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Abstract
In this paper, we study the generalized von Neumann-Jordan constant C

(p)
NJ(X) for the

generalized Banaś-Fra̧czek space and improve related results on the Banaś-Fra̧czek space.
The exact value of C

(p)
NJ(X) will be calculated for X to be the generalized Banaś-Fra̧czek

space R2
a,b,p1

in the case p ≥ 2 such that p1 ≥ p ≥ 2 or p ≥ p1 ≥ 1.
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1. Introduction
The geometric constants have received widespread attention, for the reason that it can

essentially reflect the geometric properties of a space. Recall that the von Neumann-
Jordan constant CNJ(X) of a Banach space X was introduced by Clarkson [2] as the
smallest constant C for which

1
C

≤ ∥x + y∥2 + ∥x − y∥2

2(∥x∥2 + ∥y∥2)
≤ C

holds for all x, y ∈ X with ∥x∥2 + ∥y∥2 ̸= 0. Several studies on the constant CNJ(X)
have been conducted by many authors (see, for example, [1, 4–13, 18, 19]), and they play
an important role in the geometric theory of Banach spaces. Therefore the calculation of
geometric constants for some concrete spaces is very important.

Recently, a generalized form of this constant was introduced as follows (see [3])

C
(p)
NJ(X) = sup

{∥x + y∥p + ∥x − y∥p

2p−1 (∥x∥p + ∥y∥p)
: x, y ∈ X, (x, y) ̸= (0.0)

}
,

where p ⩾ 1.
Now let us collect some properties of this constant (see [3, 14–16,20,21]).
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(i) 1 ⩽ C
(p)
NJ(X) ⩽ 2;

(ii) X is uniformly non-square if and only if C
(p)
NJ(x) < 2.

(iii) Let r ∈ (1, 2] and 1
r + 1

r′ = 1. Then for X = Lr[0.1], we have

C
(p)
NJ (Lr[0, 1]) =


22−p, 1 ⩽ p ⩽ r;

2
p
r

−p+1, r < p ⩽ r′;
1, r′ < p ⩽ ∞;

(iv) If p ≥ 2, then C
(p)
NJ(X) ⩽ J(X).

(v) For the regular octagon space X, we have
(a) If p ≥ 2, then C

(p)
NJ(X) = 1 + (

√
2 − 1)p;

(b) If 1 < p ≤ 2, then C
(p)
NJ(X) = 22−p

[
1 + (

√
2 − 1)

p
p−1
]p−1

.

Recently, C. Yang et al. introduced the Banaś-Fra̧czek space Xλ,p in [17], i.e., R2

endowed with the norm

∥(x, y)∥λ,p = max{λ|x|, ∥(x, y)∥p},

where λ > 1 and p ≥ 1. In [17], they showed that if p ≥ 2 and (λp − 1)p−2(λ2 − 1)p ≥ 1,
then

CNJ(Xλ,p) = 1 + (1 − 1
λp

)
2
p .

Also, Mitani and Stito and Takahashi introduced generalized Banaś-Fra̧czek space R2
a,b,p

which is R2 endowed with the norm

∥(x, y)∥ = max{a|x|, b|y|, ∥(x, y)∥p}.

And for a > 1 and a ≥ b ≥ 1 with a−p + b−p > 1, they consider the CNJ(X) for this space
in [8, 9] as follows:

(i) If p ≥ 2 and b ≤ a(ap − 1)
p−2
2p , then

CNJ(R2
a,b,p) = 1 + b2(1 − a−p)

2
p . (1.1)

(ii) If p ≥ 2 and b ≥ a(ap − 1)
p−2
2p , then

CNJ(R2
a,b,p) = b2

1 +
(

b

a

) 2p
2−p

1− 2
p

. (1.2)

(iii) If 1 ≤ p < 2 and a
2p

p−2 + b
2p

p−2 ≤ 1, then

CNJ(R2
a,b,p) = 1 + b2(1 − a−p)

2
p . (1.3)

In this paper, we consider the constant C
(p)
NJ(X) for the generalized Banaś-Fra̧czek space

and obtain the following results:

(1) For a > 1, a ≥ b ≥ 1 and p1 ≥ p ≥ 2 with a−p1 + b−p1 > 1.
(i) If b ≤ a(ap1 − 1)

p1−p

pp1 , then

C
(p)
NJ(R2

a,b,p1) = 1 + bp(1 − a−p1)
p

p1 .

