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Abstract: In this study, the soliton solutions of the modified Camassa-Holm (mCH) and Degasperis-

Procesi (mDP) equations, known as modified b-equations with significant physical properties, have been

obtained. The movement and positions of soliton waves formed by solving the mCH and mDP equations are

calculated. Ordinary differential equation systems have been derived using trigonometric quintic B-spline

bases for the derivatives in the position and time directions to obtain numerical solutions. An algebraic

equation system is then created by applying Crank-Nicolson type approximations for time and position-

dependent terms. The stability analysis of this system has been examined using the von Neumann Fourier

series method. L2 , L∞ , and absolute error norms are used to measure the convergence of the numerical

results to the real solution. The calculated numerical results have been compared with the exact solution

and some studies in the literature.

Keywords: Modified Camassa-Holm, modified Degasperis-Procesi equation, soliton waves, trigonometric

quintic B-spline bases, collocation method.

1. Introduction
Nonlinear partial differential equations have important applications in science, such as engineering

and physics. Often, it is not easy to solve a nonlinear partial differential equation analytically.

Therefore, mathematicians and engineers need to obtain numerical solutions to such equations.

The structures of Camassa-Holm (CH) [4] and Degasperis-Procesi (DP) [5] equations, which have

many physical properties, are as follows:

Ut −Uxxt + 3UUx − 2UxUxx −UUxxx = 0, (1)

Ut −Uxxt + 4UUx − 3UxUxx −UUxxx = 0. (2)

∗Correspondence: ihsan.celikkaya@batman.edu.tr
2020 AMS Mathematics Subject Classification: 65L60, 65M06, 76M10, 65L80

This Research Article is licensed under a Creative Commons Attribution 4.0 International License.
Also, it has been published considering the Research and Publication Ethics.

143

https://orcid.org/0000-0002-8684-5922


İhsan Çelikkaya / FCMS

CH (1) and DP (2) equations are not only bi-Hamiltonian but are also linked to the isospectral

problem [12]. The (1) and (2) equations are formally integrable according to the scattering /

inverse scattering approaches, as well as peakon solitary wave solutions. Although both equations

are similar, they are quite different in terms of the isospectral problem. The CH (1) equation

accepts second-order isospectral solution while the DP (2) equation accepts third-order isospectral

solution [12, 25]. The CH (1) and DP (2) equations are both integrable equations that model

shallow water dynamics [18]. In this study, the numerical solutions of the equation called b-

equation are obtained by modifying the convection UUx term in the equations (1) and (2) as

U2Ux . The b-equation family is given by Wazwaz [18] in the form

Ut −Uxxt + (b + 1)U2Ux − bUxUxx −UUxxx = 0. (3)

The equation (3) gives mCH for b = 2 and mDP for b = 3 respectively. Wazwaz obtained analytical

solutions of the mCH and mDP equations for b = 2,3 in [18, 19], respectively, using the sine-cosine

and extended tanh methods as follows:

Ut −Uxxt + 3U2Ux − 2UxUxx −UUxxx = 0,

U(x, t) = −2 sech2(x
2
− t)

and

Ut −Uxxt + 4U2Ux − 3UxUxx −UUxxx = 0,

U(x, t) = −15
8

sech2(x
2
− 5t

4
).

Obtaining both analytical and numerical solutions to such nonlinear partial differential

equations is a scientifically important task. Zhou [25] investigated how the solution’s derivative

blows up in finite time for the Degasperis-Procesi equation. Wazwaz [18] established new solitary

wave solutions for mCH and mDP using the extended tanh method. Wazwaz [19] used the tanh

method and the sine-cosine method to get solitary wave solutions to the mCH and mDP equations.

Abbasbandy [1] applied the homotopy analysis method to obtain the soliton wave solutions for the

mCH and mDP equations. Ganji et al. [6] studied Adomian’s decomposition method to solve the

mCH and mDP equations. Manafian et al. [11] constructed solitary wave solutions of the mCH

and mDP equations via the generalized (G’/G)-expansion and generalized tanh-coth methods. Liu

and Ouyang [8] found bell-shaped solitary wave and peakon coexist for the same wave speed for

the mCH and mDP equations. Lundmark and Szmigielski [10] presented an inverse scattering

approach for computing n-peakon solutions of the DP equation. Yousif et al. [20] obtained

solitary wave solutions of the mCH and mDP equations by the variational homotopy perturbation
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method. Behera and Mehra [3] applied the wavelet-optimized finite difference method to solve

the mCH and mDP equations. Wang and Tang [17] obtained four new exact solutions for the

mCH and mDP equations using some particular phase orbits. Wasim et al. [16] solved mCH

and mDP equations numerically by the collocation finite difference scheme based on Quartic B-

spline. Yusufoğlu [21] investigated the mCH and mDP equations’ analytic treatment using the

