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Abstract  Öz 

In this paper, a novel adaptive extended fuzzy function state observer-
based controller is proposed to control a class of unknown or uncertain 
nonlinear systems. The controller uses Nussbaum-gain technique from 
literature to prevent controller singularity with unknown control 
direction and the controller degree of freedom is increased. A state 
observer which employs the adaptive extended fuzzy function system to 
approximate a nonlinear system dynamics and estimates the 
unmeasurable state. The stability of closed-loop control system are 
shown using Lyapunov stability criterion and Nussbaum function 
property. The proposed and conventional fuzzy system based 
controllers are designed to control an inverted pendulum in simulation 
and a flexible-joint manipulator in real-time experiment. The integral of 
absoulte error (IAE) of tracking, integral of squared error (ISE) of 
tracking and integral of required absolute control signal (IAU) 
performances are compared in applications. The aim of the paper is not 
only to improve the tracking performances, but also to implement the 
adaptive extended fuzzy function based controller to a real-time system 
and conduct the tracking with unknown control direction. 

 Bu çalışmada, uyarlamalı genişletilmiş bulanık fonksyion durum 
gözetleyici temelli denetleyici, doğrusal olmayan bilinmeyen ve belirsiz 
sistemlerin kontrolü için önerilmiştir. Nussbaum-Kazanç tekniği 
kullanarak bilinmeyen kontrol işareti yönündeki tekil durum 
engellenerek denetleyicinin serbestlik derecesi artırılmıştır. Uyarlamalı 
genişletilmiş bulanık fonksiyon ile bilinmeyen sistem dinamikleri 
yaklaşıklanmakta ve ölçülemeyen durumlar gözetlenmektedir. Kapalı 
çevrim kontrol sistemindeki sinyallerin sınırlılığı Lyapunov kararlılık 
kriteri ve Nussbaum fonksiyon özellikleri ile gösterilmiştir. Önerilen ve 
literatürde bilinen bulanık sistem temelli denetleyiciler ters sarkaç 
sistemine benzetim ortamında, esnek bağlantılı robot koluna ise gerçek 
zamanlı olarak uygulanmıştır. İzleme hatası için mutlak hata toplamı 
(IAE), karesel hatanın toplamı (IAE) ve gerekli kontrol işaretinin 
toplamı (IAU) performansları kullanarak tasarlanan denetleyiciler 
karşılaştırılmıştır. Çalışmanın amacı sadece izleme performansını 
artırmak değil, uyarlamalı genişletilmiş bulanık fonksiyon gözetleyici 
temelli denetleyiciyi gerçek zamanlı sisteme uygulamak ve bilinmeyen 
kontrol işareti yönünde denetlemeyi sağlamaktır. 

Keywords: Extended fuzzy functions, Adaptive observer-based 
control, Nussbaum gain technique, Inverted pendulum, Flexible-joint 
manipulator 

 Anahtar kelimeler: Genişletilmiş bulanık fonksiyon, Uyarlamalı 
gözetleyici temelli kontrol, Nussbaum-kazanç tekniği, Ters sarkaç, 
Esnek bağlantılı robot kolu 

1 Introduction 

Flexible mechanical systems are difficult to control since 
external disturbances cause variations on the system dynamics. 
These variations damage the performance of the control and 
lead to large tracking errors or damaging vibrations. Flexible 
link and joint manipulators with low stiffness coefficients are 
easily yawned under load change such that it brings extra-
uncertainty and compliance problem compared to rigid 
manipulators. Therefore, in order to achieve high a 
performance in the control of the flexible systems, designed 
controllers must compensate for the effect of the uncertainty. 
Thus, robust and high-performance controllers are in demand 
for flexible systems. Experimental flexible systems are 
introduced in literature [1]-[3] and some proposed controllers 
are offline-trained compensator [4], wavelet transformation-
based iterative controller [5], minimum-time controller based 
on linear programming [6] and an extended observer-based 
controller [7]. 

Fuzzy system based adaptive state observer control of a 
uncertain or unknown nonlinear system has been one of the 
active research areas in the control field. Based on universal 
approximation property [8]-[11], adaptive fuzzy and neural 
systems have been used to approximate the dynamics of the 

unknown nonlinear systems. Using the approximate dynamics, 
adaptive fuzzy or neural observers can be used to estimate the 
unavailable states [12],[13]. Then, the estimated states and 
approximated dynamics are employed to design a feedback 
control rule which drives the system to desired states. 
However, the control law is designed using the estimated 
tracking error dynamics. The question arises as how to find the 
update rules of the adaptive system parameters using 
measured and/or estimated signals. In the early papers, the 
filtering of the observation errors, which results the filtering of 
the regressor functions is used to enforce the SPR (Strict 
Positive Real) condition to design a stable controller that 
satisfies Meyer-Kalman-Yokubovic Lemma [14]. In [15],[16], 
the state estimation error is filtered and then used for the 
adaptation of parameters. In [17], the output observation error 
is only filtered to enforce SPR condition then utilized to design 
controller in [18],[19]. In [20], the output control error is 
filtered to design the update rules and instead of adaptive 
observers, high-gain or sliding-mode observer-based 
controllers are proposed. Due to the singularity problem of the 
control law, adaptive indirect controller is not preferable for 
the control of all nonlinear systems. Generally, a nonlinear 

