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Abstract
A hybrid approach of M and R estimators using an iterative procedure is proposed to
detect outliers and estimation of regression parameters for linear models. We consider the
deviation of each residual from its median to measure the likelihood of the corresponding
data point to be an outlier. Also, the proposed work develops a reliable algorithm to
estimate parameters of regression model that is unaffected by outliers. The significance of
the proposed work is a novel hybrid approach of weighing the observations based on the
order of residuals and is computationally simpler. Our proposal is illustrated using Monte
Carlo simulation and analysed for few empirical benchmark data sets.
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1. Introduction
The classical Ordinary Least Square (OLS) method which minimizes the sum of squares

of residuals for the estimation of regression coefficients, has many drawbacks in case of
a contaminated dataset. Though it is been used in various real-time applications [2, 22],
one flaw that should be noted in the context of outlier detection is that each observation
in the data is given equal weight. The literature on the estimation of the parameters in
linear regression model reveals that efforts were made to consider observations depending
on the magnitude of the residuals. By replacing square of errors with absolute errors, F.
Y Edgeworth [6, 23] proposed an estimation method in which the outliers were weighed
much lesser than that of OLS estimator. In addition, based on the performance indicators
of the estimator, such as breakdown point, efficiency, and computational simplicity, a
large number of approaches have emerged which are M, R, MM, Generalized M (GM), S,
Least Median Square (LMS) and Least Trimmed Square (LTS) estimators. However, these
efforts can be majorly classified either as M-estimation technique by weighing the square
of residuals or as R-estimation technique [14,15] by minimizing the dispersion of residuals
using a suitable linear combination. The weights in M-estimation technique are obtained
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by minimizing an arbitrary function of residuals. The coefficients of the linear combination
in R-estimation, is given by a non-decreasing score function on ordered residuals. Rather
than the estimation of regression coefficients, anomaly detection is also given importance
in these methods, as the presence of unusual observations may badly affect the actual fit.
In fact, these robust regression techniques were established under this circumstance to
reduce the impact of influential observations to an extent and to reveal the model of the
clean data. A review and comparison of these methods was done by Chun Yu et al. in the
year 2015 [26]. Robust regression procedures for outlier detection in both low and high
dimensional datasets were broadly analysed in the works of Rousseeuw et al. [19–21]. In
2020, a review of outlier detection by robust regression was done by Getnet et al. [4] and
reviews confined only to the M-estimators were done by Menezes et al. [5] and Khan et
al. in 2021 [17].

The improved computational facility blended with the rich statistical tools facilitated
the research community to address the surge in the problem of outliers in various domains.
This inspired the authors to suggest an estimation method that incorporates outlier de-
tection using a hybrid strategy by taking into account the benefits of R and M estimators.
The proposed work implements a down weighing algorithm as in M-estimator but by
ordering the absolute deviation of residuals from its median similar to R-estimator.

In Section 2, the proposed weight function along with the estimation procedure is
broadly discussed. Section 3 discusses the optimization of threshold used in the proposed
weight function. In Section 4, the proposed method is analyzed and evaluated using Monte
Carlo simulation and few significant empirical data. The article concludes the study in
Section 5.

2. Proposed estimator
The proposed work aims at the estimation of parameters in linear regression model

which are not affected by the outlying observations in the data set and the detection of
outliers as well. For this purpose, the authors propose a new weight function, which is hard
re-descendant in nature motivated by the performance of Andrew’s wave function. The
proposed approach is hybrid combining M and R estimation techniques in the sense that
it is accomplished by down weighing after ordering the absolute deviation of the residuals
from its median. However, the very purpose of robust estimation either M or R, is to lessen
the influence of the observations corresponding to the residuals of extreme magnitudes over
the estimation of the parameters of the model. Therefore, the normal density curve of the
residual argument is a natural choice to generate weights for the observations. Of course,
any existing M-estimator can be observed to have weight function that is either a fine or
coarse approximation of normal curve as depicted in Figure 1. Although it might slightly
vary depending on the datasets selected, the weight function shown in Figure 1 actually
refers to a specific dataset. Also, the weight functions given by Andrew’s and Tukey’s
are serving the purpose better among the other M-estimators for robustness and closer
geometrically to normal as well. Therefore, the authors attempt a weight function for the
proposed robust estimation which is also an approximation of normal density.

