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Abstract: Catching projectiles using robotic systems poses significant 

challenges in robotics research. Understanding the projectile's trajectory and 

identifying the key factors influencing its movement are fundamental tasks in 

this field. This study aims to comprehensively analyze the factors affecting the 

motion of a projectile, specifically focusing on the trajectory of a ping pong 

ball. Both linear factors, such as gravity, buoyancy force, and centrifugal force, 

and nonlinear factors like air drag and Coriolis force, are examined. The 

motion equations of the ping pong ball are solved using numerical and 

analytical methods implemented in MATLAB programming. The study 

quantifies the percentage impact of these significant factors on the ball's 

motion and trajectory. By understanding the contributions of each factor, a 

more accurate and comprehensive understanding of the projectile's behavior 

can be achieved. To determine the point of impact of the projectile with the 

target, an equation of a fitted parabolic curve above the trajectory curve is 

obtained. This equation provides valuable insights into predicting the precise 

point of impact with the target. The proposed method is confirmed through the 

comparison and detailed analysis of the results obtained from analytical and 

numerical calculations. The findings of this research have broad applications 

in various fields, including image-based surveillance systems, analysis of 

sports video images, monitoring human activities, and enhancing human-

machine interaction. By considering and studying all significant factors 

affecting projectile motion, this research contributes to the advancement of 

robotics research, providing valuable insights and tools for catching projectiles 

accurately and efficiently. As a result of the study, the effect of gravitational 

force of the Earth, drag force for laminar flow, drag force for turbulent flow, 

buoyancy force, centrifugal force, and Coriolis force are 100%, 0.18%, 

55.88%, 1.49%, 0.28% and 0.0086% respectively. 
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1. INTRODUCTION

One of the most persistent challenges in robotics research is enabling autonomous 

systems to reliably grasp dynamic objects in unstructured environments (Kim et al., 2014; 

Bohg et al., 2014). Achieving this requires the seamless integration of advanced 

https://orcid.org/0000-0002-0585-3753
https://orcid.org/0000-0001-7711-6894


21. Yüzyılda Fen ve Teknik Dergisi 2025, 12(23), 18-38

19 

functionalities, including real-time environmental perception (Bohg et al., 2014), high-

speed object tracking, motion estimation, and adaptive path planning (Koval et al., 2015). 

A key aspect to these tasks is the accurate estimation of projectile trajectories, particularly 

under real-world constraints such as limited sensor data and computational latency 

(Cigliano et al., 2015; Kao et al., 2017; Lai & Ke, 2019; Oka et al., 2017). While multi-

camera systems have traditionally been employed for 3D trajectory reconstruction (Kao 

& Ho, 2021; Xie et al., 2014), recent advances in monocular vision algorithms now enable 

robust estimation using a single camera (Cigliano et al., 2015; Nobahar, 2020; Redmon 

et al., 2016; Zhang et al., 2020), reducing hardware complexity and computational 

overhead. However, achieving precision in such setups necessitates rigorous modeling of 

the physical factors governing projectile motion, a task complicated by the trade-offs 

between model fidelity and real-time applicability (Kao & Ho, 2021). 

Projectile dynamics are traditionally simplified by neglecting secondary forces such as 

aerodynamic spin-induced Magnus effects (Elger et al., 2020; Nathan, 2008) and non-

inertial Coriolis forces (Greenwood, 2003), with many studies focusing solely on gravity 

and quadratic air resistance (Frese et al., 2001; Lippiello et al., 2013; Nagurka, 2003; 

Nobahar, 2020; Tian et al., 2011). However, this simplification introduces errors in 

scenarios involving lightweight objects (e.g., ping-pong balls) or extended trajectories, 

where buoyancy (Kao & Ho, 2021; Nagurka, 2003; Tian et al., 2011), Reynolds-number-

dependent drag (Anderson, 2017; Frese et al., 2001), and centrifugal forces (Goldstein et 

al., 2001) become non-negligible. So that omitting buoyancy and nonlinear drag in ping-

pong ball trajectory models leads to deviations in real-world robotic interception tasks. 

Brancazio (1985) emphasized the critical role of aerodynamic interactions in sports 

projectiles, underscoring the need for physics-informed models in robotics. 

When a projectile is launched, it is governed by gravitational acceleration, which 

dominates vertical displacement (Halliday et al., 2013), and buoyancy, which reduces 

effective weight via Archimedes’ principle. Aerodynamic drag—modeled as Stokes’ law 

at low Reynolds numbers or quadratic drag at higher velocities (Batchelor, 2000)—

dissipates kinetic energy, while the Magnus effect introduces lateral deflection for 

spinning objects. Earth’s rotational effects, such as the Coriolis force, further perturb 

long-range trajectories (Greenwood, 2003), though these are often negligible in short-

range robotic applications. Despite gravity’s dominance, oversimplified models risk 

introducing substantial inaccuracies, underscoring the necessity of high-fidelity models 

in robotic systems(Kao & Ho, 2021). 

