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Abstract
The concept of soft derivative, introduced by Molodtsov in 1999, is one of the fundamental concepts in soft analysis.
The handled paper defines partial soft derivative and studies some of its basic properties, such as the relation between
partial soft derivative and boundedness, some basic partial soft derivative rules, e.g., sum rule, constant multiple rule,
and difference rule, the relation between soft derivative and partial soft derivative, the relation between classical partial
derivative and partial soft derivative, and the geometric interpretation of partial soft derivative. Moreover, it exemplifies
the theoretical part of the study and provides figures for the geometric interpretation. Finally, this study discusses the
need for further research.
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1. Introduction
Molodtsov [1] has introduced soft sets and discussed their relationships with several mathematical tools. Moreover, the

author has investigated soft sets’ applications to stability and regularization, game theory and operations research, and soft
analysis. Molodtsov has studied soft limit, soft approximator (soft derivative), and upper and lower Riemann and Perron
integrals in soft analysis. Afterward, the author has written a book entitled Soft Set Theory [2] that contains many topics related
to soft sets. Then, Molodtsov et al. [3] have widely explored the basic concepts of soft analysis. Further, Molodtsov [4] has
suggested higher-order soft derivative and higher-order almost soft derivative. Besides, the author [5, 6] has analyzed the basic
concepts of rational analysis. Additionally, Acharjee and Molodtsov [7] have proposed soft rational line integral. However,
since most of the aforesaid studies are in Russian, soft analysis studies have not become widespread.

On the other hand, despite the considerable developments in classical analysis, the fact that there are many types of
uncertainty in real-life problems and that increasing the need for new mathematical tools makes soft analysis worth studying.
Therefore, this paper focuses on the partial soft derivative, one of the essential concepts in soft analysis. Thus, this study aims
to increase the widespread impact and make soft analysis studies more accessible. Moreover, the partial soft derivative will
shed light on the concepts of higher-order partial soft derivative and soft gradients. Hence, this paper provides ideas concerning
further studies to researchers. Section 2 of the present study provides some basic definitions and properties to be required in the
next section. Section 3 defines partial soft derivative and studies some of its basic properties. The final section discusses the
need for future studies.
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2. Preliminaries
This section presents some of the basic definitions and properties to be needed for the following section. Across this paper,

the notations Z, R, R+, and R≥0 represent the set of integer, real, positive real, and non-negative real numbers, respectively.
Moreover, R2 B R×R and P(U) denotes the set of all the classical subsets of U.

Definition 2.1. [1, 2] Let U be a universal set, E be a parameter set, and f : E→ P(U) be a function. Then, f is called a soft
set parameterized via E over U (briefly over U).

Example 2.2. Let f : Z→ P (R) be a function defined by f (x) = [x + 2, x + 4]. Then, f is a soft set over R.

Definition 2.3. [1, 2] Let M be a set called a model set, U be a universal set, E be a parameter set, and f : M×E→ P(U) be
a function. Then, f is called a soft mapping parameterized via M×E over U (briefly over U).

Definition 2.4. [1, 2, 3] Let A ⊆ R, f : A→ R be a function, a ∈ A, τ f (a) , ∅, and L ∈ R. Then, the real number L is called a
(τ,ε)-soft derivative of f at the point a if x ∈ τ f (a)⇒ | f (x)− f (a)−L(x−a)| ≤ ε(a). The set of all the (τ,ε)-soft derivatives of f
at the point a is denoted by D( f ,a, τ,ε). If D( f ,a, τ,ε) = ∅, then the (τ,ε)-soft derivative of f at the point a does not exist.

Here, τ : R→ P(R) and ε : R→ R≥0 are two functions such that τ(a) is a set of points that are close to the point a but not
equal to a. In addition, τ f (a)B τ(a)∩Dom( f ), for all a ∈ R, where Dom( f ) stands for the domain set of f .

3. Partial Soft Derivative
This section defines the concept of partial soft derivative and studies some of its basic properties. Throughout this section,

let τ,λ,κ : R2→ P
(
R2

)
, ε,α,β : R2→ R≥0, and δ : R2→ R+ be seven functions such that τ(a,b), λ(a,b), and κ(a,b) are sets of

points that are close to the point (a,b) but not equal to (a,b). Besides, let τ f (a,b)B τ(a,b)∩Dom( f ), for all (a,b) ∈ R2.

Definition 3.1. The set of all the points belonging to τ(a,b) and the plane y = b is defined by τx(a,b)B τ(a,b)∩ (R× {b}).
Similarly, the set of all the points belonging to τ(a,b) and the plane x = a is defined by τy(a,b)B τ(a,b)∩ ({a}×R). Therefore, the
set of all the points belonging to τ(a,b) and whose first components are greater than a is defined by τ+

x (a,b)B τ(a,b)∩((a,∞)×R)
and the set of all the points belonging to τ(a,b) and whose first components are less than a is defined by τ−x (a,b)B τ(a,b)∩
((−∞,a)×R). Similarly, the set of all the points belonging to τ(a,b) and whose second components are greater than b is defined
by τ+

y (a,b)B τ(a,b)∩ (R× (b,∞)) and the set of all the points belonging to τ(a,b) and whose second components are less than
b is defined by τ−y (a,b)B τ(a,b)∩ (R× (−∞,b)).

Moreover, if τ−x (a,b) = ∅, for all (a,b) ∈ R2, then this mapping is called by τx-right mapping, and if τ+
x (a,b) = ∅, for all

(a,b) ∈ R2, then this mapping is called by τx-left mapping. Similarly, if τ−y (a,b) = ∅, for all (a,b) ∈ R2, then this mapping is
called by τy-right mapping and if τ+

y (a,b) = ∅, for all (a,b) ∈ R2, then this mapping is called by τy-left mapping.
Furthermore, τδ(a,b) is defined by

τδ(a,b)B
{

(x,y) ∈ R2 : 0 <
√

(x−a)2 + (y−b)2 ≤ δ(a,b)
}

Thus, τ+
xδ(a,b)B τδ(a,b)∩ ((a,∞)×R), τ−xδ(a,b)B τδ(a,b)∩ ((−∞,a)×R), τ+

yδ(a,b)B τδ(a,b)∩ (R× (b,∞)), and τ−yδ(a,b)B
τδ(a,b)∩ (R× (−∞,b)).