Exp-function method. Zada and Nawaz [22] introduced an optimal homotopy asymptotic method

for finding the approximate solutions of the mCH and mDP equations. Zhang et al. [23] applied

the homotopy perturbation method directly to obtain solitary wave solutions of mCH and mDP

equations. Zhang et al. [24] investigated the mCH and mDP equations via the auxiliary equation

method. They obtained smooth solitary wave solutions, peakons, singular solutions, periodic wave

solutions, and Jacobi elliptic solutions for these equations. Ali et al. [2] proposed and analyzed a

novel spectral scheme to get the numerical solutions of the two-dimensional time-fractional diffusion

equation.

This study aims to obtain numerical solutions of the mCH (4) and mDP (5) equations with

initial and boundary conditions as follows:

Ut −Uxxt + 3U2Ux − 2UxUxx −UUxxx = 0, x ∈ (a, b), t ≥ 0,

U(x,0) = −2 sech2(x
2
), U(a, t) = f1(t), U(b, t) = f2(t), (4)

U ′(a, t) = f3(t), U ′(b, t) = f4(t), U ′′(a, t) = f5(t), U ′′(b, t) = f6(t)

and

Ut −Uxxt + 4U2Ux − 3UxUxx −UUxxx = 0, x ∈ (a, b), t ≥ 0,

U(x,0) = −15
8

sech2(x
2
), U(a, t) = g1(t), U(b, t) = g2(t), (5)

U ′(a, t) = g3(t), U ′(b, t) = g4(t), U ′′(a, t) = g5(t), U ′′(b, t) = g6(t).

This article is planned as follows: in Section 2, to obtain numerical solutions of the b-

equation which contains very strong nonlinear terms with higher order derivatives, a powerful

computationally hybrid technique utilizing finite element and finite difference methods together

has been presented. Also, in this section, the stability of the scheme is examined by the von

Neumann method so that the approximate solutions obtained from the numerical scheme resulting

in the algebraic equation system remain close to the analytical solutions of the b-equation with

acceptable accuracy, and it is shown that the scheme is unconditionally stable. In Section 3,

numerical schemes obtained by applying the presented method to both mCH and mDP equations

subject to initial and boundary conditions are given. In addition, to show the accuracy and
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reliability of the numerical schemes, some numerical results calculated using the same parameters

are compared with themselves and also those obtained by other researchers. In Section 4 which is

the last section, a brief conclusion is given and a suggestion for future work is also made.

2. Trigonometric Quintic B-spline Collocation Method

Since it is impossible to implement a numerical method on all x ∈ R and semi-infinite t ∈ R+ , the

solution region of the considered problems below for numerical simulations is taken as a ≤ x ≤ b and

0 ≤ t ≤ T . The principal idea of a finite element formulation using for obtaining an approximate

solution of a physical problem is to result in algebraic equation systems rather than solving

differential equations [9, 13]. For this purpose, let xm be a uniform finite fragmentation of the

solution region [a, b] , and a = x0 < x1 < . . . < xN = b , where m = 0,1, . . . ,N . Taking h = xm+1−xm ,

Tm(x) , m = −2(1)N + 2 , quintic trigonometric B-spline functions on the range [a, b] in terms of

nodes xm as

Tm(x) =
1
θ

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

τ5(xm−3) , [xm−3, xm−2]
τ4(xm−3)ϕ(xm−1) + τ3(xm−3)ϕ(xm)τ(xm−2)+
τ2(xm−3)ϕ(xm+1)τ2(xm−2)+
τ(xm−3)ϕ(xm+2)τ3(xm−2) + ϕ(xm+3)τ4(xm−2),

[xm−2, xm−1]

τ3(xm−3)ϕ2(xm) + τ2(xm−3)ϕ(xm+1)τ(xm−2)ϕ(xm)
+τ2(xm−3)ϕ2(xm+1)τ(xm−1)+τ(xm−3)ϕ(xm+2)τ2(xm−2)ϕ(xm)+
τ(xm−3)ϕ(xm+2)τ(xm−2)ϕ(xm+1)τ(xm−1)+
τ(xm−3)ϕ2(xm+2)τ2(xm−1)+
ϕ(xm+3)τ3(xm−2)ϕ(xm) + ϕ(xm+3)τ2(xm−2)ϕ(xm+1)τ(xm−1)+
ϕ(xm+3)τ(xm−2)ϕ(xm+2)τ2(xm−1) + ϕ2(xm+3)τ3(xm−1),

