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Abstract
Total coloring of circulant graphs has attracted much attention in recent years. Studies on
the total chromatic numbers of them, in particular 4-regular circulant graphs, have thrown
up a number of interesting results. However, as a challenging issue, the total chromatic
numbers of 4-regular circulant graphs Cn(1, 4) remain an open question even after many
efforts. In this paper, we solve this question by completely determining total chromatic
numbers of Cn(1, 4) for all n ≥ 9.
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1. Introduction
Let G be a simple connected graph with vertex set V (G) and edge set E(G). A k-total

coloring of a graph G is a map σ: V (G)∪E(G) → {1, 2, · · · , k}, such that no two adjacent
or incident elements of V (G)∪E(G) receive the same color. The smallest number of colors
needed for a total coloring of G is known as the total chromatic number, denoted as χ′′(G).
Determining total chromatic number is NP-complete [13], and NP-hard even for k-regular
bipartite graphs with k ≥ 3 [9].

There is a long-standing total coloring conjecture formulated by Behzad [1] and Vizing
[16] independently. It says χ′′(G) ≤ ∆(G) + 2 for a simple graph G, where ∆(G) is the
maximum degree of G. The conjecture implies that for every graph G, χ′′(G) attains one of
the two values ∆(G) + 1 or ∆(G) + 2. Usually, a graph with χ′′(G) = ∆(G) + 1 is known
as Type I while a graph with χ′′(G) = ∆(G) + 2 is known as Type II. The conjecture has
been verified by many graphs, and exact values of total chromatic number for some graphs
were determined [5, 6, 14, 15]. However, the total chromatic numbers for most circulant
graphs including Cn(1, 4) remain open even after many efforts [2, 3, 6, 7, 10–12].

A circulant graph Cn(d1, d2, · · · , dl) is the graph that has a vertex set V = {v0, v1, · · · ,
vn−1} and an edge set E =

⋃l
i=1 Ei with Ei = {ei

0, ei
1, · · · , ei

n−1} and ei
m = vmvm+di

, where
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1 ≤ d1 < d2 < · · · < dl ≤
⌊

n
2

⌋
and indices of the vertices are considered modulo n. When l

is taken as 2, it reduces to a 4-regular graph Cn(d1, d2), of which a special class is Cn(1, 4).
It is difficult to determine the total chromatic number of a general circulant graph.

So far, great efforts have been directed towards studying the total coloring of 4-regular
circulant graphs and a number of interesting results have been thrown up. Campos and
de Mello proved that Cn(1, 2) is Type I except for graph C7(1, 2), which is Type II [3].
Khennoufa and Togni proved that C5p(1, k) for any positive integer p, k < 5p

2 and k (mod 5)
= 2,3, and C6p(1, k) for p ≥ 3, k < 3p and k (mod 3) ̸= 0 are Type I [7]. Nigro et al.
demonstrated that Cn(3, 2k) for n = (8p + 6q)k ( k ≥ 1) with non-negative integers p and
q, C3p(1, 3) for p > 1 except for C12(1, 3), and C3tp(1, p) for t ≥ 1 and p multiple of 3 are
Type I [11]. Navaneeth et al. proved that C5p(1, k) for any positive integer p, k < 5p

2 and
k (mod 5) = 1,4, C3p(a, b) for odd p, 1 ≤ a < b < 3p

2 , gcd(a, b) = 1 and 3p
gcd(3p,b) = 3s

(s ∈ N), C9p(1, k) for 2 ≤ k < 9p
2 and 9p

gcd(9p,k) = 3s (s ∈ N), and C6p(a, b) for even p and
a, b (mod 3) ̸= 0 or odd p, gcd(a, b) = 1 and a, b (mod 3) ̸= 0 are Type I [10].

In this paper, we study the total coloring of circulant graphs Cn(1, 4). We aim to find
their total chromatic numbers for all n ≥ 9. The paper is organized as follows. We will
first determine the total chromatic numbers of Cn(1, 4) for n = 5p+11q with p and q being
arbitrary nonnegative integers in Section 2, and then we determine the total chromatic
numbers of Cn(1, 4) for n = 9, 12, 14, 17, 18, 19, 23, 24, 28, 29, 34, 39 in Section 3, and for
n = 13 in Section 4. Section 5 is our conclusion.

