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ABSTRACT 

Hardening can be defined as increase in the strength of a material due to plastic deformation. A type of hardening, which is work 

hardening, is performed under the cold working conditions. In metallic solids permanent change of shape is generally carried out 

on a microscopic scale by defects called dislocations which are created by stress. In addition, Hardening parameter is so critic for 

the computational plasticity. In this study, the hardening parameter, which has emerged from the variation of yield surface equation, 

has been considered. It has been isolated from hardening rule and investigated that the parameter must have a unique value for any 

hardening rule. 
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Hesaplamalı Plastizite İçin Sertleştirme Parametresinin 

Modifikasyonu 

ÖZ 

Sertleştirme plastik deformasyondan dolayı malzemenin mukavemetindeki artış olarak tanımlanmaktadır. Sertleştirme türlerinden 

biri olan pekleşme soğuk şekil değiştirme sonucunda oluşmaktadır. Metallerdeki kalıcı şekil değişimi, genellikle malzemenin 

içyapısındaki gerilmelerin dislokasyon adı verilen mikroskobik ölçüdeki kusurlara neden olmasından kaynaklanmaktadır. Buna ek 

olarak sertleştirme parametresi hesaplamalı plastizite için oldukça önemlidir. Bu çalışmada akma yüzey denkleminden ortaya çıkan 

sertleştirme parametresi dikkate alınmıştır. Bu parametrenin her sertleştirme kuralı için özgün bir değere sahip olduğu sertleştirme 

kuralından izole edilmiş ve incelenmiştir. 

Anahtar Kelimeler: Sertleştirme parametresi, sertleştirme kuralı, elasto-plastizite. 

1. INTRODUCTION 

Computational plasticity requires to describe plastic 

strain and stress increments. This can be proceeded by 

means of the following conditions in the associated 

plasticity; the instantaneous yield surface must be 

convex, the plastic strain increment vector must be on the 

outward normal to the instantaneous yield surface and the 

rate of change of plastic strain must be a linear function 

of the rate of change of the stress [1]. These conditions 

can be satisfied under the assumption of the elasto-plastic 

behaviour of a given material under multiaxial stresses 

obtained in terms of its uniaxial behaviour. 

Due to the classical theory of plasticity, elasto-plastic 

equations are derived based upon the yield criteria, flow 

rules and hardening rules. Yield Criteria can be defined 

by the yield surfaces. Yield surface can be generally 

expressed as follows: 

F k( , )  0                                              (1) 

Where k is the hardening vector, which is generally a 

function of the plastic strain p and a scalar hardening 

parameter  , i.e. 

0),,(  pF                                (2) 

There are several yield criteria in the literature; the most 

popular ones for metals and alloys are Von Mises and 

Tresca’s criteria. The yield surfaces of Von Mises and 

Tresca can be defined by referring to Von Mises`s and 

Tresca's equivalent stresses   and uniaxial yield 

stresses Y  in the following equation: 

F Y   0                                 (3) 

Flow Rule, which defines the plastic strain increment dp, 

may be expressed by Nayak and Zienkiewicz [2] for 

associative plasticity as follows: 

d d
F

d a
p

 



 

  
                     (4) 

Where d is proportionality constant, F is the yield 

surface function and a  is the variation of F with respect 

to stresses. 

The total strain increment during plastic flow is 

expressed as follows: 
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pe ddd                                  (5) 

Where  dDd e

1  and D  is the elastic stress-

strain matrix. So, it can be deduced from Equations (4) 

and (5) as follows: 

d D d d D       a                   (6) 

Considering the Equation (2) and by differentiation it can 

be deduced that  

dF
F

d
F

d
F

dt t

p   ( ) ( )


 




 




 


  

 
 

  

 
 

  

 
 

p

0            (7) 

where the last two terms are called as hardening term and 

it has been re-defined and expressed as follows: 










dd

F
d

F
A p

t

p

/]  )
 

  
( )

 

  
[(              (8) 

where 

d
D

A D
d

t

t 


a

a a
                  (9) 

So, the Equation (7) is simplified to the following 

equation 

dF d A d
t

  a       0                             (10) 

where the A is the slope in the equivalent stress-

equivalent plastic strain curve and it may be called as 

hardening parameter.      

