ANADOLU UNIVERSITESI

Bilim ve Teknoloji Dergisi B-Teorik Bilimler
Cilt: 2 Say1: 2 2013
Sayfa:143-148

ARASTIRMA MAKALESI / RESEARCH ARTICLE

Gizde KIZILATES', Fidan NURIYEVA?

A NEW HYBRID HEURISTIC ALGORITHM FOR SOLVING TSP

ABSTRACT

The Traveling Salesman Problem (TSP) is an important and well known combinatoriyal opti-
mization problem. The goal of the problem is to find the shortest tour that visits each city in a given
list exactly once and then returns to the starting city. Although the definition of the travelling salesman
problem is easy, it belongs to NP-Hard class. In this paper, a new hybrid heuristic algorithm based on
Nearest Neighbour (NN) and Greedy heuristic algorithms is proposed for solving the TSP. This
proposed hybrid heuristic algorithm is compared with NN and Greedy heuristics. The experimental
results show that the proposed algorithm is efficient.

Keywords: Traveling salesman problem, Hybrid heuristic algorithm, Nearest neighbour algo-
rithm, Greedy algorithm

GEZGIN SATICI PROBLEMINi COZMEK ICIN
YENI BIR HIBRID SEZGISEL ALGORITMA

0z

Gezgin Satic1 Problemi (GSP) 6nemli ve iyi bilinen kombinatoriyal optimizasyon problemidir.
GSP’de amag, bir saticinin, bulundugu sehirden baslayip, her sehre sadece bir kez ugradiktan sonra
basladig1 noktaya geri donen en kisa turu bulmaktir. GSP kolay gdriinmesine ragmen, NP-zor sinfina
ait bir problemdir. Bu ¢alismada, GSP’nin ¢6ziimii i¢in Yakin Komsu ve A¢gdzlii algoritmalarina da-
yanan yeni bir hibrid sezgisel algoritma onerilmigtir. Onerilen yeni hibrid sezgisel algoritma, Yakin
Komgsu ve Ac¢gozli algoritmalan ile kiyaslanmigtir. Hesaplama denemeleri 6nerilen algoritmanin ve-
rimli oldugunu gostermektedir.

Anahtar Kelimeler: Gezgin satici problemi, Hibrid sezgisel algoritma, Yakin komsu algoritmasi,
Acgozlii algoritma

" Ege University, Faculty of Science, Department of Mathematics
Tel: (554) 7084143,E-mail: gozde kizilates@gmail.com

* Institute of Cybernetics, Azerbaijan National Academy of Sciences
Tel: (0531) 0805209, E-mail: nuriyevafidan@gmail.com

Recieved: 28 November 2012 Revised: 28 March 2013 Accepted: 19 June 2013

Bilim ve Teknoloji Dergisi - B- Teorik Bilimler 2 (2)
Journal of Science and Technology - B- Theoretical Sciences 2 (2)

1. INTRODUCTION

The Traveling Salesman Problem (TSP) is an NP-hard problem and one of the most famous and
well studied problems in combinatorial optimizational field (Gutin and Punnen, 2002). In standard
TSP, the goal is to find the minimum length Hamiltonian cycle through a set of n cities, given the
distances between all pairs of cities (Lawler and others, 1986). In other words, TSP can be considered
as a graph problem in which cities are represented by vertices and distances between cities are
represented by edges. There are many variations of the problem. In this work, we examine the
classic symmetric TSP.

Solving TSP is an important part of many applications in different fields including vehicle
routing, computer wiring, machine sequencing and scheduling, frequency assignment in communication
networks as well as data analysis in psychology and clustering in biostatistics (Lenstra, 1974) (John-
son and Liu, 2006). For instance, data analysis applications in psychology ranging from profile smoothing
to finding an order in developmental data are presented by (Hubert and Baker, 1978). Clustering and
ordering using TSP solvers are currently becoming popular in biostatistics (Climer and Zhang, 2006).

2. APPROACHES FOR SOLVING TSP

The algorithms for solving TSP can be divided into four classes: exact algorithms, heuristic
algorithms, approximate algorithms and metaheuristic algorithms (Land and Doilg, 1960).