The procedure begins with the initial paremeter estimates obtained from OLS. The
residual, r resulted by this set of parameters which is then scaled and acts as the argument
to the proposed weight function. The median by its definition is robust against the presence
of outliers in any set of observations. Therefore, we order the observations based on
the distance of the residuals from its median µ̃z which when exceeds a fixed threshold
value are identified as outliers. This threshold value t, depends on the data [7, 24] under
consideration which leads to higher efficiency. The weight function, w is defined as,
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w(z) =
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(2.1)

where z = r
s

in which r is the residual and s = µ̃|r−µ̃r |
0.6745 , t is defined by t = µ|d| ∗ π

2 with
µ|d|, the mean absolute deviation d of z.

Figure 1. Weight functions graphs.

The new set of parameters are obtained using Iterative Re-weighted Least Square
method (IRLS) [11] subject to a tolerance criterion. In fact, IRLS determine weights
for the square of residuals iteratively by ordering the absolute deviation of residuals from
its median in every iteration as used in R estimator. The proposed method is expected to
give a relatively simpler weight function to identify the outliers in fewer number of iter-
ations when compared to the conventional M-estimators. Moreover, the resulting model
should be robust against the presence of outliers. The performance about the robustness
of the proposed estimator is analyzed considering breakdown point and efficiency. The
analysis reveals that the breakdown point is found to be more than 50% and the efficiency
is as good as the well-known M-estimators. A comparative study has been done between
the proposed hybrid estimator and existing estimators such as Huber t function [12], An-
drews wave function [1], Hampels 17A function [8], Tukey’s Bi-weight function [3], Least
Weighted Square (LWS) [16] and L1-norm [6]. Huber - t function is a soft redescender
which weigh the outlying observations lesser but the latter mentioned M-estimators are
hard redescenders in the sense that the weight equals zero for sufficiently large absolute
scaled residuals, |z|. Thus the proposed estimation technique will also fall in the category
of hard re-descending estimators.

3. Threshold optimization
In this section, the justification for the choice of multiple π

2 ≈ 1.57 of mean absolute
deviation of residuals, involved in the threshold t, is been provided. The authors feel it is
essential to dispense this before the simulation study. We present an analysis by choosing
various values, m instead of π

2 by brute force method. The probability distribution for the
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choice of t is also picturized as a histogram of t versus number of data sets. It is clearly
visible from the Table 1 that the perfect detection and swamping probability is attained
when t = µ|d| ∗ π

2 . It is also revealed from Figure 2 that the probability distribution of t
is approximately normal.

Table 1. Threshold optimization.

m Detection probability Swamping probability
1 1 0.222

1.1 1 0.178
1.2 1 0.154
1.3 1 0.114
1.4 1 0.106
1.5 1 0.048
1.51 1 0.046
1.52 1 0.046
1.53 1 0.046
1.54 1 0.044
1.55 1 0.044
1.56 1 0.044
1.57 1 0.034
1.58 1 0.044
1.59 1 0.052
1.6 1 0.052
1.7 1 0.049
1.8 0.998 0.046
1.9 0.996 0.046
2 0.988 0.044
3 0.978 0
4 0.168 0

Figure 2. Threshold distribution.

4. Simulation study
To evaluate the performance of the proposed estimator, the algorithm has been tested

using Monte Carlo simulation and also on few empirical benchmark data sets such as
delivery time data, stack loss data and Hawkins Bradu and Kass (HBK) data [9, 18, 19].
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The detection and swamping probabilities of the proposed estimator are investigated and
compared with the competent estimation methods throughout our Monte Carlo simulation.
A study is also carried out on the breakdown point of the estimator in our simulation and
efficiency on the empirical benchmark data sets. We have also investigated the sensitivity
due to hyper-parameters of our study. However, the results of the research analysis are
found to be consistent with all the considered data sets.

We initially estimated the parameters of the model by OLS method which provides
the residual for further iterative procedure. The residuals thus obtained (r) are scaled
using s which results in z = r

s
. These scaled residuals are arranged appropriately to

obtain its median. A threshold, t is computed as discussed in Section 3, to identify the
residuals having higher deviation from its median. Then, the scaled residuals are used
to compute weights as per definition of the weight function given in (2.1). The initial
estimation of the parameters is improved using these weights by weighted least square
method. We iterate the algorithm until the largest change in any coefficient of estimation
is less than 0.1%. It is clear to see that by implicitly ranking and re-weighing the residuals,
the aforementioned estimate algorithm combine elements of the M and R techniques.
The above sequential algorithm of IRLS is implemented using MATLAB 2023b. Those
observations with residuals to median distance higher than the prescribed threshold are
considered to be the outliers and their low weights play a key role in the robustness of
estimates of the proposed method.