Note 3.2. It must be noted that τ(a,b) = τ+
x (a,b)∪ τ−x (a,b), τ(a,b) = τ+

y (a,b)∪ τ−y (a,b), τδ(a,b) = τ+
xδ(a,b)∪ τ−xδ(a,b), and

τδ(a,b) = τ+
yδ(a,b)∪τ−yδ(a,b).

Definition 3.3. Let A×B ⊆ R2, f : A×B→ R be a function, (a,b) ∈ A×B, τ f (a,b) , ∅, and L ∈ R. Then, the real number L is
called a partial (τ,ε)-soft derivative of f with respect to x at the point (a,b) if (x,b) ∈ τ f (a,b)⇒ | f (x,b)− f (a,b)−L(x−a)| ≤
ε(a,b). The set of all the partial (τ,ε)-soft derivatives of f with respect to x at the point (a,b) is denoted by Dx ( f , (a,b), τ,ε). If
Dx ( f , (a,b), τ,ε) = ∅, then the partial (τ,ε)-soft derivative of f with respect to x at the point (a,b) does not exist.

Definition 3.4. Let A×B ⊆ R2, f : A×B→ R be a function, (a,b) ∈ A×B, τ f (a,b) , ∅, and L ∈ R. Then, the real number L is
called a partial (τ,ε)-soft derivative of f with respect to y at the point (a,b) if (a,y) ∈ τ f (a,b)⇒ | f (a,y)− f (a,b)−L(y−b)| ≤
ε(a,b). The set of all the partial (τ,ε)-soft derivatives of f with respect to y at the point (a,b) is denoted by Dy ( f , (a,b), τ,ε). If
Dy ( f , (a,b), τ,ε) = ∅, then the partial (τ,ε)-soft derivative of f with respect to y at the point (a,b) does not exist.

Note 3.5. Each of the concepts of partial (τ,ε)-soft derivative with respect to x and y is a soft mapping parameterized via
Φ (A×B,R)× (A×B)×Φ

(
R2,P

(
R2

))
×Φ

(
R2,R≥0

)
over R such that ∅ , A×B ⊆ R2.
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Example 3.6. Let f : R2→ R be a function defined by f (x,y) = x3 + 2y2 and ε(−1,3) = 2. Since

(x,3) ∈ τ 1
2
(−1,3)∩R2 ⇔ 0 <

√
(x + 1)2 + (3−3)2 ≤ 1

2

⇔ 0 < |x + 1| ≤ 1
2

then, for all (x,3) ∈ τ 1
2
(−1,3)∩R2,

| f (x,3)− f (−1,3)−L(x + 1)| ≤ 2 ⇔ |x3 + 1−L(x + 1)| ≤ 2

⇔ −x3−1−2 ≤ −L(x + 1) ≤ −x3−1 + 2

⇔ x3+1
x+1 −

2
|x+1| ≤ L ≤ x3+1

x+1 + 2
|x+1|

⇔ x2− x + 1− 2
|x+1| ≤ L ≤ x2− x + 1 + 2

|x+1|

⇔ L ∈
[

3
4 ,

23
4

]
Therefore, Dx

(
f , (−1,3), τ 1

2
, ε

)
=

[
3
4 ,

23
4

]
. Similarly, as

(−1,y) ∈ τ 1
2
(−1,3)∩R2 ⇔ 0 <

√
(−1 + 1)2 + (y−3)2 ≤ 1

2

⇔ 0 < |y−3| ≤ 1
2

then, for all (−1,y) ∈ τ 1
2
(−1,3)∩R2,

| f (−1,y)− f (−1,3)−L(y−3)| ≤ 2 ⇔ |2y2−18−L(y−3)| ≤ 2

⇔ −2y2 + 18−2 ≤ −L(y−3) ≤ −2y2 + 18 + 2

⇔
2y2−18

y−3 −
2
|y−3| ≤ L ≤ 2y2−18

y−3 + 2
|y−3|

⇔ 2y + 6− 2
|y−3| ≤ L ≤ 2y + 6 + 2

|y−3|

⇔ L ∈ [9,15]

Thus, Dy

(
f , (−1,3), τ 1

2
, ε

)
= [9,15].

Theorem 3.7. Let A× B ⊆ R2, f : A× B→ R be a function, (a,b) ∈ A× B, and τ f (a,b) be bounded. If Dx ( f , (a,b), τ,ε) , ∅,
then z = f (x,b) is bounded on τ f (a,b).

Proof. Let A× B ⊆ R2, f : A× B→ R be a function, (a,b) ∈ A× B, τ f (a,b) be bounded, and Dx ( f , (a,b), τ,ε) , ∅. Then,
τ f (a,b) , ∅ and there exists an L ∈ R such that

(x,b) ∈ τ f (a,b) ⇒ | f (x,b)− f (a,b)−L(x−a)| ≤ ε(a,b)

⇒ f (a,b) + L(x−a)−ε(a,b) ≤ f (x,b) ≤ f (a,b) + L(x−a) +ε(a,b)

⇒ f (a,b) + inf
x∈τ f (a,b)

{L(x−a)}−ε(a,b) ≤ f (x,b) ≤ f (a,b) + sup
x∈τ f (a,b)

{L(x−a)}+ε(a,b)

Since
f (a,b) + inf

x∈τ f (a,b)
{L(x−a)}−ε(a,b) ∈ R and f (a,b) + sup

x∈τ f (a,b)
{L(x−a)}+ε(a,b) ∈ R

then z = f (x,b) is bounded on τ f (a,b). �

Theorem 3.8. Let A×B ⊆ R2, f : A×B→ R be a function, (a,b) ∈ A×B, and τ f (a,b) , ∅. If z = f (x,b) is bounded on τ f (a,b),
then there exists a function ε : R2→ R such that Dx ( f , (a,b), τ,ε) , ∅.
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Proof. Let A×B ⊆ R2, f : A×B→ R be a function, (a,b) ∈ A×B, τ f (a,b) , ∅, and z = f (x,b) be bounded on τ f (a,b). Then,
there exists an M ∈ R such that | f (x,b)| ≤ M, for all (x,y) ∈ τ f (a,b). Then,