system is assumed to be affine in Brunovsky form 𝑥(𝑛) =
𝑓(𝑥) + 𝑔(𝑥)𝑢 with a relative degree of 2. However, in the 
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indirect adaptive controller design, there must be an additional 
assumption for �̂�(𝑥) function not to be zero which results 
relative degree 1 [21]. Therefore, some of the authors prefer 
direct adaptive controller which essentially approximates the 
controller dynamics [20] and some employ Nussbaum 
functions in indirect adaptive control [22]-[25] for unknown 
controller direction. 

Fuzzy function model is an another reasoning scheme and 
representation of the fuzzy rules. General fuzzy function model 
is constructed with scalar inputs and their fuzzy membership 
values. Both are functioned in the fuzzy regressor matrix. The 
first fuzzy function least-squares model (FF-LSE) was shown to 
provide %10 better performance than standard LSE [26]. The 
applications of FF-LSE based models are given for regression, 
system identification [26]-[30] and pattern classification  
[31],[32]. A comparative work about rule based structures is 
given in [33] and a literature survey paper of the FF model with 
comparison to the other fuzzy systems is given in [34]. In 
addition, the fuzzy function model is extended using the type-2 
fuzzy modeling concept [35]. Following to the above 
developments, fuzzy function-based auto regressive with 
exogenous-input (FF-ARX) regressor models that structures 
the input measurements as scalars and also other ARX terms 
located in regression matrix in [27]. Consequently, known ARX 
linear modeling and fuzzy system nonlinear modeling abilities 
are unified to get better identification performance. Finally, the 
a highly efficient FFARX model, which was introduced in study 
[27], is utilized for adaptive system identification and its 
convergence properties is detailed in [28]. 

In literature, adaptive fuzzy or neural-network observer-based 
controllers with Nussbaum functions (AFOBC) have been 
developed with various modifications for different 
applications. Based on the review of relevant literature, those 
controllers have the following advantages:  

(i) They employ the fuzzy modeling to approximate 
unknown system dynamics in adaptive control, 

(ii) The velocity measurement is not needed for reference 
tracking, 

(iii) (iii) Nussbaum function property is used to get rid of 
singularity problem. These are the main motivations 
to follow the literature works. In this paper, recently 
developed extended fuzzy function system [28] based 
indirect adaptive controller (EFFOBC) is designed 
instead of using classical fuzzy system or neural-
network. In simulation and real-time experiment, 
proposed EFFOBC controller and classical AFOBC are 
compared in terms of design conditions and 
performances where the improved and not improved 
tracking performances are shown in tracking results. 
Second contribution can be considered that to the best 
knowledge of the author, adaptive fuzzy function 
model and Nussbaum-gain techniques are first time 
used in the real time control experiment. 

The remainder of the present paper is organised as follows. The 
theory of extended fuzzy function based regression and 
adaptive fuzzy function observer-based controller with 
Nussbaum functions are explained in Section 2. The numerical 
simulations including inverted pendulum control comparisons 
are given in Section 3. In Section 4, a flexible-joint manipulator 
is controlled via proposed and conventional adaptive 
controllers. Finally, the paper is concluded in Section 5. 

2 Adaptive extended fuzzy function state 
observer-based control 

In this section, fuzzy function regression, Nussbaum functions 
and adaptive observer-based controller methods will be 
explained. 

2.1 Nussbaum functions  

Definition 1 [22] If a function has the followin properties, then 
it is called Nussbaum-type function N(ζ): 

lim
𝑧→∞

𝑠𝑢𝑝
1

𝑧
∫

𝑧

0

𝑁(𝜁)𝑑𝜁 = +∞,

lim
𝑧→∞

𝑖𝑛𝑓
1

𝑧
∫

𝑧

0

𝑁(𝜁)𝑑𝜁 = −∞.

 (1) 

The Nussbaum functions are 𝜁2cos(𝜁), 𝑒𝜁2
cos(

𝜋

2
𝜁) and 𝜁2sin(𝜁) 

known in literature. 

Lemma 1 [23] Let smooth functions V(t), ζ(t) are defined on 
[0, tf) with V(t) > 0, ∀  t ∈ [0, tf), and N(ζ) be an even, smooth 
and Nussbaum-type function. If the following inequality holds: 

𝑉(𝑡) ≤ 𝑐0 + 𝑒−𝑐1𝑡 ∫
𝑡

0

𝑔(𝑥(𝜏))𝑁(𝜁)𝜁̇𝑒𝑐1𝜏𝑑𝜏 + 𝑒−𝑐1𝑡 ∫
𝑡

0

𝜁̇𝑒𝑐1𝑡)𝑑𝜏, (2) 

Where 𝑐1 is a positive constant and 𝑐0 is a constant. The 𝑔(𝑥(𝜏)) 
is a time-varying parameter that it takes values in the known 
closed intervals 𝐼: = [𝐼−, 𝐼+] with 0 ∉ 𝐼, then 𝑉(𝑡), 𝜁(𝑡) 

∫
𝑡

0
𝑔(𝑥(𝜏))𝑁(𝜁)𝜁̇𝑑𝜏 are to be bounded on [0, 𝑡𝑓). 

