs(x,y) = i 3 i 2 l 2 E 3
2% p*Y Y Y 0 0
1 3 7 11 21
4 3 2.,2 3 4

—xt = ~ — Syt
3% 3%V 3*Y @Y 3Y

1 3 7 11 21 39
A5 .4 _ A34,2 T A24,3 _ 4 - .5
429% 290* Y 39%7Y * Y 19 oY

2.1 Properties of the Tribonacci-Lucas Matrices V, (x,y)

We give some interesting properties and applications of the matrix V},(x,y).
Throughout the paper, we will denote the (i, ;) entry of a matrix 4 as (4);;. Forn,j €

N, we define

k\,k

(x® }’)1]'1: = Yk=0 Uk+j,k+jxn_ y.

Theorem 2.1. For any positive integer n and any real numbers x, y, z and w, we have

WG YV (w, 20Dy = (Vu(x @ yw);, v2)) (3)

ij
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Proof. It is clear from the definition that v; ;1.1 ; = Vj41,j+1V;j- Then we have

i
VhEIWa W, 2y = ) via (Y)W (w,2)
=
= vV i x Ty 2] 4 vy gV Ty wz v ytwtT 2
= v, ;72 (0 ;X" + Vg e T yw vy I W)
=v,;y/2 (x @ yw)|’
(h(x @ yw);, y2))

ij

We can obtain the k — th power of the matrix V,(x,y) by using Theorem 2.1.

Forw =xand z = y in (3), we get
W2y = (V1 ©9),5%),

Using formula (3) again, multiplying V;2(x,y) and V,,(x,y), we get

(Vn3 (x, Y))i,j = <V (X((l ) y),- &) yZ)j,y3)>

Lj
Then using the mathematical induction method, we have

J

Ve y)i;=|V <x <( (1@, %), & ) @ y’”) ,y">
j L
The inverse of the Tribonacci-Lucas matrix V,(x,y) which is denoted by
Vi t(x, y) = [vi/ (x,y)] is given by the following theorem.

Theorem 2.2. The (i,j) — entry of the inverse of the matrix V,,(x,y) is

Vit2 +Ui -6

. , ifi=j,

2v;yt b=
v (%,y) = 4~ + v, — 6)x ifi=j+1
L 20,9t ' ’
0, otherwise.

Proof. It is clear that (V,(x,y)V,, *(x,¥));; = 0 in the case of i # j and i # j + 1. For

i = j, we obtain that
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i
(hCe G0 YD = ) v YW () = v, y)vi (1, )
k=i
2vy' Vi v —6

B Viga F ;=6 2v)"
and for i = j + 1 we get

i
RV @iy = ) V(o y)VEh (5 7)
k=j
= v (6 IV (6, ¥) + v (6 V)V (0 Y)
20 x Tyl v, v — 6 205, x Ty (v, 4 v — 6)(—x)

Vigp t ;=6 2v5y) Vipp +V;— 6 2vj,1yI*1
(e ty—6)x' (vup + v —6)x'
Vitz +v;—6 Vitz +v;—6
= 0.

Thus, the result follows.
2.2 Factorizations of the Tribonacci-Lucas Matrices V,,(x,y)

We give some factorizations of the matrix V},(x,y). For this purpose, we need

to define the following matrices of order n + 1

(Vi,jr1 (Y)Y (6 ¥) + v Co vy (y), if0<j <,

Sn(x,¥))i; =
(Sn(x,¥))i o, otherwise

— [1 0
Vn—l(x' y) = 0 Vn—l] )

0

.I _ _ 0
G, = |k Sk] for1<k<n-1, and G,(x,y) = Sp(x,y).

Lemma 2.1. For any positive integer n and any real numbers x and y, we have

Vo (x,¥) = Sp (6, yI Vo1 (2, 3).

Proof. We denote the inverse of the matrix V},(x,y) as V}; (x,¥): = [#;}' (x,y)]. Then

Ve Vi (6 9)) i = Bkej Vine (6 )T j (06, ¥) = Thej Vige (6 1)V -1 (%, Y).

Here the sum is nonzeroonly fork —1=j—1and k —1 =j. So we get
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i
D vkl Wity o (69) = ¥11a (I (6 9) + G603 (1) = S5, 9),
k=j

Example 2.