[xm−1, xm]

τ2(xm−3)ϕ3(xm+1) + τ(xm−3)ϕ(xm+2)τ(xm−2)ϕ2(xm+1)+
τ(xm−3)ϕ2(xm+2)τ(xm−1)ϕ(xm+1) + τ(xm−3)ϕ3(xm+2)τ(xm)+
ϕ(xm+3)τ2(xm−2)ϕ2(xm+1)+
ϕ(xm+3)τ(xm−2)ϕ(xm+2)τ(xm−1)ϕ(xm+1)+
ϕ(xm+3)τ(xm−2)ϕ2(xm+2)τ(xm) + ϕ2(xm+3)τ2(xm−1)ϕ(xm+1)+
ϕ2(xm+3)τ(xm−1)ϕ(xm+2)τ(xm) + ϕ3(xm+3)τ2(xm),

[xm, xm+1]

τ(xm−3)ϕ4(xm+2) + ϕ(xm+3)τ(xm−2)ϕ3(xm+2)+
ϕ2(xm+3)τ(xm−1)ϕ2(xm+2)+
ϕ3(xm+3)τ(xm)ϕ(xm+2) + ϕ4(xm+3)τ(xm+1),

[xm+1, xm+2]

ϕ5(xm+3), [xm+2, xm+3]
0, otherwise

(6)

where θ = sin(h
2
) sin(h) sin(3h

2
) sin(2h) sin(5h

2
) , τ(xm) = sin(x−xm

2
) and ϕ(xm) = sin(xm−x

2
) . It

is clear that the set {T−2(x), T−1(x), . . . , TN+1(x), TN+2(x)} forms a base on the interval [a, b]

[7, 15]. A typical element [xm, xm+1] transforms into the interval [0,1] by using hξ = x − xm .

Hence each [xm, xm+1] element is covered by six trigonometric quıntıc B-splines such as Tm−2(x) ,

Tm−1(x) , Tm(x) , Tm+1(x) , Tm+2(x) , Tm+3(x) . Thus, the approximate solution via trigonometric
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quintic B-spline functions on the element [xm, xm+1] can be written as

U(x, t) ≈ UN(x, t) =
m+3
∑

i=m−2
Ti(x)δi(t).

Using (6), the nodal values of UN(x, t) and its third order derivatives at the nodes xm are

obtained as

UN(xm, t) = Um = a1δm−2 + a2δm−1 + a3δm + a2δm+1 + a1δm+2,

U
′

m = −a4δm−2 − a5δm−1 + a5δm+1 + a4δm+2,

U
′′

m = a6δm−2 + a7δm−1 + a8δm + a7δm+1 + a6δm+2, (7)

U
′′′

m = −a9δm−2 + a10δm−1 − a10δm+1 + a9δm+2,

where

a1 = sin5(h
2
)/θ, a2 = sin4(

h

2
) sin(h)(8 cos(h) + 5)/θ, a3 = 2 sin5(

h

2
)(6 cos(2h) + 16 cos(h) + 11)/θ,

a4 = 5 sin3(h
2
) sin(h)/4θ, a5 = 5 sin4(

h

2
) cos2(h

2
)(4 cos(h) + 1)/θ, a6 = 5 sin3(

h

2
)(5 cos(h) + 3)/8θ,

a7 = 5 sin3(
h

2
) cos(h

2
)(4 cos(2h)+cos(h)+3)/4θ, a8=−5 sin3(

h

2
)(cos(3h)+6 cos(2h)+10 cos(h)+7)/4θ,

a9 = 5 sin2(h
2
) cos(h

2
)(25 cos(h) − 1)/16θ, a10 = −5 sin2(h)(2 cos(2h) − 27 cos(h) + 1)/32θ.