The result given in Lemma 1 will be used to demonstrate the 
boundedness of the closed loop control signals such as states, 
tracking error, Nussbaum variables and functions. In this study, 

we use 𝑒𝜁2
cos(

𝜋

2
𝜁) type Nussbaum function. 

2.2 Extended fuzzy function modeling 

Recently, fuzzy function based models have been used for 
accurate classification and regression problems due to its ease 
construction and high approximation capability. A simple FF-
LSE model can be built by determining the parameters using 
only LSE and FCM clustering methods [26]. For that reason, FF-
LSE model can be easily constructed and applied without much 
knowledge about the modeling of fuzzy systems. At first, FCM 
clustering is used to cluster the measured inputs and the cluster 
centers are used to design fuzzy systems. The measured inputs 
and fuzzy membership values are used in the fuzzy regression 
matrix. Then, the conventional LSE is applied to estimate the 
FF-LSE model parameters. The FF-LSE modeling is given as, 

Y = 𝜃𝜓 + 𝜀 (3) 

Where, Y is the measured system output, �̂� is the vector of 
parameters, 𝜓 is the regression matrix. The residual 𝜺 is the 
modeling error. The FF-LSE model regression matrix 𝜓 is 
designed as 𝜓 = [1, X, b] where X = [𝑢(1), 𝑢(2), . . . , 𝑢(𝑁)]𝑇 is a 
𝑁 samples input and b is its normalized fuzzy memberships. 
The FF-LSE model is designed as in the following items [26]: 

 Implement the FCM clustering algorithm and 
calculate the optimal membership𝜇𝑖𝑗(𝑘) values of the 

measurement inputs (𝜇𝑖𝑗(𝑘) are determined from 

FCM). After that determine a threshold value alpha cut 
(𝛼) to disregard harmonics obtained via FCM [26], 



 
 
 
 

Pamukkale Univ Muh Bilim Derg, 23(5), 519-526, 2017 
S. Beyhan 

 

521 
 

that increases the effect of the input values on the 
parameter estimation.  

𝜇𝑖𝑗(𝑘) = (
𝑢𝑖𝑗(𝑘) if𝑢𝑖𝑗(𝑘) ≥ 𝛼

𝛼 if𝑢𝑖𝑗(𝑘) < 𝛼
 (4) 

Then, the fuzzy membership values 𝜇𝑖𝑗(𝑘) are normalized as, 

𝛾𝑖𝑗(𝑘) =
𝜇𝑖𝑗(𝑘)

∑𝐶
𝑖=1 𝜇𝑖𝑗(𝑥𝑗(𝑘))

 (5) 

Where the 𝐶 parameter is the predefined number of the input 
clusters, here the indeces 𝑖 and 𝑗 are used for centers and inputs, 
respectively. 

 Finally, fuzzy least-squares matrix 𝜓 = [1, X, b]is 
designed utilizing the measurement inputs and 
normalized fuzzy membership values, design. The 
fuzzy basis function  matrix b = [𝛾𝑖𝑗|𝑖 = 1, . . . , 𝐶; 𝑗 =

1, . . . , 𝑁] includes the normalized fuzzy membership 
values w.r.t. all cluster centers. Applying the one-step 

LSE method, the 𝜃 parameters  are calculated as, 

𝜃 = (𝜓𝑇𝜓)−1(𝜓𝑇𝑌) (6) 

Where Y is the measured output of the system. A known 
superiority of the least-squares estimation is the one step 
ahead modeling that provides the optimum parameters from 
the measured input and output data. In fact, it provides a linear 
estimation in nonlinear feature space for FF-LSE modeling. 
Therefore, there is not required a nonlinear optimization 
method and resultingly there is no local minima problem when 
the model parameters is estimated. 

The above procedure is given for the offline FF-LSE modeling, 
then FF-LSE modeling was enhanced via augmenting the auto-
regressive with exogenous input model (ARX) and constructed 
different FF-ARX membership functions [27]. Following that 
using gradient-descent and recursive-least-squares modeling 
with adaptive learning rates, one of the superior membership 
functions in [27] is designed for online system identification 
and high performance of the online function approximation 
was obtained for different benchmark systems [28]. In this 
study, we apply the following fuzzy function model for online 
system identification in indirect adaptive control of nonlinear 
systems with unknown control direction. The regressor vector 
of the applied fuzzy function is given as, 

𝜓 = [𝑢(𝑘). . . 𝑢(𝑘 − 𝑛)  𝑦(𝑘 − 1). . . 𝑦(𝑘 − 𝑚)  b(𝑢)  b(𝑦)], (7) 

Where 𝑢(𝑘). . . 𝑢(𝑘 − 𝑛) are the delayed inputs of the system, 
𝑦(𝑘 − 1). . . 𝑢(𝑘 − 𝑚) are the delayed outputs of the system, 
b(𝑢) and b(𝑦) vectors are fuzzy basis functions which are 
normalized and filtered by alpha-cut. 