 

2. MODIFIED HARDENING PARAMETER  

The definition and the derivation of hardening parameter 

is quite standard procedure in classical plasticity theory. 

But hardening parameter of each case should result with 

a different formulation and value due to different 

definitions of yield surfaces in different hardening rules. 

So, it is required a new interpretation and derivation to 

handle this problem. For this purpose, the well-known 

derivations of hardening rules may be given to see the 

difficulty mentioned above.  

2.1 Hardening Rules  

2.1.1 Isotropic hardening  

This rule states that the instantaneous yield surface will 

deform uniformly during plastic deformation. So, the 

yield surface can be formulated as follows: 

0) )(Y ,( kF                               (11) 

where, k is a function of the plastic strain history. If the 

history of the process is taken into account throughout the 

effective plastic strain p then this type of hardening is 

called as strain hardening. If the hardening parameter 

depends on the total plastic work, this is known as work 

hardening. In this study, work hardening material will be 

used in the analysis so k may be defined as the amount of 

plastic work done during plastic deformation as follows: 

P

t

p ddWdk  

 
                             (12) 

If the uniaxial loading case is considered, then the plastic 

work may be found. Thus 

dk dW Y dp p                                  (13) 

where pd  is uniaxial plastic strain increment. 

Last two equations are accepted as equivalent to each 

other with an acceptable correlation between the uniaxial 

and multiaxial cases, i.e.  


tt

Pp dddYdk a    
  

                (14) 

From yield surface function, applying the Euler's 

theorem [2] and using Equation (14), the hardening and 

flow parameters are defined as follows: 

dk Y
F

Y
d 






  

  
                            (15) 

and 

d
F

Y

P


 





 
   

  

 

  
 

( )

                                         (16) 

The Equation (11) is the implicit form of the yield surface 

but it may be expressed in the following explicit form for 

the uniaxial case: 

F Y f Y( , )   ( )    0               (17) 

Apply Euler's theorem to Equation (17) then the 

following form is obtained: 

( )


 


  

  

  F
Yt   0                                          (18) 

so 

d f d     ( )                                          (19) 

and 

d d p                                               (20) 

The parameter A given by Equation (8) can be 

represented in the following form for isotropic hardening 

considering 0




p

F


 : 

A
F

Y
H















  

  
 

2

'
                            (21) 

where H
dY

d p

' 
 

 
  

and 1




Y

F
 

So, the parameter A is given for isotropic hardening as 

follow: 

' HA                                            (22) 

 

 



MODIFICATION OF HARDENING PARAMETER FOR COMPUTATIONAL PLASTICITY… Journal of Polytechnic, 2017; 20 (3) : 647-650 

 

649 

2.1.2 Kinematic hardening  

The Bauschinger effect can be represented by the 

Kinematic Hardening model and for this case, it is 

assumed that the yield surface translates in the stress 

space as a rigid body. 

The yield surface for kinematic hardening is expressed as 

follows: 

F Yo  ,  ( )   0                             (23) 

where  is a shift vector for the translation of the initial 

yield surface, Yo is the initial yield stress. The shift vector 

increment has been defined by Prager [3] as follows: 

d C d
P

   
                                            (24) 

where C is a parameter which characterises the hardening 

behaviour of material. 

The Ziegler's modification [4] of the Prager hardening rule 

has been given as follows: 

d d    =   ( )                             (25) 

Parameters d, A, d and C can be defined as follows for 

kinematic hardening: 

d
C

d
t

t


 
a

a a


1
                              (26) 

o

 a
 

Y

dC
d

p

t 
                                            (27) 

A C t  a  a                               (28) 

where          C H
2

3

'
  

It is valid for a uniaxial case and it may be extendable for 

multiaxial cases [5]. 

