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ABSTRACT. Let H be a Hilbert space. In this paper we show among others that, if f is continuous differentiable
convex on the open interval / and A, B are selfadjoint operators in B (H) with spectra Sp (A), Sp (B) C I, then we
have the tensorial inequality

(fADNA®I-1®B) > f(A)®1-1® f(B)
>A®1-1®B) (e f(B)
and the inequality for Hadamard product
(f (A)A) o1 - f(A)oB2[f(A) - f(B)]ol
>Aof (B -(f"(B)B)o 1.
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1. INTRODUCTION

Let Iy, ..., I; be intervals from R and let f : I} X ... X I[; — R be an essentially bounded real function defined on the
product of the intervals. Let A = (A, ..., Ax) be a k-tuple of bounded selfadjoint operators on Hilbert spaces Hy, ..., H
such that the spectrum of A; is contained in /; for i = 1, ..., k. We say that such a k-tuple is in the domain of f. If

Ai=f/lidEi(/1i)
I

i

is the spectral resolution of A; for i = 1, ..., k; by following [2], we define

fAy, LAY :=f...ff(/ll,...,/lk)dE1 (1) ® ... ® dE; (1)
I I

as a bounded selfadjoint operator on the tensorial product H; ® ... ® H.
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If the Hilbert spaces are of finite dimension, then the above integrals become finite sums, and we may consider the
functional calculus for arbitrary real functions. This construction [2] extends the definition of Koradnyi [7] for functions
of two variables and have the property that

fAL L AD = filA) ® ... ® fil(Ap),

whenever f can be separated as a product f(fy,...,%) = fi(t1)...fy(tx) of k functions each depending on only one
variable.
It is know that, if f is super-multiplicative (sub-multiplicative) on [0, c0), namely

f(st) = (L) f(s) f(2) forall s,t € [0, c0)
and if f is continuous on [0, o), then [5, p. 173]
fA®B)>(L)f(A)® f(B) forallA, B> 0. (1.1)
This follows by observing that, if

A= f tdE (t) and B = f sdF (s)
[0,00) [0,00)

are the spectral resolutions of A and B, then
f(A®B) =f f(s)dE (1)  dF (s)
[0,00) J[0,00)
for the continuous function f on [0, o).
Recall the geometric operator mean for the positive invertible operators A, B > 0
A#tB = Al/Z(A—1/2BA—1/2)tA1/2
where ¢ € [0, 1] and
A#B = AV2(ATV2BATIH)IZ AN,
By the definitions of # and ® we have
A#B = B#A and (A#B) ® (B#A) = (A® B)#(B®A).

In 2007, S. Wada [8] obtained the following Callebaut type inequalities for tensorial product

(A#B) ® (A#B) < % [(A#,B) ® (A#_oB) + (A#,_oB) ® (A#,B)]

1
SE(A®B+B®A)

forA,B>0and a € [0, 1].
Recall that the Hadamard product of A and B in B(H) is defined to be the operator A o B € B(H) satisfying

<(AOB)€j,ej> = <A€j,€j><B€j,€j>

for all j € N, where {e j} . is an orthonormal basis for the separable Hilbert space H.

JE
It is known that, see [4], we have the representation

AoB=U" (A®B)U, 1.2)

where U : H — H ® H is the isometry defined by Ue; = e; ® e; for all j € N.

If f is super-multiplicative and operator convex (sub-multiplicative and operator concave) on [0, co) , then also [5, p.
173

: f(AoB)=(2)f(A)o f(B) forall A, B > 0.

We recall the following elementary inequalities for the Hadamard product
A+B

2

A'/zoBl/zs( )olforA,BZO

and Fiedler inequality
AoA™' > 1forA>0.
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As extension of Kadison’s Schwarz inequality on the Hadamard product, Ando [1] showed that
1/2 1/2
AoB< (A1) (B201)" fora, B>0
and Aujla and Vasudeva [3] gave an alternative upper bound

1/2
AoB<(A20B)"” fora, B>0.

. 1/2 172 1/2 . . .
It has been shown in [6] that (A2 o 1) (82 o 1) and (A2 o B2) are incomparable for 2-square positive definite
matrices A and B.