2.3 Controller design 

 Consider a single-input single-output 𝑛th order nonlinear 
system of the form, 

�̇�1 = 𝑥2,
�̇�2 = 𝑥3,
  ⋮  
�̇�𝑛 = 𝑓(𝑥) + 𝑔(𝑥)𝑢 + 𝑑,
𝑦 = 𝑥1,

 (8) 

Where 𝑢 ∈ ℝ is the control signal, and 𝒙 = [𝑥1, 𝑥2, … , 𝑥𝑛]𝑇 ∈ ℝ𝑛 
is the state vector, respectively. The 𝑓(𝑥) and 𝑔(𝑥) are 
nonlinear and bounded smooth functions of the states, and 𝑑 is 
the unknown external sturbance to the system. In order to 
design, a state observer based fuzzy function indirect adaptive 
control, the nonlinear system is represented as  

 �̇� = 𝐴𝑥 + 𝐵[𝑓(𝑥) + 𝑔(𝑥)𝑢 + 𝑑],

𝑦 = 𝐶𝑇𝑥,
 (9) 

Where, 

𝐴 =

[
 
 
 
 
 
0 1 0 0 0
0 0 1 0 0

0 0 0 0 1
0 0 0 0 0

]
 
 
 
 
 

𝑛×𝑛

𝐵 = [

0
0
⋮
1

]

𝑛×1

𝐶 = [

1
0
⋮
0

]

𝑛×1

𝑇

 (10) 

When the system dynamics (9) are known, a controller is 
designed to produce a control signal so that the nonlinear 
system can track a predefined reference signal  

𝑦𝑟 = [𝑦𝑟 , �̇�𝑟 , , 𝑦𝑟
(𝑛−1)

]. The ouput tracking error is described as 
𝑒 = 𝑦 − 𝑦𝑟 , and the tracking error vector. It is defined  with its 

𝑛 − 1 derivative forms is written as 𝑒 = [𝑒, �̇�, , 𝑒(𝑛−1)]. The 
conventional feedback linearization controller 
[10],[11],[14],[15] is described to remove the nonlinearity 
terms of the input-affine nonlinear system (8), 

𝑢∗ =
1

𝑔(𝑥)
[−𝑓(𝑥) + 𝑦𝑟

(𝑛)
− 𝐾𝑐

𝑇𝑒], (11) 

Where 𝐾𝑐 = [𝜆1….
𝑐 𝜆𝑛

𝑐 ]𝑇 when 𝑑 = 0. Substituting (11) into (8), 
then a closed loop control system dynamics is governed by, 

𝑒(𝑛) + 𝜆𝑛
𝑐 𝑒(𝑛−1) + ⋯+ 𝜆1

𝑐𝑒 = 0, (12) 

Where the constants 𝜆𝑖 , 𝑖 = 1,2, . . . , 𝑛 are suitably selected 
parameters to make 𝐴 − 𝐵𝐾𝑐

𝑇 polynomial strictly Hurwitz.  
Then, we have lim𝑡→∞𝒆(𝑡) = 0, where it results that the system 
output tracks asymptotically to the defined reference signal. 

The 𝑓(𝑥) and 𝑔(𝑥) nonlinear system functions of the system are 
not known and approximated adaptively by the designed fuzzy 
function models. Using 𝑒 = 𝑦 − 𝑦𝑟, tracking error dynamics are 
obtained as, 

�̇� = 𝐴𝑒 + 𝐵[𝑓(𝑥) + 𝑔(𝑥)𝑢 − 𝑦𝑟
(𝑛)

],

𝑒𝑡 = 𝐶𝑇𝑒.
 (13) 

Where 𝑦𝑟 = 𝐴𝑦𝑟 + 𝐵𝑦𝑟
(𝑛)

. In  adaptive fuzzy function observer-
based control design, the tracking problem is converted to 
design a state observer of tracking error such that the state 
observer essentially estimates the tracking error [15]. The state 
observer is given as, 

 �̇̂� = (𝐴 − 𝐵𝐾𝑐
𝑇)�̂� + 𝐾𝑜(𝑒𝑡 − �̂�𝑜),

�̂�𝑜 = 𝐶𝑇�̂�,
 (14) 

With the observer feedback-gain vector 𝐾𝑜 = [𝜆1
0, … , 𝜆𝑛

0 ]𝑇 ∈ ℝ𝑛 

and �̂� = 𝑥 − 𝑦𝑟 = [�̂�, �̇̂�, … , �̂�(𝑛)] ∈ ℝ𝑛. In state observer design, 
the couple (𝐶, 𝐴) must be observable. The 𝐾𝑜  can be chosen so 
that the 𝐴𝑜 = 𝐴 − 𝐾𝑜𝐶

𝑇 polynomial of the observer is strictly 
Hurwitz. The observer error dynamics �̃� = 𝑒 − �̂� is derived as, 