In this study, we develop a comprehensive framework for estimating the trajectory of 

ping-pong balls in robotic interception tasks, combining both linear (gravity, buoyancy) 

and nonlinear (quadratic drag, Coriolis force) dynamics. While analytical solutions for 

such coupled systems are often intractable (Parker, 1997), numerical methods like 

adaptive Runge-Kutta integration (Press et al., 2007) enable efficient approximations. 

Prior robotics studies frequently assume parabolic trajectories (Bäuml et al., 2010; Frese 

et al., 2001; Park, 2009) and model the trajectory of a flying ball as a parabola and refine 

it iteratively using recursive least squares optimization (Hong & Slotine, 2005; Riley & 

Atkeson, 2002)—an assumption valid only in idealized, drag-free scenarios (Halliday et 

al., 2013). Here, we propose a modified parabolic model augmented with empirical drag 

coefficients, aligning with hybrid analytical-numerical approaches advocated in recent 

literature (Kao & Ho, 2021; Koval et al., 2015). Our work bridges gaps between idealized 
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physics models and real-world robotic constraints, offering insights applicable to 

dynamic grasping, aerial robotics, and sports automation. 

2. MATERIAL AND METHOD

2.1. Analytical Method 

First, we will examine the analytical method for solving the problem. According to Figure 

1, we consider the Cartesian state variables system on the surface of the Earth's northern 

hemisphere in Kabul. The unit vector �̂� represents the 𝑥-direction towards the south, �̂� 

represents the 𝑦-direction towards the east, and �̂� represents the 𝑧-direction perpendicular 

to the surface of the Earth and pointing upwards. 

Figure 1. Representation of Cartesian coordinate system. 

A represents the geographical latitude of Kabul. In this context, a projectile body, such as 

a ping pong ball, is considered. Since the motion of the projectile is analyzed with respect 

to a reference frame that has rotational motion, this system is a non-inertial system for 

calculation purposes. 

The effect of each of these forces on the motion of the ping pong ball projectile is 

examined: 

Gravity force 

Considering the effect of gravity as the dominant force, we can describe the governing 

dynamic equation for the projectile’s motion, neglecting the effects of air resistance, 

buoyancy force, and non-inertial forces. This equation relates the mass (𝑚) and 

acceleration (𝒂) of the projectile under the influence of the Earth’s gravitational force, 

𝑭𝐠. If the projectile starts its motion from position 𝒓0 = [𝑥0 𝑦0 𝑧0]T with an initial

velocity 𝒗0 = [𝑣𝑥0 𝑣𝑦0 𝑣𝑧0]
T
, the equation can be expressed as:

(1)
𝑚𝒂 = 𝑭𝐠 = 𝑚𝐠0

𝒂 = 𝐠0 = −g0�̂�

In equation (1), g0 is the acceleration of gravity as measured by a nonrotating observer at 

the surface of Kabul. Therefore, the vertical component of motion experiences a constant 

acceleration, while the horizontal components have constant velocities. This is because 

the gravitational force acts vertically downward and does not affect the horizontal motion 

of the projectile, assuming no other forces are present. 
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In the motion with constant acceleration, the components of the acceleration vector 𝒂 =
𝑑𝒗/𝑑𝑡, velocity vector 𝒗, and position vector 𝒓 at time 𝑡 in the Cartesian coordinate 

system are given by 𝒂 = [0 0 𝑎𝑧]T, 𝒗 = [𝑣𝑥 𝑣𝑦 𝑣𝑧]
T
 and 𝒓 = [𝑥 𝑦 𝑧]T respectively.

These components can be obtained according to the following equations (2): 

(2)

𝑎𝑧 = −g0 

{

𝑣𝑥 = 𝑣𝑥0 
𝑣𝑦 = 𝑣𝑦0 

𝑣𝑧 = 𝑣𝑧0 + 𝑎𝑧𝑡 

{

𝑥 = 𝑥0 + 𝑣𝑥0𝑡 
𝑦 = 𝑦0 + 𝑣𝑦0𝑡 

𝑧 = 𝑧0 + 𝑣𝑧0𝑡 + (1 2⁄ )𝑎𝑧𝑡2

The effect of air resistance 

If it is not possible to neglect air resistance acting on the projectile, the Reynolds number 

Re = 𝜌𝑣𝐿 𝜇⁄  should be examined. In this analysis, 𝜇 represents the dynamic viscosity of 

air, 𝜌 is the density of air, and 𝐿 is the characteristic length of the projectile. For a spherical 

body, 𝐿 is typically taken as the diameter (Çengel & Ghajar, 2011). 

Figure 2. Illustrates that the air resistance force always acts in the opposite direction to 

the motion of the projectile (Dickhoff, 2023). 