2. Total coloring of Cn(1, 4) for n = 5p + 11q

Any positive integer n can be always written as n = 5k, 5k + 1, 5k + 2, 5k + 3, or
5k + 4 with k being a nonnegative integer, which can be equivalently recast as n =
5k + 11 × 0, 5(k − 2) + 11 × 1, 5(k − 4) + 11 × 2, 5(k − 6) + 11 × 3, 5(k − 8) + 11 × 4.
Therefore, n in Cn≥9(1, 4) can be expressed as n = 5p+11q with p and q being nonnegative
integers, except for n = 9, 12, 14, 17, 18, 19, 23, 24, 28, 29, 34, 39, and n = 13. In this section,
we first study the total coloring of Cn(1, 4) for n = 5p + 11q.

Lemma 2.1. χ′′(Cn(1, 4)) = 5 for n = 5p + 11q with nonnegative integers p, q.

Proof. For simplicity, we use (i1i2 . . . it)p to represent
i1i2 . . . it · · · i1i2 . . . it︸ ︷︷ ︸

p
, where i1, i2, · · · ,

it ∈ {1, 2, 3, 4, 5}. For example, (24351)2 = 2435124351. Let V = {vi : 0 ≤ i ≤ n − 1}, E1
= {vivi+1 : 0 ≤ i ≤ n − 1} and E2 = {vivi+4 : 0 ≤ i ≤ n − 1}. The total coloring of Cn(1, 4) is
denoted as:
σ(Cn(1, 4)) = (σ(v0)σ(v1) · · · σ(vn−1), σ(v0v1)σ(v1v2) · · · σ(vn−1v0), σ(v0v4)σ(v1v5) · · · σ(vn−1v3)).

We construct a 5-total coloring of Cn(1, 4) for n = 5p + 11q as follows.
σ(C5p+11q(1, 4)) = ((24153)p(23143523121)q, (12314)p(12312312353)q, (53542)p(54554144542)q).

It is straightforward to verify that the above construction σ(Cn(1, 4)) is indeed a to-
tal coloring of C5p+11q(1, 4). First, the vertices adjacent to vi are vi−1, vi+1, vi−4 and
vi+4. The construction indicates σ(vi) ̸= σ(vi−1), σ(vi+1), σ(vi−4), σ(vi+4), which means
that two adjacent vertices receive different colors. Second, the edges adjacent to vivi+1
are vi−1vi, vi+1vi+2, vi−4vi, vivi+4, vi−3vi+1 and vi+1vi+5, and the edges adjacent to
vivi+4 are vi−1vi, vivi+1, vi+3vi+4, vi+4vi+5, vi−4vi and vi+4vi+8. The construction indi-
cates σ(vivi+1) ̸= σ(vi−1vi), σ(vi+1vi+2), σ(vi−4vi), σ(vivi+4), σ(vi−3vi+1), σ(vi+1vi+5); and
σ(vivi+4) ̸= σ(vi−1vi), σ(vivi+1), σ(vi+3vi+4), σ(vi+4vi+5), σ(vi−4vi), σ(vi+4vi+8), which
means that two adjacent edges receive different colors. Third, the edges incident to
the vertex vi are vi−1vi, vivi+1, vi−4vi and vivi+4. The construction indicates σ(vi) ̸=
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σ(vi−1vi), σ(vivi+1), σ(vi−4vi), σ(vivi+4), which means that a vertex receive a different
color from its incident edges.

The above construction implies χ
′′(Cn(1, 4)) ≤ 5 for n = 5p + 11q. On the other hand,

there is χ
′′(Cn(1, 4)) ≥ 5. Hence, χ

′′(Cn(1, 4)) = 5 for n = 5p + 11q. □
Figure 1 shows σ(C10(1, 4)), σ(C11(1, 4)) and σ(C16(1, 4)).
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Figure 1. σ(C10(1, 4)) in subfigure (1), σ(C11(1, 4)) in subfigure (2) and
σ(C16(1, 4)) in subfigure (3)

In the following sections, we will study the total coloring of Cn(1, 4) for n = 9, 12, 14, 17,
18, 19, 23, 24, 28, 29, 34, 39 and n = 13, which are not included in the expression n =
5p + 11q.