Motivated by the above results, in this paper we show among others that, if f is continuous differentiable convex
on the open interval I and A, B are selfadjoint operators in B (H) with spectra Sp (A), Sp(B) C I, then we have the
tensorial inequality

(fAe)(A®l-1®B) > f(A®1 -1 f(B)
>(A®1-1®B)(1® ' (B))
and the inequality for Hadamard product
(f(A)A)ol—-f' (A)oB=(f(A)—-f(B)ol
>Aof (B)~(f (B)B)o 1.
2. MaIN ResuLts
We start to the following result that is related to super/sub-multiplicative tensorial inequalities in (1.1):

Theorem 2.1. Let h(z) = Y, a," be a power series with nonnegative coefficients and convergent on the open disk
D(O,R)cC,R>0.Assumethat0 <r <Rand 0 < A, B< 1, then

h(r)h(rA® B) > h(rA)® h(rB). @2.1)

If R = oo, then the inequality (2.1) also holds for A, B > 1. In this case for R, if either O < A<land B>1orA>1
and 0 < B < 1, then the reverse inequality in (2.1) holds as well.

Proof. We use the Cebysev inequality for synchronous (the same monotonicity) sequences (¢;)iex » (b);cy and nonneg-

ative weights (p;);qy :
n n n n
Z Di Z picibi > Z DiCi Z pibi,
=0 =0 i=0 i=0
forany n € N.
Assume that 0 < » < R. Let t, s € (0, 1) and define the sequences c; := t', b; := s'. These sequences are decreasing

and if we apply Cebysev’s inequality for these sequences and the weights p; := a;r' > 0 we get

Y a;rt Y a; (rts) > S a; (rt) S a; (rs) 2.2)

forany n € N.
Since the series

a;r, Zai (rts)i, Zai (rt)" and Zai (rs)i
i=0 i=0 i=0 i=0
are convergent, then by letting n — co in (2.2) we get
h(r)h(rts) > h(rt) h(rs) 2.3)
forallO0 <r<Randt, s €[0,1].
Consider the function hrD
rt
h.(t)y=——, t€]0,1].
() e €[0,1]

We observe that, by (2.3), the function /4, is super-multiplicative on [0, 1] and by making use of (1.1) we derive the
desired result (2.1).
The other parts of the theorem follow in a similar way, we omit the details. O
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Corollary 2.2. With the assumptions of Theorem 2.1 and if h is operator concave on [0, R) , then
h(r)h(rA o B) > h(rA) o h(rB) 2.4)

for either 0 < A, B<1orA, B> 1 inthe case when R = co. In this last case for R, if h is operator convex on [0, o)
and either 0 < A< 1land B> 1o0rA > 1and0 < B < 1 then the reverse inequality in (2.4) holds as well.

Proof. As in [5, p. 173], by using Davis-Choi-Jensen’s inequality we have
h(rh(rAoB)=h(Nh(rU (AB)U) > h(r)U'h(rA” B)U
>U (h(rA)®h(rB) U =h(rA) o h(rB).
and the inequality (2.4) is proved. o
We also have the following double inequality for tensorial product of operators:

Theorem 2.3. Assume that f is continuous differentiable convex on the open interval I and A, B are selfadjoint
operators in B (H) with spectra Sp (A), Sp (B) C I, then

(ffAA1)A®1-1®B)>f(A)®1-1® f(B) 2.5
>A®1-19B) (1 f'(B)).

Proof. Using the gradient inequality for the differentiable convex f on I we have
FOt=-92fO-f()=f (-5

forall¢, s € 1.
Assume that

A= ftdE(t) and B = fde(s)
I I

are the spectral resolutions of A and B.
These imply that

flflf'(f)(f—s)dE(f)‘@dF(S)Zflfl(f(t)—f(s))dE(t)@)dF(s)
2fff’(s)(t—s)dE(t)@dF(s).
1JI