If the expressions given in (7) are used in Equation (3), an ordinary differential equation

system is obtained as follows:

a1
○
δm−2 + a2

○
δm−1 + a3

○
δm + a2

○
δm+1 + a1

○
δm+2

−(a6
○
δm−2 + a7

○
δm−1 + a8

○
δm + a7

○
δm+1 + a6

○
δm+2)

+z2m(b + 1) (−a4δm−2 − a5δm−1 + a5δm+1 + a4δm+2) (8)

−btm (a6δm−2 + a7δm−1 + a8δm + a7δm+1 + a6δm+2)

−zm (−a9δm−2 + a10δm−1 − a10δm+1 + a9δm+2) = 0,

where the symbol “○”is the derivative concerning time and

zm = δm−2 + 26δm−1 + 66δm + 26δm+1 + δm+2,

dm = 5

h
(−δm−2 − 10δm−1 + 10δm+1 + δm+2).
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Instead of the parameters δm and
○
δm , δn+1m +δnm

2
Crank-Nicolson and δn+1m −δnm

∆t
forward finite

difference approaches are written in Equation (8) respectively, a recurrence relation is obtained

between time steps n and (n + 1) as

κ1δ
n+1
m−2 + κ2δ

n+1
m−1 + κ3δ

n+1
m + κ4δ

n+1
m+1 + κ5δ

n+1
m+2

= κ6δ
n
m−2 + κ7δ

n
m−1 + κ8δ

n
m + κ9δ

n
m+1 + κ10δ

n
m+2, (9)

where

κ1 = a1 − a6 −
a4(b + 1)z2m∆t

2
− ba6dm∆t

2
+ a9zm∆t

2
,

κ2 = a2 − a7 −
a5(b + 1)z2m∆t

2
− ba7dm∆t

2
− a10zm∆t

2
,

κ3 = a3 − a8 −
ba8dm∆t

2
, κ4 = a2 − a7 +

a5(b + 1)z2m∆t

2
− ba7dm∆t

2
+ a10zm∆t

2
,

κ5 = a1 − a6 +
a4(b + 1)z2m∆t

2
− ba6dm∆t

2
− a9zm∆t

2
,

κ6 = a1 − a6 +
a4(b + 1)z2m∆t

2
+ ba6dm∆t

2
− a9zm∆t

2
,

κ7 = a2 − a7 +
a5(b + 1)z2m∆t

2
+ ba7dm∆t

2
+ a10zm∆t

2
, κ8 = a3 − a8 +

ba8dm∆t

2
,

κ9 = a2 − a7 −
a5(b + 1)z2m∆t

2
+ ba7dm∆t

2
− a10zm∆t

2
,

κ10 = a1 − a6 −
a4(b + 1)z2m∆t

2
+ ba6dm∆t

2
+ a9zm∆t

2
.

The algebraic equation system (9) contains (N + 1) equations and (N + 5) time-dependent

parameters δm(t) , m = 0(1)N . To have a unique solution for this system, the parameters δ−2 ,

δ−1 , δN+1 and δN+2 must be eliminated with the help of boundary conditions. If the approaches

Um and U ′m are used to transform the system (9) into an (N +1)× (N +1) pentadiagonal system,

the following relations are obtained for the parameters δ−2 , δ−1 , δN+1 , and δN+2

δ−2 = m1δ0+m2δ1+m3δ2 + λ1, δ−1 = m4δ0 +m5δ1+m6δ2+ λ2 ,

δN+1 = m6δN−2+m5δN−1+m4δN+ λ3, δN+2 = m3δN−2+m2δN−1+m1δN+ λ4,
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where

m1 = a3a5
a2a4 − a1a5

, m2 =
2a2a5

a2a4 − a1a5
, m3 =

a1a5 + a2a4
a2a4 − a1a5

,

m4 = a3a4
a1a5 − a2a4

, m5 =
a2a4 + a1a5
a1a5 − a2a4

, m6 =
2a1a4

a1a5 − a2a4
,

λ1 = a2U
′(a, t) + a5U(a, t)
a1a5 − a2a4

, λ2 =
a4U(a, t) + a1U ′(a, t)

a2a4 − a1a5
,

λ3 = a1U
′(b, t) − a4U(b, t)
a1a5 − a2a4

, λ4 =
a2U

′(b, t) − a5U(b, t)
a2a4 − a1a5

.

To start the solution of the system (9), it is necessary to find the initial vector δ0m . For this

purpose, similar to the above, after finding relations for δ−2 , δ−1 , δN+1 , and δN+2 with the help

of U
′

m and U
′′

m , the initial vector is generated from the solution of the below matrix system.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1 α2 α3