The exact algorithms usually utilize the integer linear programming model of the TSP. “Branch &
Bound” is one of the examples for this category (A. Land andA. Doig, 1960). One approach that
comes to mind first is to try all possibilities. Other approach can be dynamic programming (M. Held
and R. Karp, 1962).

In general, the heuristic algorithms are subdivided into the following three classes: tour construction
algorithms, tour improvement algorithms and hybrid algorithms (Johnson and McGeoch, 1997). The
tour construction algorithms gradually build a tour by adding a new city at each step, such as the
nearest neighbor algorithm, the insertion algorithm, algorithm based on spanning tree, the saving
algorithm and the random algorithm. The tour improvement algorithms improve a tour by performing
various exchanges, such as 2-opt and 3-opt.

Approximation algorithms give us a guarantee as to how bad solutions we can get, normally
specified as C times the optimal value. The best known approximate algorithms for TSP are Christofides
Algorithm (guaranteed value is 3/2), Minimum-Spanning Tree (MST) based algorithms (guaranteed
value is 2), and others (S. Lin and B. Kernighan, 1973).

Metaheuristic algorithms are the techniques which try to improve iteratively the candidate solution
(or solutions) found by a specific approach for hard optimization problems. Metaheuristic algorithms
accept the heuristic approach for solving the problem as a black box and don’t care about the details
(Rego and Glover, 2002). They only try to optimize the functions used to solve the problem. These
functions are named as goal functions or objective functions. Tabu search, genetic algorithms,
simulated annealing, artificial neural networks, ant colony algorithm and similar artificial intelligence
approaches are the examples for this category.

3. SOME HEURISTIC ALGORITHMS

In this study, we will focus on only Nearest Neighbour and Greedy Algorithms since the proposed
algorithm is based on them.

144

Bilim ve Teknoloji Dergisi - B- Teorik Bilimler 2 (2)
Journal of Science and Technology - B- Theoretical Sciences 2 (2)

3.1 Nearest Neighbour
This is perhaps the simplest and most straightforward TSP heuristic.

A nearest neighbor (NN) algorithm produces a tour by sequentially adding a connection from the
most recent city visited to the nearest city that has not yet been visited. This procedure is repeated until
all of the cities in the problem have been visited, at which time a final connection is made to the origi-
nal/starting city. The algorithm uses each city in the problem as a start/end point to produce N such

tours and records the shortest solution. The computational complexity of this algorithm is O(n*)
(Johnson and Papadimitriou, 1985a).

The steps of the algorithm are as following:

Step 1. Select a random city.
Step 2. Find the nearest unvisited city and go there.
Step 3. Are there any unvisited cities left? If yes, go to step 2; otherwise go to step 4.

Step 4. Return to the first city.

We can obtain the best result out of this algorithm by starting the algorithm over again for each
city and repeat it for n times.

3.2 Greedy Algorithm

The Greedy heuristic gradually constructs a tour by repeatedly selecting the shortest edge and
adding it to the tour as long as it doesn’t create a cycle with less than n edges, or increase the degree of
any city by more than 2. We must not add the same edge twice of course.

The computational complexity of this algorithm is O (n”log, N) (Johnson and Papadimitriou,
1985b).

The steps of the algorithm are as following:

Step 1. Sort all edges.
Step 2. Select the shortest edge and add it to our tour if it doesn’t violate any of the above constraints.
Step 3. Do we have n edges in our tour? If no, go to step 2, otherwise go to step 4.
Step 4. Terminate the algorithm.
4. ANEW HYBRID HEURISTIC ALGORITHM

The algorithm that we have proposed is a hybrid of the traditional NN and Greedy heuristic
algorithms. We start the algorithm with NN for each city. Each time the algorithm is applied, we give
a “priority” to the edge according to the result of the solution. Let the “priority” of the selected edges
in the first solution be 1 and all the others be 0. Suppose that the length of the first tour is D,. We add
D . .
El (Here, D;is the length of the tour, which is found at step i) to the “priorities™ of the selected

i

edges. At the next steps, the edges are sorted in descending order by their updated “priorities”, and

then, we solve the problem with Greedy algorithm. This process continues until there is no change on
the sorting anymore. The result of the algorithm is the best solution found during this process.