(ii) If b ≥ a(ap1 − 1)
p1−p

pp1 , then

C
(p)
NJ(R2

a,b,p1) = bp

(
1 +

(
b

a

) pp1
p−p1

)1− p
p1

.
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(2) For a > 1, a ≥ b ≥ 1, p ≥ 2 and p ≥ p1 ≥ 1 with a−p1 +b−p1 > 1. If a
pp1

p1−p +b
pp1

p1−p ≤ 1,
then

C
(p)
NJ(R2

a,b,p1) = 1 + bp(1 − a−p1)
p

p1 .

2. Main results

Recall that the norm || · || on R2 is said to be absolute if ||(x, y)|| = ||(|x|, |y|)|| for each
(x, y) ∈ R2. Before describing the main results, we give some lemmas.

Lemma 2.1. Let p ≥ 2 and ∥ · ∥, ∥ · ∥∼ be two absolute norms on R2 satisfying the
following conditions:

(i) ∥u + v∥p
∼ + ∥u − v∥p

∼ ≤ 2p−1(∥u∥p
∼ + ∥v∥p

∼) for any u, v ∈ R2.
(ii) ∥(x, y)∥p

∼ = ∥(x, 0)∥p
∼ + ∥(0, y)∥p

∼ for any x, y ∈ R.
(iii) ∥(x, y)∥ ≤ ∥(x, y)∥∼ for any x, y ∈ R.
(iv) ∥(1, 0)∥ = ∥(1, 0)∥∼ and ∥(0, 1)∥ = ∥(0, 1)∥∼.
Then

C
(p)
NJ((R2, ∥ · ∥)) = βp, where β = max

{∥(x, y)∥∼
∥(x, y)∥

: (x, y) ∈ R2, (x, y) ≠ (0, 0)
}

.

Proof. By ∥ · ∥ ≤ ∥ · ∥∼ ≤ β∥ · ∥ and (i), we have

C
(p)
NJ((R2, ∥ · ∥)) = sup

{∥u + v∥p + ∥u − v∥p

2p−1(∥u∥p + ∥v∥p)
: u, v ∈ R2, (u, v) ≠ (0, 0)

}
≤ βp sup

{∥u + v∥p
∼ + ∥u − v∥p

∼
2p−1(∥u∥p

∼ + ∥v∥p
∼)

: u, v ∈ R2, (u, v) ̸= (0, 0)
}

≤ βp.

On the other hand, for any positive number ε, we can take (x0, y0) ∈ R2 such that
∥(x0,y0)∥∼
∥(x0,y0)∥ > β − ε. Thus by (ii),

C
(p)
NJ((R2, ∥ · ∥)) ≥ ∥(2x0, 0)∥p + ∥(0, 2y0)∥p

2p−1(∥(x0, y0)∥p + ∥(x0, −y0)∥p)

= ∥(x0, 0)∥p
∼ + ∥(0, y0)∥p

∼
∥(x0, y0)∥p

∼

∥(x0, y0)∥p
∼

∥(x0, y0)∥p

≥ (β − ε)p.

Hence, C
(p)
NJ((R2, ∥ · ∥)) = βp.

□
If a > 1, a ≥ b ≥ 1 and a−p1 + b−p1 ≤ 1, by taking u =

(
1
a , 1

b

)
and v =

(
1
a , −1

b

)
, then

C
(p)
NJ(R2

a,b,p1) ≥ ∥u + v∥p + ∥u − v∥p

2p−1(∥u∥2 + ∥v∥2)
= 2.

Thus, C
(p)
NJ(R2

a,b,p1
) = 2. Therefore, we only to consider the case a−p1 + b−p1 > 1.

Lemma 2.2. Let a > 1, a ≥ b ≥ 1 and p1 ≥ p ≥ 1 with a−p1 + b−p1 > 1. If

f(t) = (aptp+bp)
1
p

(1+tp1 )
1

p1
, t1 = (ap1 − 1)− 1

p1 , t2 = (a
b )

p
p1−p and t3 = (bp1 − 1)

1
p1 , then

(i) f is non-decreasing on (0, t2) and is non-increasing on (t2, ∞). Hence f has the
maximum at t2.
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(ii) f(t3) ≤ f(t1).
(iii) If b ≤ a(ap1 − 1)

p1−p

pp1 , then t3 ≤ t1 ≤ t2 and

max{f(t) : t3 ≤ t ≤ t1} = f(t1) =
(
1 + bp(1 − a−p1)

p
p1
) 1

p
.

(iv) If b ≥ a(ap1 − 1)
p1−p

pp1 , then t3 ≤ t2 ≤ t1 and

max{f(t) : t3 ≤ t ≤ t1} = f(t2) = b

(
1 +

(
b

a

) pp1
p−p1

) 1
p

− 1
p1

.

Proof. (i) Since f ′(t) = (aptp + bp)
1
p

−1(1 + tp1)− 1
p1

−1
tp−1[ap − bptp1−p], we have (i).