α4 α5 α6 a1
a1 a2 a3 a2 a1

⋱
a1 a2 a3 a2 a1

a1 α6 α5 α4

α3 α2 α1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

δ00
δ01
δ02
⋮

δ0N−2
δ0N−1
δ0N

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

U0

U1

U2

⋮
UN−2
UN−1
UN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

γ1
γ2
0
⋮
0
γ3
γ4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where

α1 = a1β4 + a2β1 + a3, α2 = a1β5 + a2β2 + a2, α3 = a1β6 + a2β3 + a1,

α4 = a1β1 + a2, α5 = a1β2 + a3, α6 = a1β3 + a2, β1 =
a4a8

a5a6 − a4a7
,

β2=
a4a7 + a5a6
a5a6 − a4a7

, β3=
2a4a6

a5a6 − a4a7
, β4=

a5a8
a4a7 − a5a6

, β5=
2a5a7

a4a7 − a5a6
, β6=

a5a6 + a4a7
a4a7 − a5a6

,

γ1 =
(a1a5 − a2a4)U

′′
(a,0) + (a1a7 − a2a6)U

′
(a,0)

a5a6 − a4a7
, γ2 =

a1a4U
′′
(a,0) + a1a6U

′
(a,0)

a4a7 − a5a6
,

γ3 =
a1a6U

′
(b,0) − a1a4U

′′
(b,0)

a5a6 − a4a7
, γ4 =

(a2a6 − a1a7)U
′
(b,0) + (a1a5 − a2a4)U

′′
(b,0)

a5a6 − a4a7
.

2.1. Stability Analysis

To investigate the stability analysis of the system (9), the Fourier series method of von Neumann

[14] is used. In this method, δnm = ξneiβmh is taken, where i =
√
−1 , β is the mode number, ξ is

the amplification factor, and h is the space step. Since this method is valid for linear schemes, the

zm and dm constants are taken to be zero. If δnm = ξneiβmh is written in the system (9) and if
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necessary operations are performed, the following expressions are obtained:

ξ(tn+1)
ξ(tn)

= κ6e
−2iβh + κ7e

−iβh + κ8 + κ9e
iβh + κ10e

2iβh

κ1e−2iβh + κ2e−iβh + κ3 + κ4eiβh + κ5e2iβh

or

ξ(tn+1)
ξ(tn)

= [(κ6+κ10) cos(2βh)+(κ7+κ9) cos(βh)+κ8]+i [(κ10 − κ6) sin(2βh)+(κ9 − κ7) sin(βh)]
[(κ1+κ5) cos(2βh)+(κ2+κ4) cos(βh)+κ3]+i [(κ5 − κ1) sin(2βh)+(κ4 − κ2) sin(βh)]

= P + iQ
R + iS

,

where

P = [(κ6 + κ10) cos(2βh) + (κ7 + κ9) cos(βh) + κ8] ,

Q = [(κ10 − κ6) sin(2βh) + (κ9 − κ7) sin(βh)] ,

R = [(κ1 + κ5) cos(2βh) + (κ2 + κ4) cos(βh) + κ3] ,

S = [(κ5 − κ1) sin(2βh) + (κ4 − κ2) sin(βh)] .

For the stability of the method, the condition ∣ ξ(t
n+1)

ξ(tn) ∣ ≤ 1 must be provided. Namely, the

inequality ∣P 2∣ + ∣Q2∣ ≤ ∣R2∣ + ∣S2∣ must be ensured. Thus, the following expression is obtained:

∣P 2∣ + ∣Q2∣ − ∣R2∣ − ∣S2∣ ≤ 0.

Since ∣P 2∣ + ∣Q2∣ − ∣R2∣ − ∣S2∣ ≤ 0 , the method is unconditionally stable. Besides, it should still be

taken into account that the solutions are not distorted when choosing h and ∆t .

3. Numerical Applications

In this section, two test problems have been considered for the numerical simulations. To confirm

the accuracy and efficiency of the proposed method, we have calculated L2 , L∞ error norms, and

absolute error (AE) that measure the difference between exact (u) and numerical (uN) solutions

as follows:

L2=

¿
ÁÁÀh

N

∑
j=0
∣U(xj ,t)−UN(xj ,t)∣2, L∞= max

0≤j≤N
∣U(xj ,t)−UN(xj ,t)∣ , AE= ∣U(xj ,t)−UN(xj ,t)∣ .
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Table 1: The error norms L2 and L∞ for h = 0.1 and ∆t = 0.01, 0.001 over −40 ≤ x ≤ 40 and
the maximum amplitude and positions of the soliton waves for mCH

∆t t L2 L∞ x Present Exact

0 0 0 0.00 −2.0000000000 −2.0000000000
2 0.257512E-3 0.137435E-3 4.00 −1.9999984012 −2.0000000000
4 0.507308E-3 0.268631E-3 8.00 −1.9999981491 −2.0000000000

0.01 6 0.755920E-3 0.399642E-3 12.00 −1.9999980667 −2.0000000000
8 1.004526E-3 0.530661E-3 16.00 −1.9999979597 −2.0000000000
10 1.253169E-3 0.661694E-3 20.00 −1.9999978238 −2.0000000000