 �̇̃� = (𝐴 − 𝐾𝑜𝐶
𝑇)�̃� + 𝐵[𝐾𝑐

𝑇�̂� − 𝑦𝑟
(𝑛)

+ 𝑓∗(𝑥) + 𝜀𝑓 + �̃�(𝑥)𝑢], (15) 
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Using 𝑓(𝑥) = 𝑓∗(𝑥) + 𝜀𝑓 where 𝑓∗(𝑥) = 𝜃𝑓
𝑇∗𝜓(𝑥) is the optimal 

approximation of the function with minimum approximation 
error 𝜀𝑓. For the 𝑔(𝑥) function part of the system, instead of 

approximating the 𝑔(𝑥) function, we approximate 1/𝑔(𝑥) 
function using Nussbaum functions not to reduce degree of 
freedom when unknown control direction exists. In both cases, 
𝑔(𝑥) function approximation causes a modeling error as given 
in (15). 

To design a state observer-based stable indirect adaptive 
controller, the transfer function of the linearized nonlinear 
dynamics must to satisfy the SPR condition [14]. In order to 
satisfy SPR condition, the fuzzy basis functions are filtered in 
[12],[15]. However, the filtering the large dimesioned fuzzy 
regressor vector is not feasible in real time applications, 
therefore the filtering of estimation error is proposed in 
[11],[18]. Therefore, same approach is used to obtain a suitable 
SPR transfer function here. The proposed filter is, 

𝐿(𝑠) = (
𝜌

𝑠 + 𝜌
)𝑛, (16) 

Where the filter design parameter is chosen 𝜌 > 0, 𝑠 is the 
Laplace parameter and 𝑛 is the system order. Using the filter 
above, the observer error dynamics are filtered as, 

 �̇̃�𝒄 = 𝐴𝑐�̃�𝑐 + 𝐵[𝐾𝑐
𝑇�̂�𝑐 − 𝑦𝑟

(𝑛)
+ 𝜃𝑓

∗𝑇𝜓𝑐(𝑥) + �̃�(𝑥)𝑢 + 𝜀𝑐], (17) 

Where, 

𝜀𝑐 = 𝜀𝑓 + 𝑑 + 𝜃𝑓
𝑇𝜓(𝑥) + �̃�(𝑥)𝑢 − 𝐿(𝑠)[𝜃𝑓

𝑇𝜓𝑐(𝑥) + �̃�(𝑥)𝑢] and 

𝐴𝑐 = 𝐴 − 𝐾𝑜𝐶
𝑇 , 𝐵𝑐 = [1, 𝑏1, … , 𝑏𝑚]𝑇  and 𝑪𝑐 = [1  0  …   0]. 

From [9], the 𝜃𝑓
∗𝑇 is the estimated optimal parameter vector 

which is given as  

𝜃𝑓
∗ = argmin𝜃𝑓

  [sup𝑥∈ℝ𝑛|(𝑓(𝑥, 𝜃𝑓) − 𝑓(𝑥))|]. (18) 

Assumption 1 [15] The following closed-loop signals are assumed 
to be  bounded which are the unknown external disturbance as 
|𝑑(𝑡)| < 𝑑∗, the 𝑓(𝑥) function approximationerror as |𝜀𝑓| < 𝜀𝑓

∗, 

the optimal estimated parameter vector as ||𝜃∗|| < 𝑀𝑓 . 

Therefore, the filtered uncertainty of the approximation is 
bounded as |𝜀𝑐| < 𝜀𝑐

∗.  

The given assumption is reasonable to limit system 
uncertainties in closed-loop control dynamics. The universal 
approximation theory permits to bound approximation error 
since the disturbance has a bound. The approximation error 
between filtered signal and real signals are bounded at the 
moment since the parameter vectors are bounded.  

Theorem 1 For the system (8), under Assumption 1 and Definition 
1, an adaptive fuzzy function state observer-based controller is 
designed as, 

𝑢 = 𝑁(𝜁)[−𝑓(𝑥) + 𝐾𝑐
𝑇 �̂� − 𝑦𝑟

(𝑛)
] + 𝜈, (19) 

With parameter adaptation laws, 

�̇�𝒇 = 𝛾𝑓 �̃�𝑐𝜓(𝑥),

𝜁̇ = �̃�𝑐𝐾𝑐
𝑇�̂� + 𝑒𝑐𝜃𝑓

𝑇𝜓(𝑥) − 𝑦𝑟
(𝑛)

𝑒𝑐 ,
 (20) 

and robustness input, 

𝜈 = −𝜅sign(𝑒𝑐), (21) 

Where 𝜅 > 𝜀∗/𝜀𝑔
𝐿, such that thenonlinear system (8) tracks the 

reference signal 𝑦𝑟  and the closed-loop  signals in the remain 
bounded. 