Ss(x, YIVa(x,y) =

r 1 0 0 0 0 0 11 0 0 0 0 0 1
1 3
2 2y 0 0 0 0 Jlo 1 0 0 0 0
1 3
11 33 11 L, 3 7
1 1 32 11 2 = L
ZxB gxz)’ 231 Y s 0 0 {[0 T Thed 11y 0 0
1 2 26 42 1.3 3 2 7. .2 11 3 0
Ex4 Iz0 33’ Exzy 300y eed 0 0 X RV X 227
1 s 4. 64 3 26 5 8 559 10 —xt Zx3y Zx2yz Hyyd Zys
10X 12X Y T0zX Y T3pXY 35XV gVt a3 43 43 43 437
1 0 0 0 0 0
X 2y 0 0 0 0
1.2 3 7.2
11X s T4 0 0 0
=l1,3 3,2, 7Z,,2 1.3
22X 2V 2 22 0 0
1,4 3.3, 7 2.2 11 .3 21 4
B BYY XY Y FERd 0
1. 5 3 4 7 3.2 11 5.3 21 4 39 5
207 YV RXY @YY w5 BVl
=Vs(x,y).

Theorem 2.3. The matrix V},(x,y) can be factorized as
Vh(x,y) = Gu(x,y)Groy(x,y) ... Gy (x, Y).
In particular,
V, = G,Gpq ... Gy

where V,: =V, (1,1),G,: = G, (1,1),k = 1,2, ..., n.

Proof. By the definition of the matrices G, (x,y) and Lemma 2.1, we get the desired

decomposition of the matrix V,(x,y).

It is clear that the inverse matrix V,; 1(x,y) can be factorized as

Vi 0o y) = GT o, )G (%, y) . Gt (%, y).
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Example 3. Since

-1 0 0 0 0 0
. 3 0 0 0 0
2 37
1, 3 7 . . )
1n* 1Y 117

Vs(x,y) = l 3 i 2 l 2 E 3

2% Y Y Y 0 0

1 3 7 11 21
4 3 2,2 3 4

—xt = — — ke 0
3% 3*Y 3tV @Y 33Y
1 3 7 11 21 39

.5 A4 34,2 24,3 _ 4 .5

29 29% 7Y 9%V 49* Y 9% 197 |

we can factorize this matrix as

GS(xi y)G4(x, 3’)63(95; Y)Gz(x, )’)G1(x' }’)=

11 3o 0 0 0 01, o 0 0 0 o
1 2 28 0 1x Ey 0 0 0
—x? —xy —y 0 0 0 4 4
11 33 11 ! 5 28
1 1 32 11 L. 2 28
—x® —x%y —xy —y 0 0 0 11" 33" 11” 0 0
22 33 231 14 1 1 3 1
1 2 64 26 42 0 —x3 —xzy —Xy —y
—x* —x¥y —x?’y ——xy —y 0 22 33 231 14
3% 129 903 301 43 . 5 o 26 42
1 5 2 4 64 3 26 2 8 559 0 4—3x4’ m}ﬁy ﬁxzy —ﬁxy 4—3y
29 1a7% 7 10207 T323* 7 313" 33371 :
10 0 0 0 01 ]
01 0 0 0 0 (1) (1’ 8 8 8 8 1000 0 07
00 1 0 0 0 0100 0 0
{ 3 001 0 0 oo 010 o o
00 - >z 0 0
A o001 0 %001 0 o
0 o Lo ixy Ey ofl0 00 Zx 2y ofloooo 1 o0
11 33 11 1 2 28 |lo 0 0 0 x 3
00 ix3 ix2 2x Hojo 0o Hx2 33 1171 D
! 2% 337 231 147

We can also separate the variables x and y from the matrices V,(x,y) and
Vn(_x' y)

Theorem 2.4. Let D,(x):= diag(1,x,x? x3,..,x") be a diagonal matrix. For any

positive integer k and any non-zero real humbers x and y , we have

Vie(x, ) = Vi(x, 1) D (),
Vi(=x,¥) = Vi(—x, DDy ().
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Now, we present a relation between the matrices V},(x, ay) and V,,(x, —y) for a

nonzero real number a.

Theorem 2.5. For a nonzero real number a, the matrices V,(x,ay) and V,(x,—y)
satisfy the following
N _
Vn (xra) = VTL 1(xr _}’)Vn(x; CW)Vn 1(x! _3’)
Proof. The proof can be done easily by definition of the matrices and matrix
multiplication.

Theorem 2.6. Let K, (x,y) = [k; ;| be a matrix with entries k; ; = v;x'~Jy/ and D, =

2

[d; ;] be a diagonal matrix with diagonal entries d;; = . Then we have

Vit2tVi—

Vo(x,y) = DpK, (x,y).