If the Reynolds number is less than one, the air resistance behaves as a laminar layer, and 

according to Stokes' law, the drag force can be expressed as 𝑭drag = −𝑏𝒗 = −(6𝜋𝜇𝑅)𝒗

where 𝑅 is the radius of the spherical body (Parker, July 1997). In this case, the dynamic 

equation of motion and acceleration of the projectile can be determined accordingly. 

(3)

𝑚𝒂drag = 𝑚𝐠0 − 𝑏𝒗

𝒂drag = − ((𝑏 𝑚⁄ )𝒗 + g0�̂�)

= −(𝑏 𝑚⁄ )(𝒗 + 𝑣𝑡�̂�)

The components of the acceleration vector of the projectile can be obtained according to 

the following equations: 

(4){

𝑎𝑥 = −(𝑏 𝑚⁄ )𝑣𝑥       

𝑎𝑦 = −(𝑏 𝑚⁄ )𝑣𝑦       

𝑎𝑧 = −(𝑏 𝑚⁄ )(𝑣𝑧 + 𝑣𝑡) 
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The velocity of the projectile, when the effect of gravity is neutralized by air resistance 

and reaches a constant value, is called the terminal velocity. It can be calculated using the 

equation 𝑣𝑡 = 𝑚g0 𝑏⁄ , where 𝑣𝑡 is the terminal velocity, 𝑚 is the mass of the projectile,

and 𝑏 is the drag coefficient. 

The analytical solution for the differential equation (3) of velocity with respect to time is 

obtained as follows: 

(5)

𝑑𝒗

𝒗 + 𝑣𝑡�̂�
= −(𝑏 𝑚⁄ )𝑑𝑡 

𝒗 + 𝑣𝑡�̂� = (𝒗𝟎 + 𝑣𝑡�̂�)𝑒−(𝑏 𝑚⁄ )𝑡

𝒗 = −𝑣𝑡�̂� + (𝒗𝟎 + 𝑣𝑡�̂�)𝑒−(𝑏 𝑚⁄ )𝑡

The velocity equation, in the case where (𝑏 𝑚⁄ )𝑡 ≪ 1, can be transformed using the 

approximation 𝑒−(𝑏 𝑚⁄ )𝑡 ≈ 1 − (𝑏 𝑚⁄ )𝑡 as follows:

(6)𝒗 = 𝒗𝟎 − (𝑏 𝑚⁄ )(𝒗𝟎 + 𝑣𝑡�̂�)𝑡

The velocity of an object in free fall with an initial velocity 𝒗𝟎 = 0 can be obtained from 

equation (5) as follows: 

(7)𝒗 = −(1 − 𝑒−(𝑏 𝑚⁄ )𝑡)𝑣𝑡�̂�

If the Reynolds number is greater than one and less than 105, the air resistance on a body

is turbulent flow and can be calculated using the quadratic velocity relationship given by 

the equation 𝑭drag = −𝐷𝑣𝒗 = −(𝐶𝐷𝜌𝐴 2⁄ )𝑣𝒗 (Parker, 1997). Here, 𝐶𝐷 represents the

drag coefficient, and 𝐴 =  𝜋𝑅2 is the cross-sectional area of the sphere (where 𝑅 is the

radius of the spherical body). Therefore, the nonlinear dependent equations of projectile 

motion dynamics and its acceleration are obtained as follows: 

(8)

𝑚𝒂drag = 𝑚𝐠0 − 𝐷𝑣𝒗

𝒂drag = − ((𝐷 𝑚⁄ )𝑣𝒗 + g0�̂�) = −(𝐷 𝑚⁄ )(𝑣𝒗 + 𝑣𝑡
2�̂�)

In this case, the terminal velocity can be obtained using the equation 𝑣𝑡 = √𝑚g0 𝐷⁄ . The

components of the acceleration vector of the projectile at time 𝑡 can be obtained as 

follows: 

(9){

𝑎𝑥 = −(𝐷 𝑚⁄ )𝑣𝑣𝑥  

𝑎𝑦 = −(𝐷 𝑚⁄ )𝑣𝑣𝑦  

𝑎𝑧 = −(𝐷 𝑚⁄ )(𝑣𝑣𝑧 + 𝑣𝑡
2)

Due to the challenging nature of finding a general analytical solution for these nonlinear 

dependent equations, this paper presents a numerical solution for them. However, in this 

specific article, analytical solutions have been investigated for certain special cases. In 

the case of free fall, the analytical solution for the vertical component of equations (9) is 

given by: 

(10)𝑣𝑧 = −𝑣𝑡𝑡𝑎𝑛ℎ (
g0𝑡

𝑣𝑡
) 

Alternatively, in the case of vertical projectile motion with an initial velocity 𝑣𝑧0�̂�, the 

analytical solution for the vertical component of equations (9) is given as (Naguraka, 

2003). 
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(11)𝑣𝑧 = 𝑣𝑡𝑡𝑎𝑛 [𝑡𝑎𝑛−1 (
𝑣𝑧0

𝑣𝑡
) −

g0𝑡

𝑣𝑡
] 

Alternatively, in the case of horizontal motion with an initial velocity 𝒗0 = 𝑣𝑥0�̂�, only the

𝑥-component of equation (9) is considered, and its analytical solution is straightforwardly 

obtained. 