Proof: The candidate Lyapunov function is selected as, 

𝑉 =
1

2
 �̃�𝑐

𝑇𝑃�̃�𝑐 +
1

2𝛾𝑓
𝜃𝑓

𝑇𝜃𝑓 . (22) 

For a system with SPR transfer function [14] there exist 
𝑃 = 𝑃𝑇 > 0 ∈ ℝ𝑛×𝑛 matrix with given 𝑄 = 𝑄𝑇 > 0 which 
satisfying Lyapunov equation, 

𝐴𝑇𝑃 + 𝑃𝐴 = −𝑄,
𝑃𝐵 = 𝐶.

 (23) 

Differentiating the Lyapunov function w.r.t. to time, 

�̇� =
1

2
�̇̃�𝑐

𝑇𝑃�̃�𝑐 +
1

2
�̃�𝑐

𝑇𝑃�̇̃�𝑐 +
1

𝛾𝑓
�̇�𝑓

𝑇𝜃𝑓  (24) 

and substituting the observer error dynamics (17) in (24) 
yields 

�̇� =
1

2
�̃�𝑐

𝑇(𝐴𝑐
𝑇𝑃 + 𝑃𝐴𝑐)�̃�𝑐 +

1

𝛾𝑓

�̇̃�𝑓
𝑇�̃�𝑓 + �̃�𝑐

𝑇𝑃𝐵𝑐𝐾𝑐
𝑇�̃�𝑐

−𝑒𝑐
𝑇𝑃𝐵𝑐𝑦𝑟

(𝑛)
+ �̃�𝑐

𝑇𝑃𝐵𝑐𝜃𝑓
∗𝑇𝜓𝑐(𝑥) + �̃�𝑐

𝑇𝑃𝐵𝑐�̃�(𝑥)𝑢 + �̃�𝑐
𝑇𝑃𝐵𝑐𝜀𝑐,

 (25) 

According to (22) and using 𝜃𝑓 = 𝜃𝑓
∗ − 𝜃𝑓  and �̇�𝑓 = −�̇�𝑓 , 

Lyapunov function derivative is  

�̇� = −
1

2
�̃�𝑐

𝑇𝑄�̃�𝑐 +
1

𝛾𝑓
�̇�𝑓

𝑇𝜃𝑓 + 𝑒𝑐
𝑇𝜃𝑓

𝑇𝜓𝑐(𝑥) + 𝑒𝑐
𝑇𝐾𝑐

𝑇𝑒𝑐

−𝑒𝑐
𝑇𝑦𝑟

(𝑛)
+ 𝑒𝑐

𝑇𝜃𝑓
𝑇𝜓𝑐(𝑥) + 𝑒𝑐

𝑇�̃�(𝑥)𝑢 + 𝑒𝑐
𝑇𝜀𝑐 ,

 (26) 

From the parameter adaptation law [
1

𝛾𝑓
�̇�𝑓

𝑇 + 𝑒𝑐
𝑇𝜓𝑐 (𝑥)]𝜃𝑓 = 0. 

Substituting the control signal 𝑢, 

�̇� = −
1

2
�̃�𝑐

𝑇𝑄�̃�𝑐 + 𝑒𝑐
𝑇𝐾𝑐

𝑇�̃�𝑐 − 𝑒𝑐
𝑇𝑦𝑟

(𝑛)
+

+𝑒𝑐
𝑇�̃�(𝑥)(𝑁(𝜁)[−𝑓(𝑥) + 𝐾𝑐

𝑇𝑒 − 𝑦𝑟
(𝑛)

] + 𝜈) + �̃�𝑐𝜀𝑐 ,

 (27) 

and definition of 𝜁 and 𝜈 variables, we obtain  

�̇� = −
1

2
�̃�𝑐

𝑇𝑄�̃�𝑐 + [�̃�(𝒙)𝑁(𝜁) + 1]𝜁̇ + �̃�𝒄�̃�(𝒙)𝜈 + �̃�𝑐𝜀𝑐 ,

= −
1

2
�̃�𝑐

𝑇𝑄�̃�𝑐 + [�̃�(𝒙)𝑁(𝜁) + 1]𝜁̇.

 (28) 

Using the minimum eigenvalue of 𝑄, 𝛼 = 𝜆𝑚𝑖𝑛(𝑄), 

�̇� ≤ −𝛼𝑉 + [�̃�(𝑥)𝑁(𝜁) + 1]𝜁̇, (29) 

and multiplying the both side of (29) by 𝑒𝛼𝑡 , 

𝑑

𝑑𝑡
(𝑉(𝑡)𝑒𝛼𝑡) ≤ 𝑒𝛼𝑡[�̃�(𝑥)𝑁(𝜁) + 1]𝜁̇. (30) 

After the integration of the (30), 

0 ≤ 𝑉(𝑡) ≤ 𝑒−𝛼𝑡𝑉(0) + 𝑒−𝛼𝑡 ∫
𝑡

0

[�̃�(𝑥)𝑁(𝜁) + 1]𝑒𝛼𝜏𝜁̇𝑑𝜏. (31) 

According to the Lemma 1 and (31), it can be concluded that the 
chosen Lyapunov scalar function 𝑉(𝑡) and the parameter 𝜁 are 
bounded. By the definition of 𝑉(𝑡) function, the observation 
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error 𝑒 and 𝜃𝑓  parameter error are bounded and resultingly, the 

tracking error and states are bounded. 