This section also includes the presentation of various results of the simulation study.
Table 2 to Table 6 display the results about the Monte Carlo study. The estimated
parameter values of the empirical benchmark data sets by the proposed hybrid method
and other different M estimators in addition to OLS estimator excluding the outliers are
provided in Table 7, Table 8 and Table 9. Additionally, a performance indicator known
as the statistical efficiency, defined as the ratio of the residual mean square (RMS) of
OLS for the data without outliers and that of the suggested method for the entire data is
calculated. The efficiency and the RMS of the proposed method for all the empirical data
sets in the simulation study is depicted in Table 10. The comparison of the efficiency of
the proposed method with the other methods is given in Table 11. The empirical study
also includes the plot of observations vs residual to median distance, say, dM in Figure 3,
Figure 4 and Figure 5 to visualize clearly the outlying points. The results of the study on
the breakdown point and sensitivity analysis is depicted in Figure 6 and Figure 7.

4.1. Monte Carlo simulation
In this section, Monte Carlo simulation is used to assess the performance of the pro-

posed method. Also, a comparison on the performance of the proposed method with that
of the existing better performing estimators is done for which results are presented as in
[25]. Therefore, it has become essential to proceed with specifications described in [25].
In addition, we also consider Bi-square, L1-norm and a recent algorithm Least Weighted
Square (LWS) [16] for comparison. For this purpose we examine linear regression models
with number of regressors, k as 2 and 6 and with number of observations n as 40 and 60
respectively. For this purpose, 500 data sets are generated for each case randomly. The
simulation study in the case of clean observations uses regressors following multivariate
normal distribution with a mean vector of suitable dimension having 7.5 as each compo-
nent and a suitable order scalar matrix for covariance with the diagonal entries 16. The
corresponding responses for the above scenarios are obtained using the multiple linear
regression model with constant term as zero and other coefficients as five, added to the
error following standard normal distribution. It is obvious to understand the necessity of
implanting outliers of various kind, the details of which will be discussed in each scenario.
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The proposed study using Monte Carlo simulation is classified based on the outlier loca-
tion in interior X space and exterior X space. The performance of the proposed method
is also studied by varying the amount of outliers say, 10% and 20%. In all such above
cases, we evaluate and compare the proportion of outlier detection and swamping. The
discussion is made on all considered cases of interior X space and exterior X space and
the results are presented in tables in the following sections.

We first consider outlying observations whose regressors are falling well within the
bandwidth of the rest whereas the responses alone are deviating away. This is implemented
by classifying the interior X space regression outlier cases into three sub cases: 1. Isolated
outliers at random positions, 2. Outliers as cloud near to the centroid of X space and
3. Outliers as cloud away from the centroid of X space. Further, the deviations of the
responses are executed by adding a multiple of the standard deviation σ of the error say
cσ denoted as δR, where c = 3, 4, 5 to the response generated by the model. The results
of these three cases on interior X space are presented in Table 2, Table 3 and Table 4
respectively.

In the study of isolated outliers at random places, the simulation reveals the detection
probability of the proposed method is nearly perfect for higher deviations. The swamping
probability for most of the higher contaminated cases are found to be better in comparison
with the considered estimators. Further the average swamping probability by considering
all the different combinations is better except MM estimator.

Table 2. Random outliers.

n k contamination δR Huber Tukey’s LWS MM estimator Proposed Estimator
% Detection Swamping Detection Swamping Detection Swamping Detection Swamping Detection Swamping

40 2 10 3σ 0.978 0.061 0.982 0.302 0.984 0.34 0.989 0.060 0.972 0.124
60 6 10 3σ 0.910 0.058 0.964 0.032 0.95 0.338 0.918 0.057 0.87 0.176
40 2 20 3σ 0.890 0.090 0.956 0.296 0.996 0.262 0.938 0.085 0.812 0.064
0 6 20 3σ 0.740 0.092 0.864 0.268 0.852 0.338 0.770 0.088 0.478 0.104
40 2 10 4σ 1 0.058 1 0.328 0.998 0.292 1 0.058 0.996 0.072
0 6 10 4σ 0.997 0.054 0.988 0.338 0.99 0.308 0.998 0.054 0.988 0.118
0 2 20 4σ 0.987 0.096 0.996 0.322 0.998 0.298 0.993 0.086 0.978 0.03
60 6 20 4σ 0.952 0.109 0.984 0.34 0.976 0.272 0.961 0.099 0.94 0.044
40 2 10 5σ 1 0.055 1 0.336 1 0.326 1 0.053 0.998 0.062
60 6 10 5σ 1 0.050 0.998 0.374 0.998 0.334 1 0.049 1 0.078
40 2 20 5σ 0.998 0.088 0.998 0.364 1 0.312 1 0.074 1 0.012
60 6 20 5σ 0.985 0.113 1 0.302 0.998 0.348 0.993 0.092 0.994 0.018