(x,b) ∈ τ f (a,b) ⇒ | f (x,b)| ≤ M

⇒ −M− f (a,b) ≤ f (x,b)− f (a,b) ≤ M− f (a,b)

⇒ | f (x,b)− f (a,b)−0(x−a)| ≤max{|M + f (a,b)|, |M− f (a,b)|}

Hence, for any function ε : R2 → R such that ε(a,b) = max{|M + f (a,b)|, |M − f (a,b)|}, 0 ∈ Dx( f , (a,b), τ,ε). Consequently,
Dx( f , (a,b), τ,ε) , ∅. �

Theorem 3.9. Let A× B ⊆ R2, f : A× B→ R be a function, (a,b) ∈ A× B, and τ f (a,b) be bounded. If Dy ( f , (a,b), τ,ε) , ∅,
then z = f (a,y) is bounded on τ f (a,b).

Theorem 3.10. Let A×B ⊆ R2, f : A×B→ R be a function, (a,b) ∈ A×B, and τ f (a,b) , ∅. If z = f (a,y) is bounded on τ f (a,b),
then there exists a function ε : R2→ R such that Dy ( f , (a,b), τ,ε) , ∅.

The proofs are as in Theorems 3.7 and 3.8, respectively.

Theorem 3.11. Let A×B ⊆ R2, f : A×B→ R be a function, and (a,b) ∈ A×B. If Dx ( f , (a,b), τ,ε) , ∅, then

Dx ( f , (a,b), τ,ε) =

 sup
(x,b)∈τ f (a,b)

(
f (x,b)− f (a,b)

x−a
−
ε(a,b)
|x−a|

)
, inf
(x,b)∈τ f (a,b)

(
f (x,b)− f (a,b)

x−a
+
ε(a,b)
|x−a|

)
Proof. Let A×B ⊆ R2, f : A×B→ R be a function, (a,b) ∈ A×B, and Dx ( f , (a,b), τ,ε) , ∅. Then, τ f (a,b) , ∅ and there exists
an L ∈ R such that, for all (x,b) ∈ τ f (a,b),

| f (x,b)− f (a,b)−L(x−a)| ≤ ε(a,b) ⇒ − ( f (x,b)− f (a,b))−ε(a,b) ≤ −L(x−a) ≤ − ( f (x,b)− f (a,b)) +ε(a,b)

⇒


f (x,b)− f (a,b)

x−a −
ε(a,b)
x−a ≤ L ≤ f (x,b)− f (a,b)

x−a +
ε(a,b)
x−a , (x,b) ∈ τ+

x (a,b)∩A×B
f (x,b)− f (a,b)

x−a +
ε(a,b)
x−a ≤ L ≤ f (x,b)− f (a,b)

x−a −
ε(a,b)
x−a , (x,b) ∈ τ−x (a,b)∩A×B

⇒


f (x,b)− f (a,b)

x−a −
ε(a,b)
|x−a| ≤ L ≤ f (x,b)− f (a,b)

x−a +
ε(a,b)
|x−a| , (x,b) ∈ τ+

x (a,b)∩A×B
f (x,b)− f (a,b)

x−a −
ε(a,b)
|x−a| ≤ L ≤ f (x,b)− f (a,b)

x−a +
ε(a,b)
|x−a| , (x,b) ∈ τ−x (a,b)∩A×B

⇒
f (x,b)− f (a,b)

x−a −
ε(a,b)
|x−a| ≤ L ≤ f (x,b)− f (a,b)

x−a +
ε(a,b)
|x−a| , (x,b) ∈ τ f (a,b)

Hence,
sup

(x,b)∈τ f (a,b)

( f (x,b)− f (a,b)
x−a −

ε(a,b)
|x−a|

)
≤ L and L ≤ inf

(x,b)∈τ f (a,b)

( f (x,b)− f (a,b)
x−a +

ε(a,b)
|x−a|

)
Consequently,

Dx ( f , (a,b), τ,ε) =

 sup
(x,b)∈τ f (a,b)

(
f (x,b)− f (a,b)

x−a
−
ε(a,b)
|x−a|

)
, inf
(x,b)∈τ f (a,b)

(
f (x,b)− f (a,b)

x−a
+
ε(a,b)
|x−a|

)
�

Theorem 3.12. Let A×B ⊆ R2, f : A×B→ R be a function, and (a,b) ∈ A×B. If Dy ( f , (a,b), τ,ε) , ∅, then

Dy ( f , (a,b), τ,ε) =

 sup
(a,y)∈τ f (a,b)

(
f (a,y)− f (a,b)

y−b
−
ε(a,b)
|y−b|

)
, inf
(a,y)∈τ f (a,b)

(
f (a,y)− f (a,b)

y−b
+
ε(a,b)
|y−b|

)
The proof is as in Theorem 3.11.

Theorem 3.13. Let A×B ⊆ R2, f : A×B→ R be a function, (a,b) ∈ A×B, and β(a,b) ≤ α(a,b). If Dx ( f , (a,b), τ,β) , ∅, then
Dx ( f , (a,b), τ,α) , ∅. Moreover, Dx ( f , (a,b), τ,β) ⊆ Dx ( f , (a,b), τ,α).
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Proof. Let A×B ⊆ R2, f : A×B→ R be a function, (a,b) ∈ A×B, β(a,b) ≤ α(a,b), and Dx ( f , (a,b), τ,β) , ∅. Then, τ f (a,b) , ∅
and there exists an L ∈ R such that

(x,b) ∈ τ f (a,b)⇒ | f (x,b)− f (a,b)−L(x−a)| ≤ β(a,b) ≤ α(a,b)

Therefore, Dx ( f , (a,b), τ,α) , ∅. Moreover, since β(a,b) ≤ α(a,b), then

sup
(x,b)∈τ f (a,b)

(
f (x,b)− f (a,b)

x−a
−
α(a,b)
|x−a|

)
≤ sup

(x,b)∈τ f (a,b)

(
f (x,b)− f (a,b)

x−a
−
β(a,b)
|x−a|

)
and

inf
(x,b)∈τ f (a,b)