Definition 1. [36] A 𝜓(x) is a fuzzy basis vector which is excited 
persistently, if 𝜅 > 0 and 𝑇0 > 0 constants exist such that 

∫
𝑡+𝑇0

𝑡

𝝍(𝒙(𝜏))𝝍𝑇(𝒙(𝜏))𝑑𝜏 ≥ 𝜅𝐼        ∀𝑡 ≥ 𝑡0. (32) 

The persistent excitation is satisfied at the same time for EFF 
system due to Gaussian membership functions and 𝛼 > 0 
constant (4). 

3 Numerical simulations 

The proposed (EFFOBC) controller and conventional (AFOBC) 
[10] have first been designed and applied to control an inverted 
pendulum. The inverted pendulum is well known highly 
nonlinear and originally unstable system without any control 
input. The following equations of inverted pendulum motion 
can be derived as summing the forces acting on the pendulum 
system: 

�̇�1(𝑡) = 𝑥2(𝑡)

�̇�2(𝑡) =
1

(𝑚 + 𝑀)
[
𝐹 − 𝑏𝑥2(𝑡) − 𝑚𝑙�̇�4(𝑡)cos𝑥3(𝑡)

+𝑚𝑙𝑥4
2(𝑡)sin𝑥3(𝑡)  

]        (33) 

Where, 𝑥1 is the position of the pendulum and 𝑥2 is the 
pendulum angular velocity. The controllers are designed by 
assuming the mathematical model of the pendulum is 
unknown. The experiments are performed using a 4th Runge-
Kutta integration routine and the sampling period is selected as 
10−3 seconds. The initial parameters of fuzzy systems are 
determined as linearly-spaced from the interval [0,1], Gaussian 
membership functions are utilized with constant centers and 
standard deviations. The centers are selected as linearly-
spaced between [−1,1] that are the min-max values of the 
position, respectively, and standard deviation is selected as 0.1. 
The variable of Nussbaum function is designed as zero. The 
filter parameter of the observer is chosen as 10. The adaptive 
controller feedback constants are 𝐾𝑐 = [100,20] and observer 
gains are chosen as 𝐾𝑜 = [400,40]. The number of the centers 
for input and output memberships are selected as 𝑅 = 10 
which is corresponding to the number of the rules. The 𝛼 value 
of equation (4) is chosen as 0.05. These parameters are selected 
via grid search of relevant intervals. The numerical simulations 
are given Figure 1 using EFFOBC controller. 

The proposed EFFOBC and AFOBC [10] are initialized with 
same parameters and fair comparisons are made to show 
accuracy of the proposed controller. There is another work 
which proposes a new SPR filter based adaptive fuzzy control 
(AFSPR) control includes pendulum tracking performances. It 
must be noted that the initial parameters or other parameters 
of AFSPR are not same with EFFOBC. However, in order to 
assest the accuracy of pendulum tracking, the same 
performances are given and compared in Table 1. In order to 
indicate a qualitative comparison between controllers, integral 
of absolute (output-tracking) error (IAE), integral of squared 
error (ISE) and Integral Absolute input (IAU) criteria are used 
to compare the designed controllers [11]. In fact from the 
literature, it is known that the fuzzy function modeling itself 
improves the function approximation capability %10 better 
than classical fuzzy model [26],[28],[33]. However, the fuzzy 
function modeling inside indirect adaptive control (EFFOBC) 

provides approximately %10 better IAE and ISE performances 
than classical indirect adaptive fuzzy control (AFOBC) which 
partly supports the previously obtained literature results. The 
reason to be indicated that the controller parameters and 
observer performance predominantly affect the tracking 
performance than the identification performance. 

 

(a): Reference tracking. 

 

(b): Tracking error. 

 

(c): Control signal. 

 

(d): Estimation results. 

Figure 1: EFFOBC simulation results. 
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Figure 1(a)(b)(c) present reference tracking, tracking error and 
control signal which are generated by EFFOBC controller for 
pendulum control, respectively. Figure 1(d) shows the 
pendulum estimation results which are used in the feedback 
control where the accurate estimations are obtained in a short 
time using adaptive observer. 

Table 1: Simulation performances. 

Model/RMSE IAE ISE IAU 
EFFOBC 0.179 0.24 106.2 

AFOBC [10] 0.201 0.26 106.7 
AFSPR [11] 0.527 0.38 107.1 

4 Experimental verifications 

In order to illustrate the capability of designed controllers 
EFFOBC and AFOBC, flexible-joint manipulator (FJM) [3] has 
been controlled in real-time experiments. The manipulator is 
shown in Figure 2. Its approximate mathematical model [3] is, 

�̈�(𝑡) = −
𝐵𝑒𝑞

𝐽𝑒𝑞
�̇�(𝑡) +

𝐾𝑠

𝐽𝑒𝑞
�̇�(𝑡) +

1

𝐽𝑒𝑞
𝑢(𝑡)