2 0.143124E-5 0.568181E-6 4.00 −1.9999997739 −2.0000000000
4 0.204605E-5 0.845279E-6 8.00 −1.9999997094 −2.0000000000

0.001 6 0.269423E-5 0.133650E-5 12.00 −1.9999997070 −2.0000000000
8 0.356980E-5 0.189265E-5 16.00 −1.9999997069 −2.0000000000
10 0.456604E-5 0.247223E-5 20.00 −1.9999997069 −2.0000000000

3.1. Soliton Solutions of mCH Equation

As a first application, consider the modified Camassa-Holm (4) equation with initial and boundary

conditions as follows:

Ut − uxxt + 3U2Ux − 2UxUxx −UUxxx = 0, x ∈ (a, b), t ≥ 0,

U(x,0) = −2 sech2(x
2
), U(a, t) = f1(t), U(b, t) = f2(t),

U ′(a, t) = f3(t), U ′(b, t) = f4(t), U ′′(a, t) = f5(t), U ′′(b, t) = f6(t).

The numerical results obtained by solving the mCH (4) equation are presented in Table

1. As shown from the Table 2, as ∆t gets smaller, the error norms L2 and L∞ also decrease

significantly. The wave’s amplitude at t = 0 is calculated as −2 at x = 0 and −1.9999997069 at

x = 20 at t = 10 , and this change is 2.931 × 10−7 . It is seen that the numerical results given in

different locations and times in the Table 2 are very close to the exact solution. In the Table 3,

some nodal values have been compared to the analytic solution. In addition to comparing the

absolute errors with Ref. [16], the error norms L2 and L∞ are also given. The numerical results

given by the current method in the Table 3 converge to a better exact solution than those given

in Ref. [16]. In Figure 1, the physical behavior of the numerical and analytic solution (upper) and

the absolute error graphs (bottom) at different times are given. It can be seen from Figure 1 that

the waves are moving to the right, keeping their speed and height almost perfect.
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Table 2: Some nodal values of U(x, t) for h = 0.1 and ∆t = 0.001 over −15 ≤ x ≤ 15 of mCH

t x Numeric Analytic t x Numeric Analytic

−12 −0.0000444755 −0.0000444756 −12 −0.0000364134 −0.0000364136
−10 −0.0003286090 −0.0003286094 −10 −0.0002690455 −0.0002690467
−9 −0.0008931260 −0.0008931270 −9 −0.0007312574 −0.0007312601
−8 −0.0024268374 −0.0024268396 −8 −0.0019871407 −0.0019871468

0.05 −6 −0.0178627158 −0.0178627244 0.15 −6 −0.0146366096 −0.0146366342
6 −0.0217959864 −0.0217959772 6 −0.0265895200 −0.0265894909
8 −0.0029637527 −0.0029637503 8 −0.0036193465 −0.0036193389
9 −0.0010908149 −0.0010908138 9 −0.0013322461 −0.0013322426

10 −0.0004013577 −0.0004013572 10 −0.0004902094 −0.0004902079
12 −0.0000543226 −0.0000543225 12 −0.0000663497 −0.0000663495
−12 −0.0000402431 −0.0000402432 −12 −0.0000329482 −0.0000329484
−10 −0.0002973396 −0.0002973404 −10 −0.0002434435 −0.0002434450
−9 −0.0008081500 −0.0008081519 −9 −0.0006616795 −0.0006616830
−8 −0.0021960179 −0.0021960221 −8 −0.0017981220 −0.0017981298

0.10 −6 −0.0161697309 −0.0161697477 0.20 −6 −0.0132483638 −0.0132483957
6 −0.0240744628 −0.0240744439 6 −0.0293653701 −0.0293653302
8 −0.0032752003 −0.0032751954 8 −0.0039996179 −0.0039996072
9 −0.0012055034 −0.0012055012 9 −0.0014723091 −0.0014723042

10 −0.0004435646 −0.0004435636 10 −0.0005417587 −0.0005417565
12 −0.0000600357 −0.0000600356 12 −0.0000733277 −0.0000733274

Table 3: Some nodal values of U(x, t) and comparison of absolute error with Ref. [16] for h = 0.1
and ∆t = 0.001 over −15 ≤ x ≤ 15 of mCH

t x Numeric Analytic Present (AE) [16] (AE)