(
f (x,b)− f (a,b)

x−a
+
β(a,b)
|x−a|

)
≤ inf

(x,b)∈τ f (a,b)

(
f (x,b)− f (a,b)

x−a
+
α(a,b)
|x−a|

)
Thus,

Dx ( f , (a,b), τ,β) =

 sup
(x,b)∈τ f (a,b)

( f (x,b)− f (a,b)
x−a −

β(a,b)
|x−a|

)
, inf
(x,b)∈τ f (a,b)

( f (x,b)− f (a,b)
x−a +

β(a,b)
|x−a|

)
⊆

 sup
(x,b)∈τ f (a,b)

( f (x,b)− f (a,b)
x−a −

α(a,b)
|x−a|

)
, inf
(x,b)∈τ f (a,b)

( f (x,b)− f (a,b)
x−a +

α(a,b)
|x−a|

)
= Dx ( f , (a,b), τ,α)

�

Theorem 3.14. Let A×B ⊆ R2, f : A×B→ R be a function, (a,b) ∈ A×B, and β(a,b) ≤ α(a,b). If Dy ( f , (a,b), τ,β) , ∅, then
Dy ( f , (a,b), τ,α) , ∅. Moreover, Dy ( f , (a,b), τ,β) ⊆ Dy ( f , (a,b), τ,α).

The proof is as in Theorem 3.13.

Theorem 3.15. Let A×B ⊆ R2, f : A×B→ R be a function, (a,b) ∈ A×B, and ∅ , λ f (a,b) ⊆ τ f (a,b). If Dx ( f , (a,b), τ,ε) , ∅,
then Dx ( f , (a,b),λ,ε) , ∅. Moreover, Dx ( f , (a,b), τ,ε) ⊆ Dx ( f , (a,b),λ,ε).

Proof. Let A×B ⊆ R2, f : A×B→ R be a function, (a,b) ∈ A×B, ∅ , λ f (a,b) ⊆ τ f (a,b), and Dx ( f , (a,b), τ,ε) , ∅. Then, there
exists an L ∈ R such that

(x,b) ∈ λ f (a,b) ⇒ (x,b) ∈ τ f (a,b)

⇒ | f (x,b)− f (a,b)−L(x−a)| ≤ ε(a,b)

Therefore, Dx ( f , (a,b),λ,ε) , ∅. Moreover, since ∅ , λ f (a,b) ⊆ τ f (a,b), then

sup
(x,b)∈λ f (a,b)

(
f (x,b)− f (a,b)

x−a
−
ε(a,b)
|x−a|

)
≤ sup

(x,b)∈τ f (a,b)

(
f (x,b)− f (a,b)

x−a
−
ε(a,b)
|x−a|

)
and

inf
(x,b)∈τ f (a,b)

(
f (x,b)− f (a,b)

x−a
+
ε(a,b)
|x−a|

)
≤ inf

(x,b)∈λ f (a,b)

(
f (x,b)− f (a,b)

x−a
+
ε(a,b)
|x−a|

)
Thus,

Dx ( f , (a,b), τ,ε) =

 sup
(x,b)∈τ f (a,b)

( f (x,b)− f (a,b)
x−a −

ε(a,b)
|x−a|

)
, inf
(x,b)∈τ f (a,b)

( f (x,b)− f (a,b)
x−a +

ε(a,b)
|x−a|

)
⊆

 sup
(x,b)∈λ f (a,b)

( f (x,b)− f (a,b)
x−a −

ε(a,b)
|x−a|

)
, inf
(x,b)∈λ f (a,b)

( f (x,b)− f (a,b)
x−a +

ε(a,b)
|x−a|

)
= Dx ( f , (a,b),λ,ε)

�

Theorem 3.16. Let A×B ⊆ R2, f : A×B→ R be a function, (a,b) ∈ A×B, and ∅ , λ f (a,b) ⊆ τ f (a,b). If Dy ( f , (a,b), τ,ε) , ∅,
then Dy ( f , (a,b),λ,ε) , ∅. Moreover, Dy ( f , (a,b), τ,ε) ⊆ Dy ( f , (a,b),λ,ε).

The proof is as in Theorem 3.15.
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Theorem 3.17. Let A×B⊆R2, f ,g : A×B→R be two functions, and (a,b) ∈ A×B. If Dx ( f , (a,b), τ,α), ∅ and Dx (g, (a,b),λ,β),
∅, then Dx ( f + g, (a,b), κ,ε) , ∅ such that ∅ , κ f +g(a,b) ⊆ τ f (a,b)∩λg(a,b) and α(a,b) +β(a,b) ≤ ε(a,b). Moreover,

Dx ( f , (a,b), τ,α) + Dx (g, (a,b),λ,β) ⊆ Dx ( f + g, (a,b), κ,ε)

Proof. Let A×B ⊆ R2, f ,g : A×B→ R be two functions, (a,b) ∈ A×B, Dx ( f , (a,b), τ,α) , ∅, and Dx (g, (a,b),λ,β) , ∅. Then,
there exist L1,L2 ∈ R such that

(x,b) ∈ τ f (a,b)⇒ | f (x,b)− f (a,b)−L1(x−a)| ≤ α(a,b)

and
(x,b) ∈ λg(a,b)⇒ |g(x,b)−g(a,b)−L2(x−a)| ≤ β(a,b)

Therefore,

(x,b) ∈ κ f +g(a,b) ⇒ (x,b) ∈ τ f (a,b)∧ (x,b) ∈ λg(a,b)

⇒ | f (x,b)− f (a,b)−L1(x−a)| ≤ α(a,b)∧ |g(x,b)−g(a,b)−L2(x−a)| ≤ β(a,b)

⇒ −α(a,b)−β(a,b) ≤ f (x,b)− f (a,b)−L1(x−a) + g(x,b)−g(a,b)−L2(x−a) ≤ α(a,b) +β(a,b)

⇒ |( f + g)(x,b)− ( f + g)(a,b)− (L1 + L2) (x−a)| ≤ α(a,b) +β(a,b) ≤ ε(a,b)

⇒ L1 + L2 ∈ Dx ( f + g, (a,b), κ,ε)