145

Bilim ve Teknoloji Dergisi - B- Teorik Bilimler 2 (2)
Journal of Science and Technology - B- Theoretical Sciences 2 (2)

The steps of the algorithm are as following:

Step 1. We start the algorithm with NN for each city and repeat it for n times.
Step 2. Assign the best solution as record solution.
D
Step 3. Suppose that the length of the record tour is D,. Then, we add Er (Here, D, - is the

i
length of the tour, which is found at step i) to the “priorities” of the selected edges. Thus,
each edge has a “priority” after n steps.

Step 4. Sort the edges in descending order by “priority”.
Step S. Solve the problem by greedy algorithm.
Step 6. Update the priority of the first edge which is not in the solution.

Step 7. If the solution is better (shorter) than the record solution, update the record and update the
priority. Subsract n from “priorities” of the elements that are in the record solution but are not in the
current solution.

Step 8. If the solution is worse (longer) than the record solution, update the priority. Subsract n
from “priorities” of the elements that are not in the record solution but are in the current solution.

Step 9. Repeat this procedure until 3*n iteration is complete.
4.1 Computational Complexity of the Proposed Algorithm

The worst-case complexity of the algorithm can be calculated as follows. The cost of finding a
tour according to NN algorithm is O (n2) . In this algorithm, n tours are found by NN algorithm star-

ting from each vertex. The total complexity for these operations becomes O(n3) . Then, “priority”

value is calculated for each edge that is used in the found tours and these values are put in order. Be-
cause each edge has a “priority” value for sorting operation as well, n*(n-1)/2 data are sorted in sorting

operation. Therefore, complexity of the sequencing process becomes O(n2 logn). Aftewards, a re-
sult is found by the Greedy algorithm with respect to these “priorities”. The complexity of the Greedy
algorithm is O(n* logn). The result found by the Greedy algorithm and “priority” values are
updated. The Greedy algorithm and updating process are iterated 3*n times. As a result, the general
complexity of the algorithm will be O(n* logn).

5. COMPUTATIONAL EXPERIMENTS

This section presents the results of the computational experiments for the proposed hybrid heuristic
algorithm. The computer program of the proposed algorithm has been coded in C++. The com-
putational experiments have been implemented using 2.6 GHz Intel Core 2 Duo CPU processor and 2
GB RAM, 32-bit windows.

The sample problems wused in these experiments are taken from (www.iwr.uni-
heidelberg.de/groups/comopt/software/TSPLIB95/tsp/) and the optimum solutions for each of these
problems are taken from (http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/ST).

146

Bilim ve Teknoloji Dergisi - B- Teorik Bilimler 2 (2)
Journal of Science and Technology - B- Theoretical Sciences 2 (2)

Table I shows the length of the tour computed by NN ve Greedy heuristics and new hybrid
heuristic algorithm that we have proposed. Since it is based on Nearest Neighbour (NN) and Greedy
heuristic algorithms, the proposed algorithm has been compared with these algorithms.

In Table I, selected cells show the best results that algorithms have found.

Table I Computational Experiments

G Optimal Ti,T:(s) 1(";111.1‘:2 ((1sy) Hybr’i"(:n?elg((s);ithm
ulysses22 | 75.665 80§6900()5 809,641306 709.611547
bayg29 | 9074.148 990§gb7081 980§812508 9401‘3'59457