�̈�(𝑡) =
𝐵𝑒𝑞

𝐽𝑒𝑞
�̇�(𝑡) − 𝐾𝑠(

𝐽𝑙 + 𝐽𝑒𝑞

𝐽𝑙𝐽𝑒𝑞
)�̇�(𝑡) −

1

𝐽𝑒𝑞
𝑢(𝑡)

 (34) 

Where 𝑥(𝑡) is the angle of the servomotor and �̇�(𝑡) is the 

velocity, respectively. Then, 𝜃(𝑡) and �̇�(𝑡) are the position and 
the velocity of the manipulator, respectively. The numerical 
values and definitions of the parameters are as follows.  
𝐵𝑒𝑞 = 0.004N.m/(rad/s) is the damping coefficient,  

𝐽𝑒𝑞 = 2.08 × 10−3kg.m2 is the inertia of the motor, 𝐾𝑠 =

1.248N.m/rad is the stiffness coefficient. Finally, 
𝐽𝑙 = 1.9 × 10−3kg.m2 is the inertia moment of the arm. The 
flexible joint manipulator is a well-known experimental system 
which is utilized to test different control methods [6],[7]. The 
above system model is derived based on the constant end-
effector mass assumption. However, we can add an external 
mass to the end of manipulator to carry a varying payload. 
Therefore, the robot manipulator dynamics must be modified 
by adding a 𝑚𝑎𝑑𝑑𝑔𝐿𝑠𝑖𝑛(𝜃)/𝐽𝑒𝑞 term for model-based 
controllers such that linear controllers with constant 
parameters are not suitable for this experiment. However, the 
effect of payload variation is not required to be elaborated 
separately due to the nature of adaptive controller capability. 
In this experiment, the input-output function relation is 
assumed to be between the position of payload and the input-
voltage applied to the servomotor of manipulator. 

 

Figure 2: Flexible-joint manipulator. 

The flexible-joint manipulator is controlled to track the time-
varying reference signals. The experiments are performed 
same as using a fourth-order Runge-Kutta integration routine 
and the sampling period is selected as 10−3 seconds. The 
extended fuzzy function system parameters are initialized 
between linearly-spaced [−1,1], Gaussian membership 
functions are utilized with constant centers and standard 
deviations. The centers are linearly-spaced between [−0.7,0.7] 
that are the min-max values of the position, respectively, and 
standard deviation is selected as 0.1. The variable of Nussbaum 
function is initialized as zero. The filter parameter of the 
observer is selected as 5. The adaptive controller feedback 
constants are 𝐾𝑐 = [30,11] to locate closed-loop poles at −5 
and −6. Then, the observer gains are chosen as 𝐾𝑜 = [800,60] 
to locate observer poles at −20 and −40. Using these constants 
and initial parameters, the adaptation of parameters is 
continued and manipulator is positioned to the different-type 
of signal references. The number of the centers for input and 
output memberships are selected as 𝐶 = 10 which is 
corresponding to the number of the rules. The 𝛼 value of 
equation (4) is chosen as 0.05. These parameters are selected 
via grid search of relevant intervals. The same initial 
parameters are utilized in conventional AFOBC design for fair 
comparisons. 

The experiment results are shown in Figure 3. Figure 3(a) 
represents the manipulator positions such that very accurate 
tracking is obtained for all references. The tracking errors seen 
in Figure 3(b) are very small except the reference signal 
changes sharply. The generated control signal is given in Figure 
3(c) such that it is employed to produce control signal in 
feedback control law. There exist small experimental noises in 
the control signal. Finally, Figure 3(d) indicates the estimated 
velocity of the manipulator The real-time control comparisons 
are given in Table 2 which includes IAE, ISE and IAU 
performances. From the real-time experiments, there are 
obtained %7 RMSE performance improvement and %7 IAU 
performance declension. It can be explained as due to the linear 
input-output terms of the regressor vector cause fast 
parameter adaptations and sharp input changes.  

Table 2: Real-time control performances. 

Model IAE ISE IAU 
EFFOBC 0.6463 0.4177 24.19 
AFOBC 0.6951 0.4831 23.21 

5 Conclusion 

In this paper, an adaptive extended fuzzy function state 
observer-based controller (EFFOBC) was proposed for a class 
of nonlinear unknown systems. The proposed EFFOBC and 
conventional AFOBC were designed to control an inverted 
pendulum in simulation and a flexible-joint manipulator in real-
time experiment. In numerical simulation using EFFOBC with 
selected optimal parameters, %10 IAE performance 
improvement was provided. In real time experiment, RMSE of 
tracking was improved %7 compared to conventional AFOBC. 
More importantly, due to the employed Nussbaum-gain 
technique, it is possible to position the payload at all angles of 
the flexible manipulator with unknown system dynamics. The 
application results are compatible with the theory explained in 
the paper and it can be concluded that the proposed controller 
methodology can be used to control flexible systems to a 
satisfactory level of tracking performance. 
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(a): Reference tracking. 

 

(b): Tracking error. 

 

(c): Control signal. 

 

(d): Estimation results. 

Figure 3: Real-time EFFOBC control. 
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