⇒ Dx ( f + g, (a,b), κ,ε) , ∅

Moreover, for all L ∈ Dx ( f , (a,b), τ,α) + Dx (g, (a,b),λ,β), there exist L1 ∈ Dx ( f , (a,b), τ,α) and L2 ∈ Dx (g, (a,b),λ,β) such that
L = L1 + L2. Then,

(x,b) ∈ τ f (a,b)⇒ | f (x,b)− f (a,b)−L1(x−a)| ≤ α(a,b)

and
(x,b) ∈ λg(a,b)⇒ |g(x,b)−g(a,b)−L2(x−a)| ≤ β(a,b)

Hence,
(x,b) ∈ κ f +g(a,b)⇒ |( f + g)(x,b)− ( f + g)(a,b)− (L1 + L2) (x−a)| ≤ α(a,b) +β(a,b) ≤ ε(a,b)

Therefore, L = L1 + L2 ∈ Dx ( f + g, (a,b), κ,ε). Thus, Dx ( f , (a,b), τ,α) + Dx (g, (a,b),λ,β) ⊆ Dx ( f + g, (a,b), κ,ε). �

Theorem 3.18. Let A×B⊆R2, f ,g : A×B→R be two functions, and (a,b) ∈ A×B. If Dy ( f , (a,b), τ,α), ∅ and Dy (g, (a,b),λ,β),
∅, then Dy ( f + g, (a,b), κ,ε) , ∅ such that ∅ , κ f +g(a,b) ⊆ τ f (a,b)∩λg(a,b) and α(a,b) +β(a,b) ≤ ε(a,b). Moreover,

Dy ( f , (a,b), τ,α) + Dy (g, (a,b),λ,β) ⊆ Dy ( f + g, (a,b), κ,ε)

The proof is as in Theorem 3.17.

Theorem 3.19. Let A×B ⊆ R2, f : A×B→ R be a function, (a,b) ∈ A×B, and t , 0. Then, Dx ( f , (a,b), τ,ε) , ∅ if and only if
Dx (t f , (a,b), τ, |t|ε) , ∅. Moreover,

tDx ( f , (a,b), τ,ε) = Dx (t f , (a,b), τ, |t|ε)

Proof. Let A×B ⊆ R2, f : A×B→ R be a function, (a,b) ∈ A×B, and t , 0.
(⇒): Let Dx ( f , (a,b), τ,ε) , ∅. Then, τ f (a,b) , ∅ and there exists an L ∈ R such that

(x,b) ∈ τt f (a,b) ⇒ (x,b) ∈ τ f (a,b)

⇒ | f (x,b)− f (a,b)−L(x−a)| ≤ ε(a,b)

⇒ |t|| f (x,b)− f (a,b)−L(x−a)| ≤ |t|ε(a,b)

⇒ |t f (x,b)− t f (a,b)− tL(x−a)| ≤ |t|ε(a,b)

⇒ |(t f )(x,b)− (t f )(a,b)− tL(x−a)| ≤ |t|ε(a,b)

Thus, tL ∈ Dx (t f , (a,b), τ, |t|ε). That is, Dx (t f , (a,b), τ, |t|ε) , ∅.
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(⇐): Let Dx (t f , (a,b), τ, |t|ε) , ∅. Then, τt f (a,b) , ∅ and there exists an L ∈ R such that

(x,b) ∈ τ f (a,b) ⇒ (x,b) ∈ τt f (a,b)

⇒ |(t f )(x,b)− (t f )(a,b)−L(x−a)| ≤ |t|ε(a,b)

⇒ |t f (x,b)− t f (a,b)−L(x−a)| ≤ |t|ε(a,b)

⇒ |t|
∣∣∣ f (x,b)− f (a,b)− L

t (x−a)
∣∣∣ ≤ |t|ε(a,b)

⇒
∣∣∣ f (x,b)− f (a,b)− L

t (x−a)
∣∣∣ ≤ ε(a,b)

Thus, L
t ∈ Dx ( f , (a,b), τ,ε). That is, Dx ( f , (a,b), τ,ε) , ∅. Moreover, for all L ∈ tDx ( f , (a,b), τ,ε), there exists an L∗ ∈

Dx ( f , (a,b), τ,ε) such that L = tL∗. Since L∗ ∈ Dx ( f , (a,b), τ,ε), then tL∗ ∈ Dx (t f , (a,b), τ, |t|ε) from the proof of the existence.
That is, L ∈ Dx (t f , (a,b), τ, |t|ε). Hence,

tDx ( f , (a,b), τ,ε) ⊆ Dx (t f , (a,b), τ, |t|ε)

In addition, for all L ∈Dx (t f , (a,b), τ, |t|ε), L
t ∈Dx ( f , (a,b), τ,ε) from the proof of the existence. Hence, L = t L

t ∈ tDx ( f , (a,b), τ,ε).
Thus,

Dx (t f , (a,b), τ, |t|ε) ⊆ tDx ( f , (a,b), τ,ε)

Consequently, tDx ( f , (a,b), τ,ε) = Dx (t f , (a,b), τ, |t|ε). �

Theorem 3.20. Let A×B ⊆ R2, f : A×B→ R be a function, (a,b) ∈ A×B, and t , 0. Then, Dy ( f , (a,b), τ,ε) , ∅ if and only if
Dy (t f , (a,b), τ, |t|ε) , ∅. Moreover,

tDy ( f , (a,b), τ,ε) = Dy (t f , (a,b), τ, |t|ε)

The proof is as in Theorem 3.19.