2.1.3 Mixed hardening  

Allen, D. H [6] gives a combination of isotropic and 

kinematic work hardening rules, which has been used by 

Guzelbey [1] as mixed hardening for the correctness of 

isotropic hardening with kinematic hardening to predict the 

Bauschinger effect during cyclic loadings. 

Mixed hardening model simulates the yield surface 

deforms (isotropic hardening) and translates (kinematic 

hardening) in the space, and the yield surface equation is 

given by: 

F Yr  ,  ( )   0                              (29) 

Where  is the translation of the centre of the yield 

surface. -=r is the reduced stress vector which is 

measured from the centre of the translated yield surface. 

Yr is the current reduced yield stress in simple tension. 

The plastic strain increment is expressed as follows: 

d d d
p P

i

P

k   
 

  

 

  
  

( ) ( )
                            (30) 

Where the superscripts show the isotropic and kinematic 

models' contribution, and 

d M d
P

i

p
 

 

  
   

( )
                              (31) 

p

k

P dMd   )1(
)(  

                  (32) 

where M is a material parameter in the range 

11  M  which defines the share of isotropic 

hardening in the total amount of hardening. The yield 

surface for mixed hardening can be written in following 

form: 

F F  ( ) , Yp

k

r   ,    ( )( )                  (33) 

and the hardening parameters are given by: 

d
d
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p
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r







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





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
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                (34) 

and d of Ziegler's model 
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
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where 
dY

d

r

p

i
 

 
 = H '

( )
( , ) and 

C
dY

d
Hr

p

i
 

2

3

2

3
 

   ( )

'
  for the special case of a 

material with an idealized stress-strain diagram. 

2.2 Suggested Modification  

The effect of hardening on yield surface is represented in 

Equation (9) by means of the term -Ad, for all hardening 

models reviewed in this study. The parameter d, can be 

obtained by means of Equation (10). For the special case 
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of Von Mises yield criterion, substituting from Equation 

(4) into (3), it can be deduced that 

 

which represents a measure of equivalent plastic strain 

increment, valid for different hardening models. 

However, the parameter A has different definitions 

depending upon the hardening model used, i.e. 

(mixed)M)A(MAA

)(kinematicHA

)(isotropicHA

ki

t

       1 

                     a a 
3

2
 

                                

)()(

'

'







 

 (39) 

For the case of monotonic increasing load, where 

different models are supposed to give similar answers, 

some fluctuation in results has been observed because of 

the variation in A definitions. This suggests that for a 

more consistent elasto-plastic analysis with different 

hardening conditions, the parameter A should be same 

definition and independent from hardening rules 

employed for the analysis. Hence, by considering a 

uniaxial case, 











2

1

2

1
1a

t
                   (40) 

i.e. 

3
a a

2

t
                                                          (41) 

So the Equation (41) shows that the kinematic and mixed 

hardening parameter equals to 
'H  which is plastic 

modulus [7], then the hardening parameter A will be the 

plastic modulus as follows:  

'HA   

for all models of hardening rules. 

 

3.  RESULT AND DISCUSSION  

In this study, the hardening parameter A emerged from 

the variation of the yield surface equation of elasto-

plasticity. The hardening parameter has been improved 

and expressed as a unique value for different hardening 

rules. Thus, it may improve the results of elasto-plastic 

analyses based upon different hardening rules. 

 

NOMENCLAUTURE 

k hardening vector 

p function of the plastic strain 

 scalar hardening parameter 

 

 

 

 

  Von Mises`s and Tresca's equivalent stresses 

Y uniaxial yield stresses 

d proportionality constant 

F yield surface 

a
 variation of F 

dp plastic strain increment 

ed
 elastic strain increment 

d
 total strain increment 

D
 elastic stress-strain matrix 

A hardening parameter 

p  plastic strain 

pdW
 plastic work done during plastic deformation 

'H  isotropic hardening 

Yo initial yield stress  

  shift vector for the translation of the initial 

yield surface 

C characterises the hardening behaviour of 

material. 

d
 kinematic hardening 

Yr current reduced yield stress 

M material parameter 
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