6 −0.0217959864 −0.0217959772 0.918E−8 3.349E−04
8 −0.0029637527 −0.0029637503 0.236E−8 4.359E−05

0.05 9 −0.0010908149 −0.0010908138 0.108E−8 1.596E−05
10 −0.0004013577 −0.0004013572 0.475E−9 5.860E−06
12 −0.0000543226 −0.0000543225 0.852E−10 7.900E−07
6 −0.0240744628 −0.0240744439 0.189E−7 8.847E−04
8 −0.0032752003 −0.0032751954 0.491E−8 1.159E−04

0.10 9 −0.0012055034 −0.0012055012 0.225E−8 4.248E−05
10 −0.0004435646 −0.0004435636 0.993E−9 1.560E−05
12 −0.0000600357 −0.0000600356 0.178E−9 2.100E−06
8 −0.0036193465 −0.0036193389 0.766E−8 2.238E−04

0.15 9 −0.0013322461 −0.0013322426 0.352E−8 8.208E−05
10 −0.0004902094 −0.0004902079 0.155E−8 3.014E−05
8 −0.0039996179 −0.0039996072 0.106E−7 3.765E−04

0.20 9 −0.0014723091 −0.0014723042 0.490E−8 1.381E−04
10 −0.0005417587 −0.0005417565 0.217E−8 5.073E−05

t = 0.05 t = 0.1 t = 0.15 t = 0.20

L2 × 106 0.045859 0.091547 0.136939 0.181932
L∞ × 106 0.202146 0.401670 0.590314 0.768287
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Figure 1: Soliton wave progression (upper) and absolute error (bottom) of the mCH equation for
h = 0.1, ∆t = 0.001
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Table 4: The error norms L2 and L∞ for h = 0.1 and ∆t = 0.01, 0.001 over −40 ≤ x ≤ 40 and
the maximum amplitude and positions of the waves for mDP

∆t t L2 L∞ x Present Exact

0 0 0 0.00 −1.8750000000 −1.8750000000
2 0.502693E-3 0.269075E-3 5.00 −1.8749969077 −1.8750000000
4 0.987224E-3 0.524039E-3 10.00 −1.8749966431 −1.8750000000

0.01 6 1.470814E-3 0.778917E-3 15.00 −1.8749963319 −1.8750000000
8 1.954544E-3 1.033844E-3 20.00 −1.8749959041 −1.8750000000
10 2.438395E-3 1.288820E-3 25.00 −1.8749953600 −1.8750000000

2 0.284646E-5 0.159639E-5 5.00 −1.8749997931 −1.8750000000
4 0.372017E-5 0.199237E-5 10.00 −1.8749997716 −1.8750000000

0.001 6 0.426197E-5 0.230974E-5 15.00 −1.8749997713 −1.8750000000
8 0.481290E-5 0.262623E-5 20.00 −1.8749997709 −1.8750000000
10 0.537967E-5 0.297078E-5 25.00 −1.8749997512 −1.8750000000

3.2. Soliton Solutions of mDP Equation

As a second and last application, consider the modified Degasperis-Procesi (5) equation with initial

and boundary conditions as follows:

Ut −Uxxt + 4U2Ux − 3UxUxx − uuxxx = 0, x ∈ (a, b), t ≥ 0,

U(x,0) = −15
8

sech2(x
2
), U(a, t) = g1(t), U(b, t) = g2(t),

U ′(a, t) = g3(t), U ′(b, t) = g4(t), U ′′(a, t) = g5(t), U ′′(b, t) = g6(t).

The numerical results obtained by solving the mDP (5) equation are given in the Table 4.

As shown from the table, the error norms L2 and L∞ decrease significantly as ∆t gets smaller.

Also, the wave’s amplitude at t = 0 is −1.875 at x = 0 and −1.8749997512 at x = 25 at t = 10 ,

and this change is 2.488 × 10−7 . It is seen that the numerical results given in different locations

and times in the Table 5 are quite close to the analytic solution. In the Table 6, some nodal values

are compared with the exact solution as well as Ref. [16] a comparison of with absolute errors and

L2 , L∞ error norms are also given. The numerical results obtained with the proposed method

converge better than those given in Ref. [16]. In Figure 2, the physical behavior of the numerical

and exact solution (upper) and the absolute error graphs (bottom) at different times are given. It

can be seen from Figure 2 that the waves move to the right, keeping their speed and height almost

admirably.