Corollary 3.21. Let A×B⊆R2, f ,g : A×B→R be two functions, and (a,b) ∈ A×B. If Dx ( f , (a,b), τ,α), ∅ and Dx (g, (a,b),λ,β),
∅, then Dx ( f −g, (a,b), κ,ε) , ∅ such that ∅ , κ f−g(a,b) ⊆ τ f (a,b)∩λg(a,b) and α(a,b) +β(a,b) ≤ ε(a,b). Moreover,

Dx ( f , (a,b), τ,α)−Dx (g, (a,b),λ,β) ⊆ Dx ( f −g, (a,b), κ,ε)

Proof. Let A,B ⊆ R, f ,g : A× B→ R be two functions, (a,b) ∈ A× B, Dx ( f , (a,b), τ,α) , ∅, and Dx (g, (a,b),λ,β) , ∅. From
Theorem 3.19, for t = −1, −Dx(g, (a,b),λ,β) = Dx(−g, (a,b),λ,β). Therefore, from Theorem 3.17, Dx ( f −g, (a,b), κ,ε) , ∅ such
that ∅ , κ f−g(a,b) ⊆ τ f (a,b)∩λg(a,b) and α(a,b) +β(a,b) ≤ ε(a,b). Moreover,

Dx( f , (a,b), τ,α)−Dx(g, (a,b),λ,β) = Dx( f , (a,b), τ,α) + Dx(−g, (a,b),λ,β) ⊆ Dx( f + (−g), (a,b), κ,ε) = Dx( f −g, (a,b), κ,ε)

�

Corollary 3.22. Let A×B⊆R2, f ,g : A×B→R be two functions, and (a,b) ∈ A×B. If Dy ( f , (a,b), τ,α), ∅ and Dy (g, (a,b),λ,β),
∅, then Dy ( f −g, (a,b), κ,ε) , ∅ such that ∅ , κ f−g(a,b) ⊆ τ f (a,b)∩λg(a,b), and α(a,b) +β(a,b) ≤ ε(a,b). Moreover,

Dy ( f , (a,b), τ,α)−Dy (g, (a,b),λ,β) ⊆ Dy ( f −g, (a,b), κ,ε)

The proof is as in Corollary 3.21.

Theorem 3.23. Let A×B ⊆ R2, f ,g : A×B→ R be two functions, (a,b) ∈ A×B, and k, l ∈ R. If g(x,y) = f (x,y) + kx + ly, for
all (x,y) ∈ τ f (a,b) = τg(a,b), and Dx ( f , (a,b), τ,ε) , ∅, then Dx (g, (a,b), τ,ε) , ∅. Moreover,

Dx (g, (a,b), τ,ε) = Dx ( f , (a,b), τ,ε) + k

Proof. Let A× B ⊆ R2, f ,g : A× B→ R be two functions, (a,b) ∈ A× B, k, l ∈ R, g(x,y) = f (x,y) + kx + ly, for all (x,y) ∈
τ f (a,b) = τg(a,b), and Dx ( f , (a,b), τ,ε) , ∅. Then, τ f (a,b) , ∅ and there exists an L ∈ R such that

(x,b) ∈ τ f (a,b)⇒ | f (x,b)− f (a,b)−L(x−a)| ≤ ε(a,b)
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Therefore, for L∗ = k + L and for all (x,b) ∈ τg(a,b) = τ f (a,b),

|g(x,b)−g(a,b)−L∗(x−a)| = | f (x,b) + kx + lb− f (a,b)− ka− lb− (k + L) (x−a)|

= | f (x,y)− f (a,b)−L(x−a)|

≤ ε(a)

Thus, L∗ ∈ Dx(g, (a,b), τ,ε). That is, Dx (g, (a,b), τ,ε) , ∅. Moreover,

Dx (g, (a,b), τ,ε) =

 sup
(x,b)∈τg(a,b)

( g(x,b)−g(a,b)
x−a −

ε(a,b)
|x−a|

)
, inf
(x,b)∈τg(a,b)

( g(x,b)−g(a,b)
x−a +

ε(a,b)
|x−a|

)
=

 sup
(x,b)∈τ f (a,b)

( f (x,b)+kx+lb− f (a,b)−ka−lb
x−a −

ε(a,b)
|x−a|

)
, inf
(x,b)∈τ f (a,b)

( f (x,b)+kx+lb− f (a,b)−ka−lb
x−a +

ε(a,b)
|x−a|

)
=

 sup
(x,b)∈τ f (a,b)

( f (x,b)− f (a,b)
x−a −

ε(a,b)
|x−a| + k

)
, inf
(x,b)∈τ f (a,b)

( f (x,b)− f (a,b)
x−a +

ε(a,b)
|x−a| + k

)
=

 sup
(x,b)∈τ f (a,b)

( f (x,b)− f (a,b)
x−a −

ε(a,b)
|x−a|

)
+ k, inf

(x,b)∈τ f (a,b)

( f (x,b)− f (a,b)
x−a +

ε(a,b)
|x−a|

)
+ k


=

 sup
(x,b)∈τ f (a,b)

( f (x,b)− f (a,b)
x−a −

ε(a,b)
|x−a|

)
, inf
(x,b)∈τ f (a,b)

( f (x,b)− f (a,b)
x−a +

ε(a,b)
|x−a|

)+ k

= Dx ( f , (a,b), τ,ε) + k

�

Theorem 3.24. Let A×B ⊆ R2, f ,g : A×B→ R be two functions, (a,b) ∈ A×B, and k, l ∈ R. If g(x,y) = f (x,y) + kx + ly, for
all (x,y) ∈ τ f (a,b) = τg(a,b), and Dy ( f , (a,b), τ,ε) , ∅, then Dy (g, (a,b), τ,ε) , ∅. Moreover,

Dy (g, (a,b), τ,ε) = Dy ( f , (a,b), τ,ε) + l

The proof is as in Theorem 3.23

Example 3.25. Let f ,g : R2→ R, τ,λ,κ : R2→ P
(
R2

)
, and α,β,ε : R2→ R≥0 be seven functions defined by f (x,y) = x2 + 2y2,

g(x,y) = 2x + y, τ(x,y) = τ1(x,y),

λ(x,y) =

(x0,y0) ∈ R2 : 0 <

√
(x− x0)2

9
+

(y− y0)2

16
≤ 1


κ(x,y) = κ 1

4
(x,y), α(x,y) = |x|+ |y|, β(x,y) = max {|x|, |y|}, and ε(x,y) = 2(|x|+ |y|), respectively. Here, for all (x,y) ∈ R2, τ(x,y) ⊆

λ(x,y), κ(x,y) ⊆ τ(x,y)∩λ(x,y), β(x,y) ≤ α(x,y), and α(x,y) +β(x,y) ≤ ε(x,y). From Theorem 3.11, for (2,−1) ∈ R2,