(12)

𝑎𝑥 = −(𝐷 𝑚⁄ )𝑣𝑥
2

𝑑𝑣𝑥

𝑣𝑥
2

= −(𝐷 𝑚⁄ )𝑑𝑡 

𝑣𝑥 =
𝑣𝑥0

1 + 𝑡 𝜏⁄

where 𝜏 = 𝑚 (𝐷𝑣𝑥0)⁄ .

From the recent equation, one can obtain the position of the object with respect to the 

origin, considering the start of motion, as follows 

(13)𝑥 =  𝑣𝑥0𝜏ln(1 + 𝑡 𝜏⁄ )

The effect of buoyancy force 

Considering the buoyancy force of the air as 𝑭b = 𝜌𝑉g0�̂�, where 𝜌 is the density of air, 

𝑉 =
4

3
𝜋𝑅3 is the a spherical body volume and 𝑅 is the radius, the dynamic equations for

the motion and acceleration of the projectile can be obtained as follows 

(14)
𝑚𝒂b = 𝑚𝐠0 + 𝜌𝑉g0�̂� = −𝑚′g0�̂�

𝒂b = −(𝑚′ 𝑚⁄ )g0�̂�

Since the acceleration of the projectile is constant, the components of the acceleration 

vector, velocity, and position of the projectile at time 𝑡 are obtained in a similar manner 

as equations (2). 

(15)

𝑎𝑧 = −(𝑚′ 𝑚⁄ )g0 

{

𝑣𝑥 = 𝑣𝑥0 
𝑣𝑦 = 𝑣𝑦0 

𝑣𝑧 = 𝑣𝑧0 + 𝑎𝑧𝑡 

{

𝑥 = 𝑥0 + 𝑣𝑥0𝑡 
𝑦 = 𝑦0 + 𝑣𝑦0𝑡 

𝑧 = 𝑧0 + 𝑣𝑧0𝑡 + (1 2⁄ )𝑎𝑧𝑡2

where 𝑚′ = 𝑚 − 𝜌𝑉. 

The effect of centripetal force 

In addition to the gravitational force, a body moving relative to the Earth experiences 

non-inertial forces due to the Earth’s rotational motion, including the centrifugal force 

and the Coriolis force. The direction of the angular velocity 𝝎 of the Earth’s rotational 

motion is from south to north along the axis of rotation. From the perspective of an 

observer rotating with the Earth, the acceleration of the body can be obtained from the 

following equation 

(16)𝐠 = 𝐠0 − 2𝝎 × 𝑽′ − 𝝎 × (𝝎 × 𝒓)

where 𝑟 = 𝑅E is the radius of the Earth. If we neglect the effects of the Coriolis 

acceleration −2𝝎 × 𝑽′ compared to the centripetal acceleration  −𝝎 × (𝝎 × 𝒓), the 

effective gravitational acceleration 𝐠 can be expressed as: 
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(17) 𝐠 = 𝐠0 − 𝝎 × (𝝎 × 𝒓) 

The direction of this acceleration and its components are shown in Figure 3 and Figure 4. 

Figure 3. Illustrates the centrifugal acceleration in the northern hemisphere due to the 

Earth’s rotational motion (Alonso & Finn, 1967). 

Taking into account the radius and angular velocity of the Earth, the value of the 

centrifugal acceleration with respect to the geographical latitude can be obtained as 

follows (Alonso & Finn, 1967). 

(18)
|−𝝎 × (𝝎 × 𝒓)| = 𝑟𝜔2cos(λ)

= 3.34 × 10−2cos(λ)

The maximum value of this acceleration occurs at the equator and is about %0.3 

acceleration of the Earth’s gravity, g0. 

According to Figure 4, the components of the radial and tangential accelerations due to 

the centrifugal force can be calculated as follows 

(19)−𝝎 × (𝝎 × 𝒓) = 𝑟𝜔2cos(λ)(sin(λ)�̂� + cos(λ)�̂�)

Figure 4. Shows the components of the radial and tangential accelerations due to the 

Earth’s rotational motion in the northern hemisphere (Alonso & Finn, 1967). 