3. Total coloring of Cn(1, 4) for n = 9, 12, 14, 17, 18, 19, 23, 24, 28, 29, 34, 39
Lemma 3.1. χ′′(Cn(1, 4)) = 5 for n = 9, 12, 14, 17, 18, 19, 23, 24, 28, 29, 34, 39.
Proof. We construct a 5-total coloring of Cn(1, 4)) for n = 9, 12, 14, 17, 18, 19, 23, 24, 28, 29,
34, 39 as follows, respectively.
σ(C9(1, 4)) = (241251231, 123124125, 455533344), as illustrated in Figure 2(1),
σ(C12(1, 4)) = (535345453434, 121212121212, 343453534545), as illustrated in Figure 2(2),
σ(C14(1, 4)) = (25434352143431, 12121213212124, 34345545435355),
σ(C17(1, 4)) = (24535345453434531, 12121212121212123, 45343453534545345),
σ(C18(1, 4)) = (453453453453453453, 121212121212121212, 345345345345345345),
σ(C19(1, 4)) = (2545345343121535321, 1212121212342142145, 4334554534515323453),
σ(C23(1, 4)) = (25454354343215253241213, 12121212121324124525425, 34335545435451331314354),
σ(C24(1, 4)) = (535345453434535345453434, 121212121212121212121212,

343453534545343453534545),
σ(C28(1, 4)) = (2543435214343125434352143431, 1212121321212412121213212124,

3434554543535534345545435355),
σ(C29(1, 4)) = (24535345453434535345453434531, 12121212121212121212121212123,

45343453534545343453534545345),
σ(C34(1, 4)) = (2453534545343453124535345453434531, 1212121212121212312121212121212123,

4534345353454534545343453534545345),
σ(C39(1, 4)) = (241532415324153231435231215353121425321, 12314123141231412312312353121

4352132153, 535425354253542545541445422435514344542).
By examining the colors of all adjacent or incident elements of Cn(1, 4) for n = 9, 12, 14, 17,

18, 19, 23, 24, 28, 29, 34, 39, it is straightforward to verify that each construction is indeed a
total coloring of Cn(1, 4). The existence of the above constructions indicates that the total
chromatic number of Cn(1, 4) for n = 9, 12, 14, 17, 18, 19, 23, 24, 28, 29, 34, 39 is not larger
than 5, but on the other hand, the total chromatic number cannot be less than 5 too.
Hence, there must be χ′′(Cn(1, 4)) = 5 for n = 9, 12, 14, 17, 18, 19, 23, 24, 28, 29, 34, 39. □
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Figure 2. σ(C9(1, 4)) in subfigure (1) and σ(C12(1, 4)) in subfigure (2)

4. Total coloring of C13(1, 4)
We recall the result obtained by Chetwynd and Hilton [4] presented in Lemma 4.1, as

it will be used in the proof of Lemma 4.2.
Lemma 4.1. If regular graph G has a (∆(G) + 1)-total coloring, then it has a vertex-
coloring with colors 1, 2, . . . , ∆(G)+1 such that |Vj | ≡ |V (G)| (mod 2) (1 ≤ j ≤ ∆(G)+1).

Here, Vj represents the set of vertices assigned with the color j and will be used through-
out the paper. It can be explicitly denoted as Vj = {vj0 , vj1 , · · · vj(t−1)}, 1 ≤ j ≤ ∆(G)+1.
We further define djs = (n + js+1 − js) (mod n) (indices of j are modulo t), 0 ≤ s ≤ t − 1.
Then, there is djs ∈ {2, 3, 5, 6, 7, 8, 10, 11} for C13(1, 4).

Lemma 4.2 presents a necessary condition for the graph C13(1, 4) to have a 5-total
coloring.
Lemma 4.2. If the circulant graph C13(1, 4) has a 5-total coloring, then |V1| = |V2| =
|V3| = |V4| = 3 and |V5| = 1.
Proof. Without loss of generality, we assume |V1| ≥ |V2| ≥ |V3| ≥ |V4| ≥ |V5|. Since
the maximum independent set in C13(1, 4) has size 5, then |Vj | ∈ {5, 3, 1}(1 ≤ j ≤ 5) by
Lemma 4.1. From Σ1≤j≤5|Vj | = 13, we have |V1| ∈ {5, 3}.