Dx ( f , (2,−1), τ,β) = [3,5]

and

Dx (g, (2,−1),λ,β) =

[
4
3
,
8
3

]
From Theorem 3.13, since β(2,−1) ≤ α(2,−1), Dx ( f , (2,−1), τ,α) , ∅. Therefore, from Theorem 3.11,

Dx ( f , (2,−1), τ,α) = [2,6]

and thus,
Dx ( f , (2,−1), τ,β) = [3,5] ⊆ [2,6] = Dx ( f , (2,−1), τ,α)

From Theorem 3.15, as τ f (2,−1) ⊆ λ f (2,−1), Dx (g, (2,−1), τ,β) , ∅. Hence, from Theorem 3.11,

Dx (g, (2,−1), τ,β) = [0,4]
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and thus,

Dx (g, (2,−1),λ,β) =

[
4
3
,
8
3

]
⊆ [0,4] = Dx (g, (2,−1), τ,β)

Moreover, from Theorem 3.19, Dx (2 f , (2,−1), τ, |2|α) , ∅ and Dx (−g, (2,−1),λ, | −1|β) , ∅. Thereby, from Theorem 3.11,

Dx (2 f , (2,−1), τ, |2|α) = [4,12]

and

Dx (−g, (2,−1),λ, | −1|β) =

[
−

8
3
,−

4
3

]
Therefore,

2Dx ( f , (2,−1), τ,α) = 2[2,6] = [4,12] = Dx (2 f , (2,−1), τ, |2|α)

and

−Dx (g, (2,−1),λ,β) = −

[
4
3
,
8
3

]
=

[
−

8
3
,−

4
3

]
= Dx (−g, (2,−1),λ, | −1|β)

From Theorem 3.17, because ∅, κ f +g(2,−1)⊆ τ f (2,−1)∩λg(2,−1) and α(2,−1)+β(2,−1)≤ ε(2,−1), then Dx ( f + g, (2,−1), κ,ε),
∅. Hereby, from Theorem 3.11,

Dx ( f + g, (2,−1), κ,ε) =

[
−

71
4
,
119

4

]
and thus,

Dx ( f , (2,−1), τ,α) + Dx (g, (2,−1),λ,β) = [2,6] +
[

4
3 ,

8
3

]
=

[
10
3 ,

26
3

]
⊆

[
− 71

4 ,
119

4

]
= Dx ( f + g, (2,−1), κ,ε)

From Corollary 3.21, since ∅, κ f−g(2,−1)⊆ τ f (2,−1)∩λg(2,−1) and α(2,−1)+β(2,−1)≤ ε(2,−1), then Dx ( f −g, (2,−1), κ,ε),
∅. Herewith, from Theorem 3.11,

Dx ( f −g, (2,−1), κ,ε) =

[
−

87
4
,
103

4

]
and thus,

Dx ( f , (2,−1), τ,α)−Dx (g, (2,−1),λ,β) = [2,6]−
[

4
3 ,

8
3

]
=

[
− 2

3 ,
14
3

]
⊆

[
− 87

4 ,
103

4

]
= Dx ( f −g, (2,−1), κ,ε)

Besides, for the function h : R2→ R defined by h(x,y) = f (x,y) + 3x−5y, from Theorem 3.23, Dx(h, (2,−1), τ,α) , ∅. Hence,
from Theorem 3.11,

Dx(h, (2,−1), τ,α) = [5,9]

and thus,
Dx ( f , (2,−1), τ,α) + 3 = [2,6] + 3 = [5,9] = Dx(h, (2,−1), τ,α)

Note 3.26. For the functions f and τ in Example 3.25, (a,b) = (2,−1), and ε∗(2,−1) = 3
2 , Dx ( f , (2,−1), τ,ε∗) =

[
7
2 ,

9
2

]
and

Dy( f , (2,−1), τ,ε∗) = ∅. Similarly, for the function h : R2 → R defined by h(x,y) = 2x2 + y2, Dx (h, (2,−1), τ,ε∗) = ∅ and
Dy (h, (2,−1), τ,ε∗) =

[
− 5

2 ,−
3
2

]
. Hence, it is clear that the existence of partial soft derivative with respect to x does not require

the existence of partial soft derivative with respect to y and vice versa.

Note 3.27. As in classical analysis, for a function with the variables x and y, if taking the partial soft derivative with respect
to x, then y is fixed and vice versa. Thus, partial soft derivative turns into soft derivative. In other words, for a function
f : A× B→ R and (a,b) ∈ A× B, if L ∈ Dx ( f , (a,b), τ,ε), then L ∈ D (g,a, τ∗, ε∗) such that g : A→ R, τ∗ : R→ P (R), and
ε∗ : R→ R≥0 are three functions defined by g(x) = f (x,b), τ∗(x) = {x ∈ R : (x,b) ∈ τ(a,b)}, and ε∗(x) = ε(x,b), for all x ∈ A,
respectively. Similarly, for a function f : A×B→ R and (a,b) ∈ A×B, if L ∈ Dy ( f , (a,b), τ,ε), then L ∈ D (h,b, τ∗∗, ε∗∗) such
that h : B→ R, τ∗∗ : R→ P (R), and ε∗∗ : R→ R≥0 are three functions defined by h(y) = f (a,y), τ∗∗(y) = {y ∈ R : (a,y) ∈ τ(a,b)},
and ε∗∗(y) = ε(a,y), for all y ∈ B, respectively.
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In Theorems 3.28 and 3.29, the notations (A×B)◦ and (A×B)
′

denote the set of all the interior and accumulation points of
A×B according to the usual topology in R2, respectively.

Theorem 3.28. Let A×B ⊆ R2, f : A×B→ R be a function, and (a,b) ∈ (A×B)◦∩ (A×B)
′

. If fx(a,b) ∈ R, then there exist τ
and ε∗ such that Dx( f , (a,b), τ,ε∗) , ∅.