And the vector of the effective gravitational acceleration, 𝐠, can be obtained as follows 

(20)
𝐠 = 𝑟𝜔2cos(λ)sin(λ)�̂�

+ (−g0 + 𝑟𝜔2cos2(λ))�̂�

Therefore, the effective acceleration is given as follows 
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(21)𝐠 = [0 0.016 0 − 9.772]T

Therefore, the value of 𝐠 is g = 9.772 m s2⁄ , and its deviation angle from the radial

direction of the Earth is 0.0925°. The north-south component of the effective acceleration 

is small, but it provides the launching deviation towards the south. Figure 5 illustrates the 

definition of vertical plumb line and the components of the effective acceleration in the 

northern hemisphere of the Earth. Figure 6 shows the deviation towards the south in the 

free fall of an object in the northern hemisphere of the Earth due to the eastward 

component of the effective acceleration (�̂�). 

Figure 5. Depicts the definition of the vertical plumb line and the effective acceleration 

in free fall in the northern hemisphere of the Earth (Alonso & Finn, 1967). 

Figure 6. Illustrates the deviation of the plumb line towards the south in the free fall of an 

object in the northern hemisphere of the Earth due to the centrifugal acceleration (Alonso 

& Finn, 1967). 

Therefore, the components of the acceleration vector, velocity, and position of the 

projectile at time 𝑡 can be obtained in a similar manner as equations (2): 

(22)

{

𝑎𝑥 = 𝑟𝜔2cos(λ)sin(λ)
𝑎𝑦 = 0       

𝑎𝑧 = 𝑟𝜔2cos2(λ)

{

𝑣𝑥 = 𝑣𝑥0 + 𝑎𝑥𝑡      
𝑣𝑦 = 𝑣𝑦0       
𝑣𝑧 = 𝑣𝑧0 + 𝑎𝑧𝑡      
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{

𝑥 = 𝑥0 + 𝑣𝑥0𝑡 + (1 2⁄ )𝑎𝑥𝑡2

𝑦 = 𝑦0 + 𝑣𝑦0𝑡       

𝑧 = 𝑧0 + 𝑣𝑧0𝑡 + (1 2⁄ )𝑎𝑧𝑡2

Figure 7. Illustrates the eastward deflection of a freely falling object in the northern 

hemisphere of the Earth due to the Coriolis acceleration (Alonso & Finn, 1967). 

The effect of the Coriolis force 

If we consider only the effect of the Coriolis force, the projectile's acceleration can be 

expressed as follows: 

(23)𝒂 = 𝐠0 − 2𝝎 × 𝑽′ 

In the case of free fall, the velocity 𝑽′ is directed downward, and according to Figure 7, 

the direction of the Coriolis acceleration −2𝝎 × 𝑽′ is towards the east. Therefore, in free 

fall, the object is deflected towards the east. 

When an object moves on a horizontal plane, the Coriolis acceleration has two 

components: horizontal and vertical. The horizontal component of the Coriolis 

acceleration causes the object to move towards the right direction in the northern 

hemisphere of the Earth (Figure 8). 

Figure 8. Shows that when an object moves on a horizontal plane in the northern 

hemisphere of the Earth, the horizontal component of the Coriolis acceleration causes the 

object to move towards the right direction (Alonso & Finn, 1967). 
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Therefore, the components of the projectile's acceleration vector at time 𝑡 can be obtained 

as follows: 

(24){

𝑎𝑥 = −(2𝝎 × 𝑽′)𝑥       

𝑎𝑦 = −(2𝝎 × 𝑽′)𝑦       

𝑎𝑧 = 𝐠0 − (2𝝎 × 𝑽′)𝑧 

2.2. Numerical Method 

The motion of a projectile is influenced by the gravitational force of the Earth, buoyancy 

force, and centrifugal force, which result in a constant acceleration. However, the 

projectile's acceleration is variable due to the influence of air resistance or the Coriolis 

force. By choosing a sufficiently small time interval Δ𝑡, the projectile's acceleration under 

the influence of these factors can be considered constant. The values of acceleration under 

different influences are provided in Table 2. 

Figure 9. Represents the flowchart of the algorithm for numerically solving the kinematic 

equations of projectile motion. 

Therefore, given the position and velocity of the projectile at time 𝑡, they can be obtained 

at time 𝑡 + Δ𝑡 using the equations of motion with constant acceleration. Within the time 

interval Δ𝑡, the average acceleration is 𝒂 = Δ𝒗/Δ𝑡, and the change in velocity is Δ𝒗 =
𝒂Δ𝑡. Hence, the velocity at the end of the time interval Δ𝑡 becomes: 

(25)𝒗 + Δ𝒗 = 𝒗 + 𝒂Δ𝑡 

And the position of the projectile at the end of the time interval Δ𝑡 is obtained from this 

equation 

(26)
𝒓 + Δ𝒓 = 𝒓 + 𝒗Δ𝑡

+ (1/2)𝒂(Δ𝑡)2

Therefore, the flowchart of the algorithm for solving the kinematic equations of projectile 

motion follows the sequence shown in Figure 9. 
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It goes without saying that the change in the position of the object occurs in the form of 

a parabola only within the time interval Δ𝑡. However, due to the influencing factors on 

its motion, it is possible that the trajectory of the projectile within a large time interval 

may not be a perfect parabola. 