Observe that

fff’(t)(t—s)dE(t)@vdF(s):ff(f’(t)t—f’(t)s)dE(t)®dF(s)
1JI 1JI

= f f f' () tdE (t) ® dF (s) — f f ' (t) sdE (t) ® dF (s)
I1JI 1JI
=(fAWA)1-f (A®B, (2.6)

flflq(r)—f(s))dE(t)@dF(s)=f<A>®1—1®f<B>

and

f f £ ()t = ) dE (1) ® dF (s) = f f (1 (5) = f' () ) dE (1) ® dF (s)
1JI1 1JI1

=fftf’(s)dE(t)@dF(s)—fff’(s)sdE(t)@dF(s)
IJI I1JI
=A® [ (B)-1a(f" (B)B)

and by (2.6) we derive the inequality of interest:
(fAAR1I-f(A®B=f(A)®1 -1 f(B) 2.7
>A® f (B)-1®(f (B)B).
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Now, by utilizing the tensorial property
XU)®(YV)=(XQY)(UV),
forany X, U, Y, V € B(H), we have
(f@A@Ael=(fAe)As]),
fAeB=(fAel)(lehB),
A®f (B)=(A®1)(1® ' (B))

and
1o (f(B)B)=1&(Bf (B) =(1®B)(1® 1 (B).
Therefore,
(fAAe1l-FfAeB=(A1H)Ae ) -(f(A)e1)(1®B)
=(f"A)®1)(A’1-1®B)
and
A f (B)-1&(f'(B)B)=(Ae)(1®f (B)-(1&B)(1® f (B)
=(A®1-1®B)(1® " (B))
and by (2.7) we derive (2.5). |
Corollary 2.4. With the assumptions of Theorem 2.3 and if A; € B (H) with spectra Sp (Aj) cl,pj=20forje{l,..n}

with Z;le pj =1, then
[ipjf’ (A,)A,»]@l—[zn;pjf' (A,)]@B 2.8)
Jj= Jj=
> (Zn;mf(Aj)]@’ 1-1® f(B)
j:
> ([znlijj](@ 1-1 ®B](l ®f,(B))
=1

In particular, we have
[Z”;pjf’(Aj)Aj}®1—[Zn;pjf’(Aj)](@[Zn;ijj] (2.9)
i= j= Jj=
> [Zn;p,f(A,»)]@g 1-1 ®f[an:ijj]
Jj= i=
ERERE
i= Jj= Jj=

Proof. From Theorem 2.3 we have

(£ (a)A)e1-f(4)@B2f(A))®1-1®f(B)
>(4;01-18B)(1® f (B)
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If we multiply by p; > 0, j € {1, ..., n} and then sum from 1 to n, then we get
2.1 (A)a)et=3 pif(a))eB
=1 j=1
> Y pif(A)e1-> pilef(B)

=1 =1

> pi(aj@1-18B)(1ef (B)

=1

= ([iijj]cpl— 1®B](1®f’(3)),

for a selfadjoint operator B with Sp (B) C I, which gives (2.8).
Since Sp(A;) ¢ I and p; > 0 for j € {1,...,n} with 3", p; = 1, hence SpSp (X", pjA;) C I and by taking
B=3%"_,pjA;in (2.8), we get (2.9). o

Remark 2.5. With the assumptions of Corollary 2.4 and if

[ijAjJ(X)l = 1®[ijAj], (2.10)
j=1 j=1

Brreinfer-(Sore)e(Sen)
> (jz:;p,f(Aj)]® 1 —1®f[JZ::ijj] > 0.

Theorem 2.6. Assume that f is continuous differentiable convex on the open interval I and A, B are selfadjoint
operators in B(H) with spectra Sp (A), Sp (B) C 1, then

(f'(AA)ol—-f (A)oB=(f(A)-f(B)ol (2.11)
>Ao f'(B)-(f'(B)B)ol.
Proof. If we multiply the inequality (2.7) to the left with U* and at the right with U, we get
wU(f@Aael-fAeBlU
>U[fAel-10fB|U
>U[Ae f(B)-1&(f (B)B)]U,
namely
wU(f@DANU-U(f(A)eB)U
>U(FADU-U AR FB)YU
>U AL B)U-U (1(f (B)B))U.
Using representation (1.2) we get
(f(A)A)ol—-f'(A)oB=> f(A)ol—10 f(B)
>Ao f'(B)-1o(f (B)B),
which gives (2.11). |
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Remark 2.7. If {e j}jeN is an orthonormal basis for the separable Hilbert space H, then, under the assumptions of

Theorem 2.6, we have

(f' (W) Acj.e;) = (f (A)ej.e;) (Bej.e;)

2 (f Weje)) = (f (B)ej.e;)

> (Aej,ej> <f’ (B)ej,€j> - (f' (B)Bej’ej>’
forall j € N.