Proof. Let A×B ⊆ R2, f : A×B→ R be a function, (a,b) ∈ (A×B)◦∩ (A×B)
′

, and fx(a,b) ∈ R. Then, there exists an L ∈ R
such that

fx(a,b) = lim
x→a

f (x,b)− f (a,b)
x−a

= L

Therefore,

∀ε > 0,∃δε > 0 3
(
(x,b) ∈ B0((a,b), δε)∩A×B⇒

∣∣∣∣∣∣ f (x,b)− f (a,b)
x−a

−L

∣∣∣∣∣∣ ≤ ε
)

Thus,
∀ε > 0,∃δε > 0 3

(
(x,b) ∈ B0((a,b), δε)∩A×B⇒

∣∣∣ f (x,b)− f (a,b)−L(x−a)
∣∣∣ ≤ ε|x−a| ≤ εδε

)
Hence, for an ε > 0,

(x,b) ∈ τ f (a,b)⇒
∣∣∣ f (x,b)− f (a,b)−L(x−a)

∣∣∣ ≤ ε∗(a,b)

such that τ(a,b) = B0((a,b), δε) and ε∗(a,b) = εδε. Thereby, L ∈ Dx( f , (a,b), τ,ε∗). Consequently, Dx( f , (a,b), τ,ε∗) , ∅. �

Theorem 3.29. Let A×B ⊆ R2, f : A×B→ R be a function, and (a,b) ∈ (A×B)◦∩ (A×B)
′

. If fy(a,b) ∈ R, then there exist τ
and ε∗ such that Dy( f , (a,b), τ,ε∗) , ∅.

The proof is as in Theorem 3.28.

Remark 3.30. The geometric interpretation of the partial soft derivative of a function f with respect to x at a point (a,b) is the
tangent of the slope angle of the bandwidth 2ε bounded by two linear functions f (a,b) + L(x−a) +ε(a,b) and f (a,b) + L(x−
a)−ε(a,b) which contain the entire graph of z = f (x,b) on the set τx(a,b)∩Dom( f ). Similarly, the geometric interpretation of
the partial soft derivative of a function f with respect to y at a point (a,b) is the tangent of the slope angle of the bandwidth
2ε bounded by two linear functions f (a,b) + L(y−b) +ε(a,b) and f (a,b) + L(y−b)−ε(a,b) which contain the entire graph of
z = f (a,y) on the set τy(a,b)∩Dom( f ). For example, for the functions f , τ, and α and the point (2,−1) ∈ R2 in Example 3.25,
Dx ( f , (2,−1), τ,α) = [2,6]. Moreover, consider the following linear functions and ordered pairs:

for L = 2 ∈ [2,6],
g1(x) = f (2,−1) + L(x−2) +α(2,−1) = 2x + 5 A1 = (x,g1(x))

h1(x) = f (2,−1) + L(x−2)−α(2,−1) = 2x−1 B1 = (x,h1(x))

for L = 3 ∈ [2,6],
g2(x) = f (2,−1) + L(x−2) +α(2,−1) = 3x + 3 A2 = (x,g2(x))

h2(x) = f (2,−1) + L(x−2)−α(2,−1) = 3x−3 B2 = (x,h2(x))

for L = 4 ∈ [2,6],
g3(x) = f (2,−1) + L(x−2) +α(2,−1) = 4x + 1 A3 = (x,g3(x))

h3(x) = f (2,−1) + L(x−2)−α(2,−1) = 4x−5 B3 = (x,h3(x))

for L = 5 ∈ [2,6],
g4(x) = f (2,−1) + L(x−2) +α(2,−1) = 5x−1 A4 = (x,g4(x))

h4(x) = f (2,−1) + L(x−2)−α(2,−1) = 5x−7 B4 = (x,h4(x))

for L = 6 ∈ [2,6],
g5(x) = f (2,−1) + L(x−2) +α(2,−1) = 6x−3 A5 = (x,g5(x))

h5(x) = f (2,−1) + L(x−2)−α(2,−1) = 6x−9 B5 = (x,h5(x))

Then, it is clear that for all i ∈ I5 = {1,2,3,4,5} and for all (x,−1) ∈ τx(2,−1)∩R2, hi(x) ≤ f (x) ≤ gi(x) and the Euclidean

distance of the ordered pairs Ai = (x,gi(x)) and Bi = (x,hi(x)) is 2α such that |AiBi| =

√
(x− x)2 + (gi(x)−hi(x))2 = 6 = 2α.

Figures 3.1 and 3.2 show the graphs of the functions hi, f , and gi, for all i ∈ I5, on the set τx(2,−1)∩R2 from different
perspectives.



Partial Soft Derivative — 24/26

Figure 3.1. Graphs of the functions hi, f , and gi, for all i ∈ I5, on the set τx(2,−1)∩R2

Figure 3.2. Graphs of the functions hi, f , and gi, for all i ∈ I5, on the set τx(2,−1)∩R2 (another perspective)

Besides, for all L ∈ Dx( f , (2,−1), τ,α) = [2,6], the pairs of all the linear functions h and g form two bundles of lines (see
Figure 3.3).

4. Conclusion
This study defined partial soft derivative and investigated some of its basic properties. This paper demonstrated that

• Every function with a partial soft derivative is bounded,

• Every bounded function has a partial soft derivative under certain conditions,

• A partial soft derivative of a function can be considered a soft derivative of the function (see Note 3.27), and
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Figure 3.3. Bundles of lines formed by the pairs of all the linear functions h and g, for all L ∈ [2,6]

• Every function with a classical partial derivative has a partial soft derivative under certain conditions

and investigated algebraic properties and the geometric interpretation of partial soft derivative. Moreover, it clarified the
theoretical section by examples and provided figures for the geometric interpretation. When the results herein are compared
with those of in the classical analysis, the following comments can be briefly made:

• While the classical partial derivative of a function (if any) is equal to a real number, the partial soft derivative of a function
(if any) is equal to a closed interval.

• While a bounded function does not always have a classical partial derivative, it has a partial soft derivative (see Theorems
3.8 and 3.10).

• While equality is valid for the sum rule in the partial derivative, inclusion is valid for the partial soft derivative. Similarly,
while equality holds for the difference rule in the partial derivative, inclusion holds for the partial soft derivative.

• Geometrically, while a tangent line is obtained in the partial derivative, two bundles of lines are obtained in the partial
soft derivative.

Partial soft derivative is a fundamental concept of soft analysis. Therefore, researchers can study this concept and its
applications. Moreover, the concepts of higher-order partial soft derivative and soft gradient, associated with partial soft
derivative, and the concept of directional soft derivative are also worth studying.
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