Table 1. Necessary quantities and their values used in the calculations(Nagurka, 2003). 

Quantity Symbol Value 

The acceleration of gravity as measured by a nonrotating 

observer at the surface of Kabul 
g0 9.8 m/s2

The elevation of the cable relative to sea level ℎ 1791 m 

The acceleration due to gravity at the surface of Kabul, 

neglecting the effect of centrifugal force 
g 9.795 m/s2

The acceleration due to gravity at the surface of Kabul, 

considering the effect of centrifugal force 
g 9.772 m/s2

The geographic latitude of Kabul 𝜆 34.5553º 

The mass of the ping pong ball (Naguraka, 2003) 𝑚 2.7 g 

The diameter of the ping pong ball (Naguraka, 2003) 𝐿 40.0 mm 

The dynamic viscosity of air at 20ºC (Çengel & Ghajar, 

2011) 
𝜇 

1.8 × 10−5

 kg/(m ∙ s) 

The density of air at 20ºC (Çengel & Ghajar, 2011) 𝜌 1.204 kg/m3

The coefficient of air resistance (Naguraka, 2003 𝐶𝐷 0.4 

The angular velocity of the Earth’s rotational motion 

(Alonso & Finn, 1967) 
𝜔 7.292 × 10−5 rad/s

The radius of the Earth (Alonso & Finn, 1967) 𝑅E 6.35 × 106 m

The values used in the calculations are provided in Table 1. It should be noted that since 

the initial velocity and angle are not important in this study, there are no limitations for 

analyzing projectile motion for other velocities and angles. If a ball is launched with an 

initial velocity of 7.0 m/s at an angle of 45° with respect to the horizontal towards the 

south, the percentage contribution of the external forces above the projectile’s 

acceleration compared to gravitational acceleration is presented in Table 2. According to 

the results in the mentioned table, the significant factors affecting the projectile’s motion 

are air resistance with a percentage of %55.88 and buoyancy force with a percentage of 

%1.49, compared to the gravitational force of the Earth. These factors should be taken 

into account in the projectile’s motion. It is worth noting that the effect of the laminar air 

flow is not only very small compared to gravitational force but also cannot be considered 

in the studied projectile motion due to having the Reynolds number of 1.87 × 104. The

Reynolds number is obtained from Re = 𝜌𝑣𝐿 𝜇⁄  considering the values of Table 1. 

In the same way, the greatest effect on the location and time of the projectile's impact 

with the ground are related to the resistance force of air turbulence and its buoyancy force, 

respectively. 

3. RESULTS AND DISCUSSION

Based on the numerical simulation results using MATLAB, the trajectory of the projectile 

motion under the influence of external forces in Kabul city is shown in Figures 10 to 13. 

At first glance, the deviation of the projectile from its intended path due to the effects of 

centrifugal and Coriolis forces is noticeable. However, upon closer examination, these 

deviations are found to be very negligible. By examining the time and location of the 

projectile's collision under the influence of these two forces in Table 2, the matter is well 

proven. 
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The effect of air resistance on the trajectory of motion, as well as the time and location of 

the projectile's collision with the ground and its peak point, is shown in comparison to the 

effect of gravity alone in Figure 10. It is clearly observed that the motion trajectory lies 

on a plane. 

Table 2. Shows the impact of the acceleration factors on the projectile’s motion, location, and time of impact 

with the ground. 

Force 

Gravitational 

force of the 

Earth, 𝑭𝐠

Drag force for 

laminar flow, 

𝑭𝐝𝐫𝐚𝐠

Drag force for 

turbulent flow, 

𝑭𝐝𝐫𝐚𝐠

Buoyancy 

force, 𝑭𝒃

Centrifugal force, 

𝑭𝒓

Coriolis force, 

𝑭𝒄

Force 

equation 
𝑚𝐠0 −𝑏𝒗 −𝐷𝑣𝒗 𝜌𝑉g0�̂� −𝝎 × (𝝎 × 𝒓) −2𝝎 × 𝑽′ 

Projectile 

acceleration 
𝐠0 −𝑏𝒗/𝑚 −𝐷𝒗2/𝑚 𝜌𝑉g0/𝑚�̂� −𝝎 × (𝝎 × 𝒓) 𝑚⁄  −2𝝎 × 𝑽′ 𝑚⁄  

Percentage %100 %0.18 %55.88 %1.49 %0.28 %0.0086 

Impact 

position(m) 
[4.999 0 0] [4.992 0 0] [3.553 0 0] [5.078 0 0] [5.014 0.008 0] 

[4.999
− 0.008 0] 

Impact 

time(s) 
1.011 1.011 0.915 1.027 1.014 1.011 

Figure 10. Shows the trajectories of the projectile motion under the influence of only the 

gravitational force (-) and the force of air resistance (- -) are as follows. 