Corollary 2.8. With the assumptions of Theorem 2.6 and if A; € B (H) with spectra Sp (Aj> cl,pj=0forjeil,..n}
with 3i_ pj = 1, then

[ijf’(Aj)Aj]o1—[ijf'(Aj)JoB (2.12)
J=1 Jj=1
> [Z pif (4)- f(B)] ol
j=1
%me}fw—WwwwL
j=1

In particular,

[jn pjf’(A,-)Aj]m_(Zn;pjf'(Aj)]o[jzn;ijj] 2.13)
Z{Zn:p,f ]01— [ij ]
(oo sl

Proof. If we replace in (2.11) B = A;, multiply by p; and sum over j from 1 to n, then we get (2.12).
The inequality (2.13) follows by taking B = Z;le pjA;in (2.12). O

3. SoME EXAMPLES

Let h(2) = X7 a.<" be a power series with complex coeficients and convergent on the open disk D (0,R) c C,
R > 0. We have the following examples

(o8]

1, 1
h(Z):ZZZ —lnl__z, ZGD(091)’

n=1

oo

_ 1 2n _ .
h(z) = 2 mz =coshz, z€C;

_ X 1 2n+l _ .
h(Z)—ZmZ =sinhz, z € C;

h(Z)—Zz T eeDO.1).
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Other important examples of functions as power series representations with nonnegative coefficients are:

00

1
h@=) —Z'=exp)  z€C,
n=0
I+z

1
_ 2n—1 _ .
h(z) = E 2n—lZ _Zm(_l—z)’ z€D(0,1);

hp) =) ——— =2 2 —gin"l (), ze€D(,1);

Z \/_(2n+ l)n'

and

= 1
h(z)zzz — lzz"’l =tanh™' (2), ze D(0,1)
n=1 n

D = Fi@py = L@ AL0) o,

= n!F(a)F(,B)F(n+7)
z€D(0,1);

where I' is Gamma function.
Assume that 0 < 7 < 1 and 0 < A, B < 1, then by (2.1) for i (z) = (1 — z)~' we get

A-n'd-rAeB) ' >0 -rA)"'e1-rB)",
for h(z) = In(1 — )~ we obtain
In(1-N"'m(1-rA®B) ' >In(1-rA)'®In(1 -rB)",
while for & (z) = sin~! (z) we derive
sin”! (r)sin™! (rA ® B) > sin™! (rA) ® sin™! (rB).
If > 0 and either 0 < A, B< 1 or A, B > 1, then by (2.1) for & (z) = expz we get
exp(r(1 + A® B)) > exp (rA) ® exp (rB). 3.1

Ifeither0 <A<land B>1lorA >1and0 < B <1 then the reverse inequality in (3.1) holds as well.
By (2.1) for h(z) = cosh z or sinh z we get

cosh (r) cosh (rA ® B) > cosh (rA) ® cosh (rB) 3.2)

or
sinh () sinh (rA ® B) > sinh (rA) ® sinh (rB) (3.3)

foreither0 <A, B<1lorA,B>1.
Ifeither0O<A<land B>1lorA > 1and0 < B < 1, then the reverse inequality in (3.2) or (3.3) holds as well.
If we take the convex function f (f) = —Int, t > 0, then from (2.7) for A, B > 0 we get

1-A"'®B<(nA)®1-19(InB)<A®B'-1.
From (2.9) we get

[i ijjl) ® [an p,-A,-] -1
Jj=1 j=1

ijj} - [ pj 1nAj] ®1
= =1

[[ ][ ]]([Z]}

where A; > O and p; > 0 for j € {1,...,n} with }%_; p; = 1.