Average probability 0.953 0.077 0.978 0.324 0.978 0.314 0.963 0.071 0.919 0.075

In the case of outliers as cloud near to the centroid of the X space and away from it, we
consider outliers as a single cloud and two clouds separately. The outliers for single cloud
are implanted as three different cases by adding a multiple of the standard deviation σ of
the error say cσ denoted as δR, where c = 3, 4, 5 to the response generated by the model
whereas for two clouded outliers, it is done by adding and subtracting δR.

The simulation study for outliers near to the centroid of X space, reveals that the average
detection probability of the proposed method is perfect and same as the estimators under
consideration. However, the swamping probability is the same as MM estimator and
higher than the other estimators. It is observed from the Table 3 that the detection and
swamping probability for highly contaminated two clouded cases are found to be the same
as Tukey’s estimator and better than the other estimators considered.
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Table 3. Outliers near to centroid of X space.

n k contamination δR Cloud Huber Tukey’s LWS MM estimator Proposed Estimator
% Detection Swamping Detection Swamping Detection Swamping Detection Swamping Detection Swamping

40 2 10 3σ 1 1 0.06 1 0.352 1 0.292 1 0.059 1 0.12
60 6 10 3σ 1 1 0.055 1 0.36 1 0.282 1 0.056 1 0.158
40 2 20 3σ 1 1 0.087 1 0.326 1 0.286 1 0.083 1 0.074
60 6 20 3σ 1 1 0.082 1 0 1 0 1 0.079 1 0
40 2 10 4σ 1 1 0.09 1 0.352 1 0.3 1 0.055 1 0.076
60 6 10 4σ 1 1 0.042 1 0.35 1 0.296 1 0.052 1 0.096
40 2 20 4σ 1 1 0.05 1 0.33 1 0.296 1 0.083 1 0.03
60 6 20 4σ 1 1 0.058 1 0 1 0 1 0.081 1 0
40 2 10 3σ 2 1 0.052 1 0.308 0 0.302 1 0.052 1 0.148
60 6 10 3σ 2 1 0.051 1 0.33 0 0.248 1 0.050 1 0.16
40 2 20 3σ 2 1 0.052 1 0.332 0 0.288 1 0.049 1 0.056
60 6 20 3σ 2 1 0.09 1 0 0 0 1 0.045 1 0
40 2 10 4σ 2 1 0.052 1 0.348 0 0.302 1 0.052 1 0.09
60 6 10 4σ 2 1 0.050 1 0.35 0 0.278 1 0.049 1 0.124
40 2 20 4σ 2 1 0.051 1 0.308 0 0.306 1 0.050 1 0.034
60 6 20 4σ 2 1 0.045 1 0 0 0 1 0.044 1 0

Average probability 1 0.058 1 0.252 0.478 0.219 1 0.059 1 0.059

The simulation study for outliers away from the centroid of X space, reveals that the
average detection and swamping probabilities are not significantly different from Tukey’s
and MM estimators respectively. However, results in Table 4 shows that the proposed
method yields better results for the other estimators considered.

Table 4. Outliers away from centroid.

n k contamination δR Cloud Huber Tukey’s LWS MM estimator Proposed Estimator
% Detection Swamping Detection Swamping Detection Swamping Detection Swamping Detection Swamping