We first consider the case of |V1| = 5. Since d1s ∈ {2, 3, 5, 6, 7, 8, 10, 11} and
∑

0≤s≤4 d1s =
13, then |{d1s|d1s = 2}| ∈ {4, 2}. If |{d1s|d1s = 2}| = 4, there must be an integer i
such that σ(vi) = σ(vi+4) = 1, a contradiction to the requirements of total coloring. If
|{d1s|d1s = 2}| = 2, without loss of generality, we may let V1 = {v0, v2, v5, v7, v10}. We
then have σ(v1), σ(v1v0), σ(v1v2), σ(v1v10), σ(v1v5) ̸= 1, a contradiction to the precon-
dition that C13(1, 4) has a 5-total coloring (see Figure 3(1)). Hence, |V1| = 3. Since
Σ1≤j≤5|Vj | = 13, we have |V1| = |V2| = |V3| = |V4| = 3 and |V5| = 1. □
Lemma 4.3. If the circulant graph C13(1, 4) has a 5-total coloring, then ({dj0, dj1, dj2}, ej)
∈ {({2, 3, 8}, 4), ({2, 5, 6}, 3), ({2, 5, 6}, 4), ({3, 3, 7}, 3)} and there are at least three colors
j such that ({dj0, dj1, dj2}, ej) ∈ {({2, 5, 6}, 3), ({3, 3, 7}, 3)} for 1 ≤ j ≤ 4, where ej is the
number of edges assigned with the color j.
Proof. If the circulant graph C13(1, 4) has a 5-total coloring, then by Lemma 4.2, |V1| =
|V2| = |V3| = |V4| = 3. Since djs ∈ {2, 3, 5, 6, 7, 8, 10, 11} and dj0 + dj1 + dj2 = 13 for
1 ≤ j ≤ 4, we have {dj0, dj1, dj2} ∈ {{2, 3, 8}, {2, 5, 6}, {3, 3, 7}, {3, 5, 5}}.

Case 1. {dj0, dj1, dj2} = {2, 3, 8}. Without loss of generality, we may let Vj =
{v0, v2, v5}. Then σ(v1), σ(v1v0), σ(v1v2), σ(v1v5) ̸= j, σ(v1v10) = j. It follows σ(v6v7) =
j, σ(v11v12) = j, σ(v3v4) = j, σ(v8v9) = j and ej = 4. (see Figure 3(2)).
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Figure 3. σ(C13(1, 4)) for |V1| = 5 in subfigure (1), and for |V1| = 3 and
{dj0, dj1, dj2} = {2, 3, 8} in subfigure (2)

Case 2. {dj0, dj1, dj2} = {2, 5, 6}. Let Vj = {v0, v2, v7}. Then σ(v3), σ(v3v2), σ(v3v7) ̸=
j, σ(v3v12) = j or σ(v3v4) = j. If σ(v3v12) = j, then σ(v11v10) = j, σ(v1v5) = j. It
follows σ(v6), σ(v6v5), σ(v6v7), σ(v6v2), σ(v6v10) ̸= j, a contradiction to the precondition
(see Figure 4(1)). Hence, σ(v3v4) = j. Since σ(v1), σ(v1v0), σ(v1v2) ̸= j, then σ(v1v10) =
j or σ(v1v5) = j. If σ(v1v10) = j, then σ(v11v12) = j, σ(v8v9) = j, σ(v5v6) = j and ej = 4
(see Figure 4(2)). If σ(v1v5) = j, then σ(v6v10) = j, σ(v11v12) = j, σ(v8v9) = j, and
ej = 3 (see Figure 4(3)).
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Figure 4. C13(1, 4) for |V1| = 3 and {dj0, dj1, dj2} = {2, 5, 6}. σ(v3v12) = j in
subfigure (1), σ(v3v4) = j and σ(v1v10) = j in subfigure (2) and σ(v3v4) = j and
σ(v1v5) = j in subfigure (3)

Case 3. {dj0, dj1, dj2} = {3, 3, 7}. Let Vj = {v0, v3, v6}, then σ(v2), σ(v2v3), σ(v2v6) ̸= j,
σ(v2v11) = j or σ(v2v1) = j. If σ(v2v11) = j, then σ(v7v8) = j. It follows σ(v12), σ(v12v0),
σ(v12v11), σ(v12v3), σ(v12v8) ̸= j, a contradiction to the precondition (see Figure 5(1)).
Hence, σ(v2v1) = j. Since σ(v10), σ(v10v1), σ(v10v6) ̸= j, then σ(v10v11) = j or σ(v10v9) =
j. If σ(v10v11) = j, then σ(v7v8) = j. It follows σ(v12), σ(v12v0), σ(v12v11), σ(v12v3), σ(v12v8)
̸= j , a contradiction to the precondition (see Figure 5(2)). If σ(v10v9) = j, then
σ(v5v4) = j. It follows σ(v8v7) = j, σ(v12v11) = j and ej = 5 (see Figure 5(3)) or
σ(v8v12) = j, σ(v7v11) = j and ej = 3 (see Figure 5(4)).