Proof. By matrix multiplication, we have

n
(DRKa G iy = ) disij6y) = di ki ()
k=0
= —2 vix' Tyl
Viga +v; =67
Zvj

= l_]J:V y
ratvi=6 Y (Va(x, ¥))1 5

Example 4. For n = 5, we have

-1 0 0 0 0 0
1 3
- z 0 0 0 0
2* 7Y
ix2 ixy lyz 0 0 0
11 11 11
Vs(x:Y): 1 3 3 2 7 2 11 3
—x3 = _ — 0 0
2% Y Y Y
1 3 7 11 21
4 3 2.,2 3 4
—xt = —— — ke 0
3% 3*Y 3tV 3 43Y
1 3 7 11 21 39
45 4 _ A34,2 T A24,3 _ 4 a5
49% 29% Y 49* Y 49* Y 49" 19Y |
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1 0 0 0 O O
1
o - 0 0 0 O
4 10 0 0 0 0
00 ~ o0 o ollx 3 o 0 0 0
11 1 x2 3xy  7y? 0 0 0
{0 0 0 > 0 {[x> 3x%y 7xy? 11y3 0 0
1 x* 3x3y 7x%y?  11xy® 21y*t 0
00 0 O 3 0 [lx®> 3x*y 7x3y? 11x%y® 21xy* 39y°]
1
O 0o 0 0 0 -—
i 49.
= DsKs(x, ).

3 SOME APPLICATIONS OF THE TRIBONACCI-LUCAS MATRIX V,,(x,y)

The following result gives the sum of squares of the first n Tribonacci-Lucas

numbers.

Lemma 3.1 ([23]). For n = 1, the Tribonacci-Lucas numbers v, satisfy

n
2 2
2 : p2 = _Vnt1 T Vna + Voniz + Vop-2 — 4
k -_— .

2
k=1

Now, we consider a matrix whose Cholesky factorization includes the matrix
V,(1,1).

Theorem 3.1. A matrix Q,, = [c; ;] with entries

o= 2(=Vigp1 = Vg + Vopa3 + Vg — 4)
v (vi+2 +v; — 6)(Uj+2 + Vi — 6)

)

where k = min{i,j}, is a symmetric matrix and its Cholesky factorization is
Vh(LDR(LD)T.

Proof. Since

S 2(=Vjgy1 = Vioq + Vopaz + Vo2 —4) .
i,j — — Y
(Visz + Vi — 6)(Vj42 +v; — 6)

the matrix Q,, is symmetric. We now show that Q,, = V,,(1,1)V,,(1,1)7.
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n

2v
V(L DV(1L1)T = Z V= ) k
l+2+v 6v]+2+v] 6

k=0

(vl+2 +v; — 6)(v]+2 +vj — 6) Z Vi

_ 4 V41— Vpq + Vopys + Vpn_p — 4
(Vip2 + Vi — 6)(Vjs2 +v; — 6) 2

_ 2(=Vyq — Vg F Va3 + Vg — 4)

" Wi+ v —6) (v + v — 6)

= Qn.

Hence, we obtain the result.

For any square matrix M, the exponential of M is defined to be the matrix

2 M3 Mk

—I+M+7+?+ +F+

Thus, we have the following result for a square matrix M.

Theorem 3.2 ([3, 29]). (i) For any numbers r and s, we have e(+IM = g™MgsM

(i) (eM) 1 =e™,

(iii) By taking the derivative with respect to x of each entry of e*, we get the matrix
d  Mx — proMx.

—e€
dx

In the last part of this section, we will give a relation between the matrix

,,(x,y) and the exponential of a special matrix.

Definition 1. The matrix M,, = [m; ;] is defined by

YUoifizj+1

) me = )

m;; =1{v; g (4)
0, otherwise.

We want to obtain a relation between V,(x,y) and eM* so we prove the

following auxiliary result.
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Lemma 3.2. For every nonnegative integer k, the entries of the matrix M} are given

by

U oifiz=i+k
-, 1 =
(M) =qv; J
0, otherwise.

Theorem 3.3. For n € N and x € R, we have
WV 0,0V, (x, 1)), = (i = DL (eM¥), ;.
Proof. Suppose that there is a matrix Y, such that (V;;71(0,1)V,(x,1));; = (i —

! (eM*); ;. Then we have

d
E(Vn‘l(o,l)lln(x, 1)) = Yu(i = (™), ; = YoV 1 (0,1)V,(x, 1)),

and so

d
Tx (Vo H(0,1)V, (x, 1)) =Y.
x=0

Thus, there is at most one matrix Y, such that (V,;*(0,1)V,,(x,1));; = (i — j)! (e™*), ;.