40 2 10 3σ 1 0.770 0.063 1 0.288 1 0.338 0.780 0.061 0.998 0.136
60 6 10 3σ 1 0.705 0.060 0.988 0.322 1 0.234 0.724 0.058 0.998 0.132
40 2 20 3σ 1 0.588 0.095 0.998 0.322 1 0.28 0.646 0.085 0.99 0.076
60 6 20 3σ 1 0.424 0.108 0.952 0.256 1 0.294 0.456 0.107 0.906 0.108
40 2 10 4σ 1 0.951 0.060 1 0.332 1 0.33 0.951 0.062 1 0.104
60 6 10 4σ 1 0.943 0.059 1 0.372 1 0.29 0.958 0.055 1 0.114
0 2 20 4σ 1 0.843 0.116 1 0.304 1 0.3 0.898 0.093 1 0.042
60 6 20 4σ 1 0.628 0.150 0.996 0.318 1 0.264 0.695 0.132 0.996 0.058
40 2 10 5σ 1 0.946 0.058 1 0.31 1 0.358 0.996 0.057 1 0.068
60 6 10 5σ 1 0.994 0.057 1 0.288 1 0.276 0.994 0.050 1 0.086
40 2 20 5σ 1 0.953 0.133 1 0.324 1 0.296 0.982 0.083 1 0.016
60 6 20 5σ 1 0.803 0.189 0.988 0.342 1 0.274 0.875 0.138 1 0.028
40 2 10 3σ 2 0.790 0.061 1 0.344 0 0.284 0.797 0.060 1 0.136
60 6 10 3σ 2 0.773 0.056 0.996 0.32 0 0.33 0.776 0.055 0.992 0.172
40 2 20 3σ 2 0.661 0.085 0.998 0.366 0 0.4 0.709 0.080 0.978 0.076
60 6 20 3σ 2 0.561 0.095 0.968 0.326 0 0.314 0.598 0.089 0.878 0.086
40 2 10 4σ 2 0.960 0.060 0.988 0.346 0 0.302 0.960 0.060 1 0.082
60 6 10 4σ 2 0.961 0.053 1 0.34 0 0.272 0.960 0.053 1 0.134
40 2 20 4σ 2 0.899 0.097 1 0.318 0 0.298 0.933 0.083 0.998 0.044
60 6 20 4σ 2 0.811 0.121 0.996 0.348 0 0.288 0.856 0.100 0.98 0.062
40 2 10 5σ 2 0.998 0.057 1 0.316 0 0.324 0.998 0.056 1 0.094
60 6 10 5σ 2 0.997 0.049 1 0.37 0 0.302 0.999 0.049 1 0.1
40 2 20 5σ 2 0.984 0.094 1 0.334 0 0.322 0.994 0.073 1 0.01
60 6 20 5σ 2 0.941 0.137 1 0.314 0 0.306 0.965 0.092 0.994 0.008

Average probability 0.829 0.088 0.994 0.326 0.478 0.303 0.854 0.076 0.987 0.082

Next, we consider outlying observations where both regressors are deviating away with
no restrictions on the responses. This is implemented by classifying the exterior X space
regression outlier cases into two sub cases: 1. Exterior X space and exterior Y space, 2.
Exterior X space and interior Y space. In fact, the analysis made in the case of exterior X
space by earlier research studies have used only GM estimators to compare their proposed
estimate due to the vulnerability of M and MM estimators. The deviations of the responses
are executed similar to the earlier study of interior X space. Moreover, the deviation of
the regressors is carried out by adding a multiple of the standard deviation σ of the error
say cσ denoted as δL, where c = 3, 5 to the regressors generated by the model. The results
of these two cases on exterior X space are presented in Table 5 and Table 6 respectively.
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The results of the simulation study for outliers in the external X and Y spaces show
that none of the approaches under consideration have very good average detection rates.
Further, the swamping probability is reasonably good in case on GM and the proposed
estimator. The results of various combinations are presented in Table 5.

Table 5. Exterior X space and exterior Y space.

n k contamination δR δL cloud GM Tukey’s LWS Proposed Estimator
% Detection Swamping Detection Swamping Detection Swamping Detection Swamping