21. Yüzyılda Fen ve Teknik Dergisi 2025, 12(23), 18-38

30 

Figure 11. Shows the trajectories of the projectile influenced only by the gravitational 

force (-) and the combined forces of gravity and buoyancy (- -). 

As expected, the trajectory of the projectile motion under the influence of buoyancy force 

in Figure 11 is slightly tilted upwards, but the motion trajectory still lies on a plane. 

Figure 12. Shows the trajectories of the projectile affected only by the gravitational force 

(-) and the combined forces of gravity and centrifugal. 

As previously mentioned, under the influence of the centrifugal force in the Northern 

Hemisphere of the Earth, the projectile’s trajectory should be deflected towards the east. 

This deflection is clearly observed in Kabul city in Figure 12. In other words, the 

projectile’s motion trajectory under the influence of this force is not confined to a single 

plane if its effect is significant. However, it should not be mistaken that the deviation of 

the projectile has occurred due to the effect of this force, which means an 8 mm deviation 

at the point of impact. 

As mentioned earlier, under the influence of the Coriolis force in the Northern 

Hemisphere of the Earth, the trajectory of the object's motion should be deflected to the 

right or south. This deflection is clearly observed in Kabul city in Figure 13. In this 

situation as well, the projectile's motion trajectory does not lie on a single plane if the 

effect is significant. However, in our case, this effect is very small and can be neglected, 

resulting in a deviation of only 0.2 mm at the point of collision. 
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Figure 13. Shows the paths of projection motion under just gravitation force (-) and 

gravitation force and Coriolis force (--). 

In the end, the path of the projectile under the influence of the effective forces of gravity, 

air drag, and buoyancy, compared to the force of gravity alone, is shown in Figure 14b. 

According to this figure, these forces not only affect the range of the projectile but also 

result in a significant decrease in its apex point in terms of both location and time. The 

time and location of the projectile’s impact on the ground under the influence of only the 

force of gravity are 𝑡 =  1.011 s and 𝒓 = [4.999 0 0]T m, respectively, while under the

simultaneous effect of the three effective forces, they are 𝑡 =  0.928 s and 𝒓 =
[3.593 0 0]T m.

The effect of these two forces, in addition to the force of gravity, accounts for %57.37 of 

the total impact during the projectile's descent, indicating the significance of considering 

the influence of these forces on the projectile's motion. In other words, neglecting the 

effects of these forces would result in a considerable error in estimating the time and 

location of the projectile's impact. In some research articles (Naguraka, 2003; Tian et al., 

2011), the motion of the projectile has been analyzed with the consideration of these 

effects, leading to acceptable results that can serve as experimental validation for the 

accuracy of the simulation results obtained in this study.  

a) b) 

Figure 14. a) Illustrates the paths of the projectile's motion under the influence of gravity 

alone (-) and under the combined effects of gravity and air drag and buoyancy (- -). b) 

Sample MATLAB code to get the trajectory of the projectile. 
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Furthermore, Figure 14a clearly demonstrates that the path of the projectile's motion lies 

within a plane. While the numerical solution of the non-linear kinematic equations of 

projectile motion has been straightforward, the analytical solution is highly restrictive, 

complex, and challenging (Parker, 1997). 

In Figure 15, it is clearly seen that the actual path of the projectile’s motion, under the 

influence of gravity, air drag, and buoyancy forces, is well fitted by a second-degree 

polynomial curve: 𝑧 = −0.323 𝑥2 + 1.193 𝑥 − 0.062, which represents a good

approximation of a parabola. The obtained impact location from the fitted curve is 𝒓 =
[3.645 0 0]T m. The percentage of error in the final position at the point of impact is

%1.45. 

If the projectile is subjected to a constant wind velocity of 𝑣W = 2.0 m/s, making an 

angle of -20° with the horizontal and towards the east, or if 𝒗W  =  [1.44 1.208 −
0.604]T m/s in Cartesian coordinates, the plane of the projectile’s trajectory will be

displaced from its initial position, as shown in Figure 16. However, under the influence 

of a variable velocity airflow, the trajectory will deviate from the plane and become three-

dimensional. If the projectile’s motion is within a confined environment, it is possible to 

reasonably neglect this effect with good accuracy. 

Figure 15. Shows the fitting or alignment of a parabola with the paths of the projectile's 

motion under the influence of gravity, air drag, and buoyancy forces. 

Figure 16. Shows the effect of a constant wind velocity on the paths of the projectile’s 

motion under the influence of gravity only (-) and under the combined effects of gravity, 
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air drag, and buoyancy forces (- -). The constant wind velocity is not depicted in this 

figure. 

Figure 17 illustrates that considering all factors, including a constant airflow, does not 

result in a significant change in the projectile's impact location and time in its trajectory. 