4. Conclusions

In this study, soliton wave solutions of the modified Camassa-Holm (mCH) and Degasperis-Process

(mDP) equations were obtained by the trigonometric quintic B-spline collocation finite element
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Table 5: Some nodal values of U(x, t) for h = 0.1 and ∆t = 0.001 over −15 ≤ x ≤ 15 of mDP

t x Numeric Analytic t x Numeric Analytic

−12 −0.0000406663 −0.0000406664 −12 −0.0000316709 −0.0000316711
−10 −0.0003004651 −0.0003004657 −10 −0.0002340057 −0.0002340070
−9 −0.0008166367 −0.0008166379 −9 −0.0006360257 −0.0006360289
−8 −0.0022190189 −0.0022190214 −8 −0.0017283949 −0.0017284019

0.05 −6 −0.0163346314 −0.0163346415 0.15 −6 −0.0127336964 −0.0127337247
6 −0.0209481240 −0.0209481133 6 −0.0268551982 −0.0268551645
8 −0.0028488037 −0.0028488009 8 −0.0036571525 −0.0036571434
9 −0.0010485202 −0.0010485189 9 −0.0013462223 −0.0013462180

10 −0.0003857973 −0.0003857968 10 −0.0004953602 −0.0004953584
12 −0.0000522167 −0.0000522166 12 −0.0000670475 −0.0000670471
−12 −0.0000358879 −0.0000358880 −12 −0.0000279494 −0.0000279497
−10 −0.0002651615 −0.0002651625 −10 −0.0002065102 −0.0002065120
−9 −0.0007206966 −0.0007206988 −9 −0.0005613007 −0.0005613047
−8 −0.0019584109 −0.0019584157 −8 −0.0015253831 −0.0015253920

0.10 −6 −0.0144226482 −0.0144226677 0.20 −6 −0.0112419288 −0.0112419653
6 −0.0237196488 −0.0237196269 6 −0.0304018338 −0.0304017877
8 −0.0032277936 −0.0032277878 8 −0.0041435608 −0.0041435480
9 −0.0011880860 −0.0011880834 9 −0.0015253979 −0.0015253920

10 −0.0004371602 −0.0004371590 10 −0.0005613073 −0.0005613047
12 −0.0000591692 −0.0000591690 12 −0.0000759746 −0.0000759742

Table 6: Some nodal values of U(x, t) and comparison of absolute error with Ref. [16] for h = 0.1
and ∆t = 0.001 over −15 ≤ x ≤ 15 of mDP

t x Numeric Analytic Present (AE) [16] (AE)

6 −0.0209481240 −0.0209481133 0.106E−7 4.490E−04
8 −0.0028488037 −0.0028488009 0.277E−8 6.312E−05

0.05 9 −0.0010485202 −0.0010485189 0.127E−8 2.332E−05
10 −0.0003857973 −0.0003857968 0.560E−9 8.590E−06
12 −0.0000522167 −0.0000522166 0.101E−9 1.160E−06
6 −0.0237196488 −0.0237196269 0.219E−7 9.037E−04
8 −0.0032277936 −0.0032277878 0.581E−8 1.276E−04

0.10 9 −0.0011880860 −0.0011880834 0.267E−8 4.720E−05
10 −0.0004371602 −0.0004371590 0.118E−8 1.740E−05
12 −0.0000591692 −0.0000591690 0.212E−9 2.350E−06
8 −0.0036571525 −0.0036571434 0.912E−8 1.932E−04

0.15 9 −0.0013462223 −0.0013462180 0.421E−8 1.461E−05
10 −0.0004953602 −0.0004953584 0.186E−8 2.635E−05
8 −0.0041435608 −0.0041435480 0.127E−7 2.585E−04

0.20 9 −0.0015253979 −0.0015253920 0.590E−8 9.568E−05
10 −0.0005613073 −0.0005613047 0.285E−8 3.529E−05

t = 0.05 t = 0.1 t = 0.15 t = 0.20

L2 × 106 0.094519 0.188815 0.282694 0.375984
L∞ × 106 0.054802 0.109182 0.162013 0.212648
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Figure 2: Soliton wave progression (upper) and absolute error (bottom) of the mDP equation for
h = 0.1, ∆t = 0.001
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method. The presented method’s efficiency and power were demonstrated by comparing the values

of the numerical and the exact solution at various times and positions, in addition to the calculation

of the error norms L2 and L∞ . The numerical results calculated were compared with the [16]

study using the quartic B-spline collocation method. The results indicate that the absolute error

found in the proposed method is significantly smaller than those found in the [16]. As can be seen

from the Tables 1 and 4, the soliton wave resulting from the solution of the mDP equation moves

faster than the soliton wave formed by the solution of mCH. It has been observed that the applied

method preserves the physical structure of the solution very well, and it is also speedy and effective

since tiny h and ∆t are not used.
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