40 2 10 2σ 3σ 1 0.253 0.071 0.874 0.372 0.992 0.288 0.9 0.124
60 6 10 2σ 3σ 1 0 0.088 0.014 0.338 0.014 0.296 0 0.292
40 2 20 2σ 3σ 1 0 0.144 0 0.468 0.12 0.346 0 0.284
60 6 20 2σ 3σ 1 0 0.087 0 0.378 0 0.332 0 0.082
40 2 10 5σ 3σ 1 0 0.063 0 0.36 0 0.37 0.002 0.254
60 6 10 5σ 3σ 1 0 0.061 0 0.358 0 0.308 0 0.316
40 2 20 5σ 3σ 1 0 0.063 0 0.4 0 0.314 0 0.31
60 6 20 5σ 3σ 1 0 0.058 0 0.35 0 0.314 0 0.066
40 2 10 2σ 5σ 1 0.961 0.074 0.992 0.296 1 0.28 0.998 0.068
60 6 10 2σ 5σ 1 0.080 0.130 0.006 0.452 1 0.314 0.664 0.154
40 2 20 2σ 5σ 1 0.071 0.258 0.692 0.382 0.992 0.328 1 0.012
60 6 20 2σ 5σ 1 0 0.145 0 0.436 0 0.37 0 0.054
40 2 10 5σ 5σ 1 0 0.098 0 0.41 0.006 0.346 0.028 0.248
60 6 10 5σ 5σ 1 0 0.071 0 0.372 0 0.302 0 0.27
40 2 20 5σ 5σ 1 0 0.098 0 0.42 0 0.362 0 0.336
60 6 20 5σ 5σ 1 0 0.065 0 0.404 0 0.318 0 0.078
40 2 10 2σ 3σ 2 0.620 0.071 0.948 0.37 0.992 0.27 0.916 0.136
60 6 10 2σ 3σ 2 0.478 0.089 0.652 0.368 0.898 0.26 0.538 0.174
40 2 20 2σ 3σ 2 0 0.144 0.748 0.314 0.922 0.324 0.492 0.132
60 6 20 2σ 3σ 2 0.249 0.088 0.006 0.488 0.382 0.288 0 0.03
40 2 10 5σ 3σ 2 0.365 0.063 0.106 0.38 0.298 0.318 0.104 0.18
60 6 10 5σ 3σ 2 0.060 0.058 0 0.392 0 0.286 0 0.254
40 2 20 5σ 3σ 2 0.101 0.063 0 0.376 0 0.348 0 0.196
60 6 20 5σ 3σ 2 0.005 0.057 0 0.376 0 0.35 0 0.03
40 2 10 2σ 5σ 2 0.961 0.074 1 0.326 1 0.308 1 0.042
60 6 10 2σ 5σ 2 0.080 0.130 0.984 0.364 0.992 0.308 0.99 0.066
40 2 20 2σ 5σ 2 0.071 0.258 0.994 0.326 0.996 0.308 0.996 0.008
60 6 20 2σ 5σ 2 0 0.145 0.872 0.322 0.986 0.29 0 0.03
40 2 10 5σ 5σ 2 0.470 0.098 0.644 0.396 0.91 0.324 0.722 0.084
60 6 10 5σ 5σ 2 0.133 0.072 0 0.41 0 0.266 0 0.23
40 2 20 5σ 5σ 2 0.123 0.099 0 0.4 0 0.354 0 0.232
60 6 20 5σ 5σ 2 0.011 0.067 0 0.392 0 0.33 0 0.03

Average probability 0.200 0.099 0.304 0.378 0.391 0.317 0.292 0.154

From the simulation study for outliers in the exterior X space and interior Y space, we
observe that the proposed method detects moderately. In fact, it is similar to Tukey’s
and LWS and is 90% more than GM. Despite the unimpressive swamping probabilities of
Tukey’s and LWS, the proposed method is reasonably good as GM. The results of various
combinations are presented in Table 6.

Table 6. Exterior X space and interior Y space.

n k contamination δR δL cloud GM Tukey’s LWS Proposed Estimator
% Detection Swamping Detection Swamping Detection Swamping Detection Swamping

40 2 10 2σ 5σ 2 0.980 0.074 0.998 0.308 1 0.28 1 0.08
60 6 10 2σ 5σ 1 0.998 0.308 1 0.332 1 0.294 0.976 0.09
40 2 20 5σ 5σ 1 0 0.100 0 0.374 0 0.314 0 0.308
60 6 20 5σ 5σ 2 0.011 0.068 0 0.344 0.006 0.282 0 0.23

Average probability 0.261 0.096 0.499 0.339 0.502 0.293 0.494 0.177

Summarizing the performance, we observe that none of the existing methods emerges
as the best in all the possible scenarios considered. It is significant to observe that LWS
works extremely poor in many cases though it is reliable in few cases. The proposed
method is detecting outliers as good as Tukey’s algorithm in most of the cases. But, when
both swamping and detection probabilities are taken into account, the suggested approach
appears to be better, if previous knowledge about the data is not accessible. Further, the
conventional detection metrics is used in L1-norm as it is not involving weights to obtain
the detection and swamping. Since the results are so dismal, we have excluded L1-norm
from the comparison tables, Table 2 to Table 11.
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4.2. Empirical study
Our study investigates the most significant empirical data sets that are often used by

research fraternity in the evaluation of robustness of regression models. They are Hawkins
Bradu and Kass (HBK) data, stack loss data and delivery time data [9, 18,19].