It can be easily seen that Y,, = M,,, where M,, is the matrix given Definition 1, by

calculating :—x(Vn‘l(O,l)Vn(x, 1))i,j| . We conclude that M¥ = 0 for n + 1 < k, thus
0

X=

n k
Mpux ka
nX — R
e n k'
k=0

For i < j, we see that (e"*); ; = 0 and we also have (e""*);; = 1. Now, suppose that

i>jandleti=j+k

N AL . A Jpe -
(e™n¥) (My) (0D (x D)
LJ T TR Tt St

181



BITLIS EREN UNIVERSITY JOURNAL OF SCIENCE AND TECHNOLOGY 13(2), 2023, 170-186

Example 5. We obtain the matrix ;—x(VS‘l(O,l)V5(x, 1)) by taking the derivative of

each entry of the matrix V:1(0,1)Vs(x, 1) with respect to x. Thus,

-0 0 0 0 0 O
1
- 0 0 0 0 O
3
2 3 0 0 0 O
4 7% 7
— W OD)Vs(x, 1) =|3 , 6 7 )
dx 11x 11x 11 0 0 0
4 .9 14 11
— x> — 0 O

1Y 21 21t 71
5 12 . 21 . 22 21
39% 39° 39% 39* 39

Hence, we have

0 0 0 0 0 0
1
— 0 0 0 0 O
3
03 0 0 0
d 7
— -1 - —
Ms=Vs"OD Vs =ty 0 Z o 0o o
11
0001100
21
0000210
39
and
0 0 0 0 0 0
0 0 0 0 0 O
1
-~ 0 0 0 00
7
M2—03 0 0 0
57 11
07000
21
0 01100
39
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0 0 0 0 0 0
0 0 0 00 O
0 0 0 00 O
1
mio|p © 0 000
3
0 oz 0 000
0 0 — 00 0
: 39
‘0 0 0 0 0 O
0 0 00 0 0
0 0 00 0 0
Mézcl)ooooo
57 0 0000
0 = 00 0 0
L 39 |
‘0 0 0 0 0 0
0 00000
0 00000
ME=|0 0 0 0 0 O
0 00000
1
— 000 0 0
.39 i

Let M, be the matrix defined in (4) and U,(x) = eM*. At the end of this
section, we will find the explicit inverse of the matrix R,,(x) = [I,, — AU, (x)]~* for a

real number A such that |1] < 1. To achieve this, we need the following result.

Lemma 3.3 ([15], Corollary 5.6.16). A matrix A of order n is nonsingular if there is a

matrix norm |I-|| such that || I — A |I< 1. If this condition is satisfied,

Al = (I — A)*.

Theorem 3.4. The matrix R, (x) is defined for real number A such that |1] < 1. The

entries of the matrix are

1
(Rp(x))ii = 1-1

and
(Rn(x)) i = (Un(x));;Lij—; (1),
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for i > j, where Li,(2) is the polylogarithm function

. = Zk
Li,(2) = z o
k=1

Proof. By Lemma 3.3, for |1] < 1, we have

(Rp(x))i; = Z (Un(x))kak = Z (Un(xk)); A% = (Un(x))i,jz A=,
k=0 k=0 %=0

We get the result by writing the sum fori =jand i > j.

Example 6.
r 1 r1—A 0 0 0 0 7
x —Ax
§2 = 1-41 0 0 0
x 3x —-Ax? —3Ax
I,-,x)=1,—A|14 7 S I 7 1=+ 0 0
x_3 3_762 7x 1L o —Ax3 —3Ax? —7lx -3 0
66 22 11 66 22 11
X_4 3_363 7iz 1lx 1 —Ax* —3Ax3 —-7Ax* —-11ix
1528 132 44 22 1 Lls528 132 44 22
The inverse of this matrix equals
1
-7 0 0 0 0
Ax 1
3(1— )2 1-2 0 0 0
(A + 2?)x? 3Ax 1
14(1 — 2)3 7(1 — 2)2 1-2 0 0
(A + 422 + 23)x3 (A + 22)3x? 7Ax 1
66(1 — )* 22(1—2)3 11(1 — )2 1-2 0
A+ 1122 + 1123 + AM)x* (A + 422+ 213)3x3 (1 + 12)7x? 111x 1
528(1 — A)5 132(1 — A)* 44(1—-1)3 22(1—-1)% 1-A
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