Case 4. {dj0, dj1, dj2} = {3, 5, 5}. Let Vj = {v0, v3, v8}. Then σ(v12), σ(v12v0),
σ(v12v3), σ(v12v8) ̸= j, σ(v12v11) = j. It follow σ(v7v6) = j, σ(v2v1) = j, σ(v10v9) = j,
σ(v5v4) = j and ej = 5 (see Figure 6).

By Cases 1-4, we have ej ∈ {3, 4, 5} for 1 ≤ j ≤ 4. Since
∑

1≤j≤4 ej ≤ 13, we have ej ≤ 4.
It follows ({dj0, dj1, dj2}, ej) ∈ {({2, 3, 8}, 4), ({2, 5, 6}, 3), ({2, 5, 6}, 4), ({3, 3, 7}, 3)} and
there are at least three colors j such that ({dj0, dj1, dj2}, ej) ∈ {({2, 5, 6}, 3), ({3, 3, 7}, 3)}.

□

Further, according to Case 2 and Case 3 in the above, we have the following lemma.
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Figure 5. C13(1, 4) for |V1| = 3 and {dj0, dj1, dj2} = {3, 3, 7}. σ(v2v11) = j
in subfigure (1), σ(v2v1) = j and σ(v10v11) = j in subfigure (2), σ(v2v1) = j,
σ(v10v9) = j and σ(v8v7) = j in subfigure (3), and σ(v2v1) = j, σ(v10v9) = j and
σ(v8v12) = j in subfigure (4)
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Figure 6. C13(1, 4) for |V1| = 3 and {dj0, dj1, dj2} = {3, 5, 5}

Lemma 4.4. If the circulant graph C13(1, 4) has a 5-total coloring, then σ(vjs+1vjs+2) =
σ(vjs+4vjs+5) = σ(vjs+9vjs+10) = σ(vjs) for djs = 6 or djs + dj(s+1) = 6, where 1 ≤ j ≤ 4
and indices of v are modulo n=13.

For 1 ≤ j1, j2 ≤ 4, let d2
j1,j2 = i1 − i2 where σ(vi1) = σ(vi1+6) = j1 and σ(vi2) =

σ(vi2+6) = j2. Then d2
j1,j2 ∈ {1, 2, 3, 4, 5, 8, 9, 10, 11, 12}.

Lemma 4.5. If the circulant graph C13(1, 4) has a 5-total coloring, then d2
j1,j2 ∈ {1, 2, 4, 9, 11,

12}.

Proof. If the circulant graph C13(1, 4) has a 5-total coloring, then there are at least three
colors j such that ({dj0, dj1, dj2}, ej) ∈ {({2, 5, 6}, 3), ({3, 3, 7}, 3)} by Lemma 4.3. With-
out loss of gennerality, let ({dj10, dj11, dj12}, ej1), ({dj20, dj21, dj22}, ej2) ∈ {({2, 5, 6}, 3),
({3, 3, 7}, 3)}, and let σ(v0) = σ(v6) = j1. By Lemma 4.4, we have σ(v1v2) = σ(v4v5) =
σ(v9v10) = j1. If d2

j1,j2 = 3 , then σ(v4v5) = j2, a contradiction (see Figure 7(1)).
If d2

j1,j2 = 5 , then σ(v9v10) = σ(v1v2) = j2, a contradiction (see Figure 7(2)). So,
d2

j1,j2 /∈ {3, 5}. By symmetry, d2
j1,j2 /∈ {10, 8}. Hence, d2

j1,j2 ∈ {1, 2, 4, 9, 11, 12}. □

Lemma 4.6. χ′′(C13(1, 4)) = 6.