ads | 33523708 | Vo8t | 3802 662
eil51 429.983 58.50'124 42,11;8 43.784114318
berlin52 | 7544.365 8108_361092 9905_350162 7709.51;53775
5170 678.597 78.1(5839 73,64324 7?8;?)
cil76 545.387 6(1).26?26 6(1)_76';31 52,98'222
2196 512.309 68.3(3(5)2 5?96'(1)81 51972.953783
rat99 1211 1306.3.1563 : 1512,2.73508 13(2)84326
kroA100 | 21236.951 248.908i297 24}?975§85 2424;;97280
wopioo | 22141 | P | e | s
kroC100 | 20750762 | *° 3?{;03 25;.1631' 871 222928_368658
kroD100 | 21294.290 243:5051'299 2433315'333 2‘;22%?5?6
koptoo | 22068 | MU M6 | Tosos
rd100 7910.396 9402.3'13533 87295'26205 933.18.315
il101 642.309 7(3)_60'?28 72_96'(1)52 72331.'990413
linl0s | 14382995 163_3091"5‘41 16;‘_7195;;85 1(5207§§§2365
107 | a0 | T | e | Sime
grl20 1666.508 1805' 8'32263 1941239218 12291'2;3
ch130 | e1i0ge0 | ST TR 82407

147

Bilim ve Teknoloji Dergisi - B- Teorik Bilimler 2 (2)
Journal of Science and Technology - B- Theoretical Sciences 2 (2)

6. CONCLUSION

In this paper, we have proposed a hybrid heuristic algorithm for solving TSP based on traditional Nearest
Neighbour and Greedy algorithms. As it is seen in Table I, in which the obtained results from computational
experiments are shown, comparing with NN and Greedy algorithms, the proposed algorithm generally gives
solutions closer to the optimum. However, the proposed algorithm lags behind NN and Greedy algorithms
with respect to running time. We aim to arrange more efficiently the usage of NN algorithms in the first part
of the algorithm in order to decrease the running time.

REFERENCES

Climer, S., Zhang, W. (2006). Rearrangement Clustering: Pitfalls, Remedies, and Applications.
Journal of Machine Learning Research, 7, 919 — 943.

Gutin, G., Punnen, A. (eds.). (2002). The Traveling Salesman Problem and Its Variations. Vol. 12 of
Combinatorial Optimization. Kluwer, Dordrecht.

Held, M., Karp, R. (1962). A Dynamic Programming Approach to Sequencing Problems. Journal of
SIAM, 10, 196 — 210.

Hubert, L. J., Baker, F. B. (1978). Applications of Combinatorial Programming to Data Analysis: The
Traveling Salesman and Related Problems. Psychometrika, 43(1), 81-91.

Johnson, D., Papadimitriou, C. (1985a). Computational Complexity. In Lawler et al, Chapter 3, 37-
86.

Johnson, D., Papadimitriou, C. (1985b). Performance Guarantees for Heuristics. In Lawler et al,
Chapter 5,145-180.

Johnson, D. S. and McGeoch, L. A. (1997). “The Traveling Salesman Problem: A Case Study”, Local
Search in Combinatorial Optimization, 215-310, John Wiley & Sons.

Johnson, O., Liu, J. (2006). A Traveling Salesman Approach for Predicting Protein Functions.
Source Code for Biology and Medicine, 1(3), 1-7.

Land, A., Doig, A. (1960). An Automatic Method for Solving Discrete Programming Problems.
Econometrica, 28, 497-520.

Lawler, E. L., Lenstra, J. K., Rinnoy, Kan A. H. G., Shmoys D. B. (1986). The Traveling Salesman
Problem: A Guided Tour of Combinatorial Optimization, John Wiley & Sons.

Lenstra, J. K. (1974). Clustering a Data Array and The Traveling-Salesman Problem. Operations
Research, 22(2), 413-414.

Lin, S., Kernighan, B. (1973). An Effective Heuristic Algorithm for The Traveling-Salesman Problem.
Operations Research, 21(2), 498-516.

Ray, S. S., Bandyopadhyay, S., Pal, S. K. (2007). Gene Ordering in Partitive Clustering using Microar-
ray Expressions. Journal of Biosciences, 32(5), 1019-1025.

Rego, C., Glover, F. (2002). Local Search and Metaheuristics. In Gutin and Punnen (2002), Chapter
8, 309-368.

Reinelt, G. (1994). The Traveling Salesman: Computational Solutions for TSP Applications. Springer-
Verlag, Germany.

http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/tsp/

148