HBK data set is an artificially constructed data set with 14 outliers. This data set con-
tains both good and bad leverage points where the existing regression methods commonly
identify either of them or both types. The variable (y) depends on three independent
variables x1, x2 and x3. The parameter estimates obtained from OLS method for data
without outliers and those obtained from Huber, Hampel, Andrew, Tukey and the new
estimator for observations with outliers are listed in Table 7.

Table 7. Estimated coefficients - HBK data.

Coefficients OLS Huber Hampel Andrew Tukey Proposed Estimator
β0 -0.1805 -0.6933 -0.1806 -0.1846 -0.5342 -0.1584
β1 0.0814 0.1869 0.1815 0.0831 0.2329 0.0878
β2 0.0399 -0.0988 0.0398 0.0404 0.0495 0.0405
β3 -0.0517 0.3265 -0.0515 -0.0999 -0.0526 -0.0549

Figure 3 gives the observation against dM plot where the horizontal line represents
the threshold, t. It is interesting to note that the ten observations corresponding to the
residuals falling above the threshold are the same as those identified as the bad outliers
by various research studies.

Figure 3. Visualization of outliers - HBK data.

Stack loss data consists of 21 observations which provides details of amount of ammonia
lost (y) by the vending machines related to the three factors, air flow to the plant (x1),
cooling water inlet temperature (x2) and acid concentration (x3). The observations 1, 3, 4
and 21 are found to be the outliers. The parameter estimates obtained from OLS method
for data without outliers and those obtained from Huber, Hampel, Andrew, Tukey and
the proposed estimator for observations with outliers are listed in Table 8.
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Table 8. Estimated coefficients - Stack loss data.

Coefficients OLS Huber Hampel Andrew Tukey Proposed Estimator
β0 -37.6525 -40.6142 -39.9214 -37.2154 -37.4100 -36.8297
β1 0.7977 0.7419 0.7162 0.8262 0.7200 0.8320
β2 0.5773 1.2035 1.2953 0.5279 0.9636 0.4819
β3 -0.0671 -0.1408 -0.1526 -0.0715 -0.1102 -0.0758

Figure 4 gives the observation against dM plot where the horizontal line represents the
threshold, t. All the outliers have been detected which lies above the threshold line.

Figure 4. Visualization of outliers - Stack loss data.

Delivery time data is related to the two factors, the number of cases of products stocked
(x1) and the distance walked by the route driver (x2) affecting the delivery time (y) of
vending machine. Among the 25 observations, 1, 4, 9, 20, 22, 23 and 24 are found to be the
outliers. The parameter estimates obtained from OLS method for data without outliers
and those obtained from Huber, Hampel, Andrew, Tukey and the proposed estimator for
observations with outliers are listed in Table 9

Table 9. Estimated coefficients - Delivery time data.

Coefficients OLS Huber Hampel Andrew Tukey Proposed Estimator
β0 3.719 3.327 3.864 4.467 3.3521 3.6755
β1 1.406 1.529 1.427 1.463 1.4371 1.3471
β2 0.016 0.014 0.014 0.011 0.0144 0.016

Figure 5 gives the observation vs dM plot where the horizontal line represents the thresh-
old. The seven observations corresponding to the residuals falling above the threshold line
is considered to be the outliers.
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Figure 5. Visualization of outliers - Delivery time data.

4.3. Performance analysis
In this subsection, we present the observations from the investigation about the break-

down point and efficiency to measure the robustness of the proposed estimator.

4.3.1. Breakdown point. Breakdown point is a significant property that has practical
concern while devising a robust estimator. The definition of it dates back to the initial
studies of robustness and differ slightly over different researchers. We consider in our study
the general definition [13,18] for finite sample breakdown point for an estimator T over a
sample X with n observations given by,

ϵ∗
n(T, X) = min

{
m

n
: sup

m D(T (X), T (X ′)) = ∞
}

(4.1)

where m = 1, 2, ..., n represents the amount of contamination in the dataset and D
is any appropriate distance measure between the clean dataset X and the contaminated
dataset X

′ . For our study we choose D as the root mean square of the residuals of the
estimation T (X) and T (X ′) respectively.

The early attempts on robustness by the M estimators, L and R estimators could not
improve the breakdown point over least square estimators as expected. However, the later
studies focused on improving it, could accomplish upto 50% but only few studies achieved
simultaneously with good efficiency [10].

We investigate the breakdown point for the proposed method. For this purpose, we
carried out simulation iteratively considering various number of observations. In each
case, the breakdown point is computed using (4.1) taking number of outliers m, ranging
from 1 to n. Despite the number of iterations, we depict one with n = 100 for the
visualization of the breakdown point in the Figure 6 and is evident that it is more than
50%.
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Figure 6. Breakdown point.