(ii) It is easy to see that

f(t1) =
(

1 +
(

b

a

)p

(ap1 − 1)
p

p1

) 1
p

and

f(t3) =
(

1 +
(

a

b

)p

(bp1 − 1)
p

p1

) 1
p

.

Hence f(t3) ≤ f(t1) if and only if b
a(ap1 − 1)

1
p1 ≥ a

b (bp1 − 1)
1

p1 , that is (bp1 − ap1)(ap1 +
bp1 − ap1bp1) ≤ 0. Thus it follow from a ≥ b and a−p1 + b−p1 > 1.

(iii) Since b ≤ a(ap1 − 1)
p1−p

pp1 , we obtain t1 ≤ t2. By a−p1 + b−p1 > 1, we can get
(ap1 − 1)(bp1 − 1) < 1, and this implies t3 < t1. Thus it follows from (i) that (iii) is valid.

(iv) From b ≥ a(ap1 − 1)
p1−p

pp1 , we see that t1 ≥ t2 and a ≥ b ≥ a(ap1 − 1)
p1−p

pp1 . Thus,
bp1 − 1 ≤ ap1 − 1 ≤ 1 and t3 ≤ 1 ≤ t2 ≤ t1. Hence (iv) can also be obtained from (i).

□

Theorem 2.3. a > 1, a ≥ b ≥ 1 and p1 ≥ p ≥ 2 with a−p1 + b−p1 > 1.

(i) If b ≤ a(ap1 − 1)
p1−p

pp1 , then

C
(p)
NJ(R2

a,b,p1) = 1 + bp(1 − a−p1)
p

p1 . (2.1)

(ii) If b ≥ a(ap1 − 1)
p1−p

pp1 , then

C
(p)
NJ(R2

a,b,p1) = bp

(
1 +

(
b

a

) pp1
p−p1

)1− p
p1

. (2.2)

Proof. We define the norm ∥ · ∥∼ on R2 by ∥(x, y)∥∼ = ∥(ax, by)∥p.
By Clarkson’s inequality, for any u, v ∈ R2, we have

∥u + v∥p
∼ + ∥u − v∥p

∼ ≤ 2p−1(∥u∥p
∼ + ∥v∥p

∼).

Also, ∥(x, y)∥p
∼ = ap|x|p + bp|y|p = ∥(x, 0)∥p

∼ + ∥(0, y)∥p
∼ for any x, y ∈ R. It is clear that

∥(x, y)∥ ≤ ∥(x, y)∥∼ for any (x, y) ∈ R2 by a ≥ b ≥ 1 and p1 ≥ p ≥ 1.
Put β = max

{
∥(x,y)∥∼
∥(x,y)∥ : (x, y) ∈ R2, (x, y) ̸= (0, 0)

}
.

(i) If b ≤ a(ap1 − 1)
p1−p

pp1 , then we can show that β = f(t1).
In the case where x = 0 or y = 0, since f(t1) ≥ 1, we can assume that x ̸= 0 and y ̸= 0.

Put t = |x|
|y| . We first consider the case ∥(x, y)∥ = a|x|. Since a|x| ≥ ∥(x, y)∥p1 , we have
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t ≥ (ap1 − 1)− 1
p1 = t1. Hence

∥(x, y)∥∼
∥(x, y)∥

= ∥(ax, by)∥p

a|x|
= ∥(1,

b

at
)∥p ≤ ∥(1,

b

at1
)∥p = f(t1).

Next, we consider the case ∥(x, y)∥ = b|y|. Since b|y| ≥ ∥(x, y)∥p1 , we have t ≤
(bp1 − 1)

1
p1 = t3. Hence by Lemma 2.2

∥(x, y)∥∼
∥(x, y)∥

= ∥(ax, by)∥p

b|y|
= ∥(at

b
, 1)∥p ≤ ∥(at3

b
, 1)∥p = f(t3) ≤ f(t1).

Finally we consider the case ∥(x, y)∥ = ∥(x, y)∥p1 . Since ∥(x, y)∥p1 ≥ a|x| and ∥(x, y)∥p1 ≥
b|y|, it follows that t3 ≤ t ≤ t1. Then by Lemma 2.2, we also have

∥(x, y)∥∼
∥(x, y)∥

= ∥(ax, by)∥p

∥(x, y)∥p1

= f(t) ≤ f(t1).

Thus, β ≤ f(t1). Moreover, we have ∥(x,y)∥∼
∥(x,y)∥ = f(t1) for (x, y) = (t1, 1). Hence β = f(t1)

and (i) is valid by Lemma 2.1.
(ii) If b ≥ a(ap1 − 1)

p1−p

pp1 , similar to (i), then we can get β = f(t2). Hence (ii) is also
valid by Lemma 2.1.