> 1®ln(
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Moreover, if the condition (2.10) is satisfied, then

[Z ijjl) ®{Z P_/'A.i] -1

j=1 j=1

> 1®1n(ijAj]—(ijlnAj]®l > 0.
j=1

Jj=1
From (2.11) we get
A'"oB-1>(InB-InA)ol>1-AoB"!

for A, B > 0.
IfA;>0and p; > 0for je{l,...n} with 3, p; = 1 then by (2.13) we derive

(Zn: ijjl] ° (Zn: P_/'A.i] -1
j=1 J=1
> (ln [i p]A/] - ipj lnA_,-] ol
j=1 J=1
n n -1
> (Z ijj] ° {Z P_/'A.i] -120
j=1 J=1

The last inequality follows by Fiedler inequality B o B~! > 1, see for instance [5, p. 176].
If we take the convex function f () = tInt, t > 0, then from (2.7) for A, B > 0 we get

(nA)®1+1)A®1-19B)>(AInA)®1-1®(BInB)
>A®1-19B)(1nB+1).

From (2.9) we get

[Z ijlelAj + ijAj]®1

=1 =1

- [ijln(Aj) + 1}®[ZPIAI]
=1 =1

> {ijAjlnAj]® 1-1® [ZPJAJ]IH{ZPJAJ]
j=1 j=1 j=1
> {[ijAj]éb 1-1 ®{ijAj]]
j=1 j=1
X[]@]n(ijAj]+1],
j=1

where A; > 0 and p; > 0 for j € {1,....n} with 37, p; = 1.
From (2.11) we get

(AINA+A)ol—(nA+1)oB>(AlnA—-BInB)o |
>Ao(nB+1)—(BInB+B)o 1

for A, B > 0.
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From (2.13) we get

[ZP,A In(A ]01‘[21”1“ ] [,1 JAj]
z[%;p,AjlnAz (ZP’ ) Aj]OI
S [ ; ) Aj] oln (; PjAj] - ]

where A; > O and p; > 0 for j € {1,...,n} with 37, p; = 1.
If we Wr1te the inequality (2.5) for the convex function f (¢) = ¢, r € (—00,0) U [1, 00), then we get

r(A"1®l)(A®1—l®B)zA"®l—l®B’
2r(A®1—1®B)(1®B"1),

for A, B > 0.
For r = 2, we get

29 1)(A®91-1®B)>A’®1—1® B?
>2(A®1-1®B)(1®B),

while for r = —1 we get

(A*2®1)(1®B—A®1)2A*1®1—1®B*1
2(1®B—A®1)(1®B’2),

for A, B > 0.
From (2.9) we derive

r [Zn: PjA;] ®l- [Zn: P1A§_l] ® [i PjAj]
j=1 Jj=1 Jj=1

> [iij;]® 1-1 ®[Zn:ijj]
=1 =1

{@m%hm@mmm@my}

where A; > O and p; > 0 for j € {1,...,n} with 37, p; = 1.
®1—(ZP1 ] [prAf]
=1

50 2
( J 1-1 ®[Z j,A,] n
> 2[[,-:1 ijj] ®l-1® [; ijj]][l ® [; ijj]],
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while for r = -1, we get
[i ijj—?] ® [i ijj] - [i ijj—,l] ®1
=1 = =
fpoprfio]

DR R EN

From (2.11) written for the convex function f (#) = ¢, r € (—00,0) U [1, c0), we get
r(Aro 1-A"! OB) >(A"-B)ol> r(AOB’_1 -Bo 1),
for A, B > 0.
For r = 2 we get
2(A%01-AoB)2(A’-B*)ol22(A0B-B0ol),
while for r = -1, we get
A_ZOB—A_101Z(A_I—B_1)0123_101—AOB_2,
for A, B > 0.
IfA; > 0and p; >0 for j € {l,...,n} with Z;zl pj =1, then by (2.13)

r [Zn:ij;] ol — [Zn:ij;‘l] ° [iijj]
j=1 Jj=1 Jj=1
> [i piA; - [Zn:ijj] ]o 1
= =1
n n r=1 n r
>r {[Z ijj] ° [Z ijj] - [Z piAj| © 1‘ .
Jj=1 Jj=1 J=1

For r = 2, then we get

il (Sl (Ben)
Bl
(Bl (BB |

n n
=1 = =

F (Soa] ]

5
{5

>2

while for r = —1 we get

=

j=1

- n n -2
PJAJ‘] ol- [Z PJ'AJ] ° [Z p,-A,»]
1 =1 j=1

=

>
j=
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