4.3.2. Statistical efficiency. We recall the definition of the efficiency E given in Section
4 which is understood to be the best when it is close to unity. We compute it for the
proposed method using,

E = RMSOLS

RMSRobust
=

∑n
i=1 r(ols)2

i /n∑n
i=1 r(robust)2

i /n]
(4.2)

Thus the efficiency measure, E is expected to be close to unity.The efficiency of the new
estimator for three different data sets are shown in Table 10.

Table 10. RMS and efficiency.

Dataset (OLS) RMS(Proposed Estimator) Efficiency
Delivery Time data 11.082 11.036 1.004

Stack Loss data 11.499 11.772 0.981
HBK data 13.905 13.898 1.001

Nevertheless, the simplicity of the computation, the efficiency of the proposed robust
estimation technique performs on par with many of the well known existing M-estimation
approaches. A comparative study is been presented in Table 11 with the efficiency of the
proposed estimator along with that of the estimators under consideration.

Table 11. Comparison of efficiency.

Efficiency
Data Set Huber Hampel Andrew Tukey LWS L1-Norm Proposed Estimator

Delivery time data 1.185 0.885 0.983 1.004 2.664 1.339 1.004
Stack loss data 1.197 0.979 0.985 0.848 1.674 139.45 0.981

HBK data 2.103 1.170 0.999 0.983 1.061 0.356 1.001
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4.4. Sensitivity analysis
It is understood that there are three hyper-parameters affecting the results of our study.

One among them is the multiple of mean absolute deviation of residuals involved in the
calculation of threshold t which will alter the detection and swamping probabilities. The
second is the number of outliers in a given dataset which will affect the mean square
error of residuals. And if we could define a distance metric in p-dimensional space, the
number of outliers will influence the distance given by L2-norm, denoted by N , between the
parameter vectors of the dataset involving different number of outliers and the respective
dataset without outliers.

Figure 7. Sensitivity analysis on coefficient estimates.

The constant used as the multiple of mean absolute deviation of residuals in the thresh-
old t, the first hyper parameter is highly sensitive in the sense that the lesser or more the
constant than the chosen one will worsen the detection or swamping probabilities. Refer-
ring Table 1, 1.57 is observed to be the optimal value considered for the computation of
the threshold. We have performed two different sensitivity analyses based on the second
hyper parameter, the number of outliers. The sensitivity pertaining to root mean square
error of the residuals of the second hyper parameter is depicted in Figure 6 and shows how
well the model captures the information from the data when there is an increase in the
number of outliers. The figure shows that till 50% of contamination, there is no significant
increase in root mean square error of residuals. Further, the sensitivity due to the number
of outliers is studied using the distance between the parameter vectors which is presented
in Figure 7. The figure displays the average of distances N say, Navg obtained by itera-
tions. It is obvious that N is expected to be small but the figure reveals the distance is
acceptably small till approximately 40% of the data gets contaminated.

5. Conclusion
A hybrid approach of M and R estimators using an iterative procedure is proposed to

detect outliers and to estimate the regression parameters for linear models. The simplicity
of the computation of the proposed method compared to M-estimators is that the weights
are based on the order of the residuals instead of deriving it from an arbitrary function.
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This algorithm down weights those observations corresponding to residuals far from its
median. As the very purpose of any robust estimation is to lessen the influence of the
observations corresponding to the residuals of extreme magnitudes, the normal density
curve of the residual argument is a natural choice for a weight function. A Monte Carlo
simulation and a study on different empirical data sets were conducted to analyze the per-
formance of the proposed estimator. The detection and swamping of outliers is also well
comparable with the considered estimators. It is also observed from the simulation study
that the efficiency, a statistical measure of the proposed method is close to the better per-
forming M-estimators given by Andrew and Tukey. It comes to light that the breakdown
point, a critical statistic for the proposed method is found to be 50% and is as high as the
maximum of the existing estimators. A sensitivity analysis was carried out based on two
hyper parameters namely the number of outliers and the multiple used in the threshold
value. It is evident from the analysis that the estimation is robust upto approximately
40% of contamination. The results are depicted clearly using tables and scatter plots.
Nevertheless, the simplicity of the computation, the proposed hybrid approach of robust
estimation technique performs on par with many of the well known existing approaches.

In our study, we consider errors following normal distribution with artificially implanted
outliers. However, the proposed method can be extended to a model involving errors of
mixed distributions [7, 24] and a suitable data driven tuning constant.
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