□
Remark 2.4. By taking p = 2 and p1 = p in Theorem 2.3, we can see that (2.1) and (2.2)
can imply (1.1) and (1.2) respectively.

Next, we consider the case p ≥ p1.

Lemma 2.5. Let a > 1, a ≥ b ≥ 1 and p ≥ p1 ≥ 1 with a−p1 + b−p1 > 1. If

f(t) = (aptp+bp)
1
p

(1+tp1 )
1

p1
, t1 = (ap1 − 1)− 1

p1 , t2 = (a
b )

p
p1−p and t3 = (bp1 − 1)

1
p1 , then

(i) f is non-increasing on (0, t2) and is non-decreasing on (t2, ∞). Hence f has the
minimum at t2.

(ii) f(t3) ≤ f(t1).

Proof. (i) Since f ′(t) = (aptp + bp)
1
p

−1(1 + tp1)− 1
p1

−1
tp1−1[aptp−p1 − bp], we have (i).

(ii) The same as the proof of (ii) in Lemma 2.2.
□

Theorem 2.6. a > 1, a ≥ b ≥ 1, p ≥ 2 and p ≥ p1 ≥ 1 with a−p1 + b−p1 > 1. If
a

pp1
p1−p + b

pp1
p1−p ≤ 1, then

C
(p)
NJ(R2

a,b,p1) = 1 + bp(1 − a−p1)
p

p1 . (2.3)

Proof. We define the norm ∥ · ∥∼ on R2 by ∥(x, y)∥∼ = ∥(ax, by)∥p.
By Clarkson’s inequality, for any u, v ∈ R2, we have

∥u + v∥p
∼ + ∥u − v∥p

∼ ≤ 2p−1(∥u∥p
∼ + ∥v∥p

∼).
Also, ∥(x, y)∥p

∼ = ap|x|p + bp|y|p = ∥(x, 0)∥p
∼ + ∥(0, y)∥p

∼ for any x, y ∈ R.
By Hölder’s inequality, we have

∥(x, y)∥p1
p1 = |ax|p1a−p1 + +|by|p1b−p1 ≤ (|ax|p + |by|p)

p1
p (a

pp1
p1−p + b

pp1
p1−p )1− p1

p ,

which implies ∥(x, y)∥ ≤ ∥(x, y)∥∼ for any (x, y) ∈ R2 by a
pp1

p1−p + b
pp1

p1−p ≤ 1.
Put β = max

{
∥(x,y)∥∼
∥(x,y)∥ : (x, y) ∈ R2, (x, y) ̸= (0, 0)

}
.

Firstly, we show that β ≤ f(t1).
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In the case where x = 0 or y = 0, since f(t1) ≥ 1, we can assume that x ̸= 0 and y ̸= 0.
Put t = |x|

|y| . We first consider the case ∥(x, y)∥ = a|x|. Since a|x| ≥ ∥(x, y)∥p1 , we have

t ≥ (ap1 − 1)− 1
p1 = t1. Hence

∥(x, y)∥∼
∥(x, y)∥

= ∥(ax, by)∥p

a|x|
= ∥(1,

b

at
)∥p ≤ ∥(1,

b

at1
)∥p = f(t1).

Next, we consider the case ∥(x, y)∥ = b|y|. Since b|y| ≥ ∥(x, y)∥p1 , we have t ≤
(bp1 − 1)

1
p1 = t3. Hence by Lemma 2.5

∥(x, y)∥∼
∥(x, y)∥

= ∥(ax, by)∥p

b|y|
= ∥(at

b
, 1)∥p ≤ ∥(at3

b
, 1)∥p = f(t3) ≤ f(t1).

Finally, we consider the case ∥(x, y)∥ = ∥(x, y)∥p1 . Since ∥(x, y)∥p1 ≥ a|x| and ∥(x, y)∥p1 ≥
b|y|, it follows that t3 ≤ t ≤ t1. Then by Lemma 2.5, we also have

∥(x, y)∥∼
∥(x, y)∥

= ∥(ax, by)∥p

∥(x, y)∥p1

= f(t) ≤ f(t1).

Thus, β ≤ f(t1). Moreover, we have ∥(x,y)∥∼
∥(x,y)∥ = f(t1) for (x, y) = (t1, 1). Hence β = f(t1)

and (2.3) is valid by Lemma 2.1.

□
Remark 2.7. By taking p = 2 and p1 = p in Theorem 2.6, we can see that (2.3) can
imply (1.3).
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