The impact time and location on the ground, under the influence of all three effective 

forces, are 𝑡 = 0.799 s and 𝒓 =  [3.959 0.747 0]T m, respectively. Similarly, under the

simultaneous effect of all forces, the impact time and location are 𝑡 = 0.801 s and 𝒓 =
 [3.967 0.754 0]T m, respectively. This suggests that the inclusion of all these forces does

not lead to a noticeable change in the time and location of the projectile's impact. 

To validate the accuracy of the numerical method, the analytical and numerical solutions 

for the velocity and position of the projectile have been compared in specific scenarios. 

Figure 18 displays a three-dimensional graph of the velocity of a projectile launched with 

an initial velocity of 7.0 m/s at an angle of 45° with respect to the horizontal axis (x-

axis), under the influence of air resistance.  

Figure 17. Shows the effect of a constant airflow on the paths of the projectile's motion 

under the influence of three effective forces (...) and all effective forces combined (- -). 

Figure 18. Compares the three-dimensional trajectory of the projectile's velocity under 

the influence of air resistance using the analytical method (…) and the numerical method 

(- -). 
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The velocity of the projectile is considered from the moment of launch until the moment 

of impact or collision with the ground. The percentage error of the final velocity is 

%1.26 × 10−4.The analytical solution for the velocity of the projectile under the effect

of air resistance is provided by equation (5). The numerical solution of the motion 

equations has been performed using a code implemented in MATLAB programming 

language(Figure 14b), following the algorithm depicted in Figure 19.  

In Figure 19, the velocity of an object under the influence of air turbulence has been 

obtained and compared using both the analytical and numerical methods. The analytical 

solutions for the projectile's velocity in specific scenarios have been performed according 

to equations (10), (11), and (12). 

Now let’s consider the horizontal motion of the object under the influence of air 

turbulence, starting with an initial horizontal velocity of 7.0 m/s. In Figure 20, the graph 

of its position with respect to time has been obtained and compared using both the 

analytical and numerical methods. The analytical solution for the projectile's position has 

been computed according to equation (13). The percentage error of the final position 

within the given time interval in the figure is %0.023. 

a) b)  c) 

Figure 19. Comparing the speed of an object under the following conditions: a) Free fall 

from a height of 3 m, b) Vertical projectile motion, and c) Horizontal motion without 

considering gravity, under the influence of air resistance, using analytical and numerical 

methods. 

Figure 20. Compares the position of the object in horizontal motion without considering 

gravity, under the influence of air turbulence, using both the analytical and numerical 

methods. 
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4. CONCLUSIONS

Solving linear and nonlinear dynamic equations of inclined projectile motion using 

numerical methods is both feasible and straightforward. Although solving the motion 

equations using numerical methods leads to approximate solutions, these results have an 

acceptable level of accuracy for engineering purposes. In robotics problems, considering 

the effects of air turbulence and buoyancy force in the dynamic equations of projectile 

motion is highly important and significant. Estimating the trajectory of projectiles such 

as a ping-pong ball and determining the location and time of impact with the ground 

require taking these effects into account. The trajectory of projectile motion is always 

confined to a plane, and its curve approximates a parabola very well. As a limitation, the 

results of this study are acceptable for investigating the movement of objects near the 

Earth's surface where their motion is not influenced by the Earth's rotational motion. 

However, in conditions where non-inertial forces are present, the trajectory deviates from 

the plane and becomes three-dimensional. If the airflow has a constant velocity, the plane 

of the trajectory shifts depending on the direction and magnitude of the velocity. 

However, if the airflow velocity is variable, the trajectory of the projectile deviates from 

a plane. Although the analysis of this study has been conducted for a specific velocity and 

angle, there are no limitations for analyzing projectile motion for other velocities and 

angles. As a future work, it is hoped that the results of this study can be used to effectively 

solve the problem of catching projectiles by a robot. 

Nomenclature 

𝒂 = acceleration vector, m/s2

𝑏 = drag coefficient, kg/s 

𝐴 = the cross-sectional area of the sphere, m2

𝐶𝐷 = drag coefficient 

𝑭 = force vector, N 

g0 = acceleration of gravity as measured by a nonrotating observer, m/s2

g = acceleration of gravity as measured by a rotating observer, m/s2

𝐿 = diameter of the ping pong ball, mm 

𝑚 = mass of the ping pong ball, g 

𝒓 = positon vector, m 

𝑅 = radius of the spherical body, m 

Re = the Reynolds number 

𝑅E = radius of the Earth, m 

𝑡 = time, s 

𝒗 = velocity vector, m/s 

𝑉 = the spherical body volume, m3

𝑽′ = free fall velocity, m/s 

𝜆 = geographic latitude, Degree 

𝜇 = dynamic viscosity of air, kg/(m ∙ s) 

𝜌 = density of air, kg/m3

𝜔 = angular velocity, rad/s 
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