Proof. Suppose that C13(1, 4) has a 5-total coloring. By Lemma 4.2–4.3, |Vj | = 3,
({dj0, dj1, dj2}, ej) ∈ {({2, 3, 8}, 4), ({2, 5, 6}, 3), ({2, 5, 6}, 4), ({3, 3, 7}, 3)}, and there are
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Figure 7. C13(1, 4) for d2
j1,j2

= 3 in subfigure (1), and for d2
j1,j2

= 5 in subfigure
(2)

at least three colors j such that ({dj0, dj1, dj2}, ej) ∈ {({2, 5, 6}, 3), ({3, 3, 7}, 3)} for 1 ≤
j ≤ 4. Without loss of generality, let ({dj0, dj1, dj2}, ej) ∈ {({2, 5, 6}, 3), ({3, 3, 7}, 3)} for
j = 1, 2, 3, and let σ(v0) = σ(v6) = 1. Then σ(v1v2) = σ(v4v5) = σ(v9v10) = 1. By
symmetry, we need only consider d2

1,2 ∈ {1, 2, 4}.
Case 1. d2

1,2 = 1. Then σ(v2v3) = σ(v5v6) = σ(v10v11) = 2 and d2
1,3 ∈ {2, 4, 9, 11, 12}. If

d2
1,3 ∈ {4, 9, 11}, then d2

2,3 /∈ {1, 2, 4, 9, 11, 12}. Hence, d2
1,3 ∈ {2, 12}.

Case 1.1 d2
1,3 = 2. Then σ(v3v4) = σ(v6v7) = σ(v11v12) = 3 and d2

1,4 ∈ {4, 9, 11, 12}. If
d2

1,4 ∈ {4, 9, 11}, then d2
2,4 /∈ {1, 2, 4, 9, 11, 12}. If d2

1,4 = 12, then d2
3,4 /∈ {1, 2, 4, 9, 11, 12}.

So, ({d40, d41, d42}, e4) = ({2, 3, 8}, 4). We have that σ(v7v8) = σ(v8v9) = σ(v12v0) =
σ(v0v1) = 4 (see Figure 8 (1)), a contradiction to the the requirements of total coloring.

Case 1.2 d2
1,3 = 12. Then σ(v0v1) = σ(v3v4) = σ(v8v9) = 3 and d2

1,4 ∈ {2, 4, 9, 11}. If
d2

1,4 ∈ {4, 9, 11}, then d2
2,4 /∈ {1, 2, 4, 9, 11, 12}. If d2

1,4 = 2, then d2
3,4 /∈ {1, 2, 4, 9, 11, 12}.

So, ({d40, d41, d42}, e4) = ({2, 3, 8}, 4). We have that σ(v6v7) = σ(v7v8) = σ(v11v12) =
σ(v12v0) = 4 (see Figure 8 (2)), a contradiction.
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Figure 8. C13(1, 4) for d2
1,2 = 1. d2

1,3 = 2 in subfigure (1) and d2
1,3 = 12 in

subfigure (2)

Case 2. d2
1,2 = 2. Then σ(v3v4) = σ(v6v7) = σ(v11v12) = 2 and d2

1,3 ∈ {1, 4, 9, 11, 12}. If
d2

1,3 ∈ {9, 12}, d2
2,3 /∈ {1, 2, 4, 9, 11, 12}. Hence, d2

1,3 ∈ {1, 4, 11}.
Case 2.1 d2

1,3 = 1. This case is analogous to Case 1.1.
Case 2.2 d2

1,3 = 4. Then σ(v5v6) = σ(v8v9) = σ(v0v1) = 3 and d2
1,4 ∈ {1, 9, 11, 12}. If

d2
1,4 ∈ {9, 12}, then d2

2,4 /∈ {1, 2, 4, 9, 11, 12}. If d2
1,4 ∈ {1, 11}, then d2

3,4 /∈ {1, 2, 4, 9, 11, 12}.
So, ({d40, d41, d42}, e4) = ({2, 3, 8}, 4). We have that σ(v2v3) = σ(v7v8) = σ(v10v11) =
σ(v12v0) = 4. We then have σ(v3), σ(v7), σ(v11), σ(v12) ̸= 4. It follows {d40, d41, d42} =
{4, 4, 5} ̸= {2, 3, 8}(see Figure 9 (1)), a contradiction.

Case 2.3 d2
1,3 = 11. Then σ(v12v0) = σ(v2v3) = σ(v7v8) = 3 and d2

1,4 ∈ {1, 4, 9, 12}. If
d2

1,4 ∈ {9, 12}, then d2
2,4 /∈ {1, 2, 4, 9, 11, 12}. If d2

1,4 ∈ {1, 4}, then d2
3,4 /∈ {1, 2, 4, 9, 11, 12}.

So, ({d40, d41, d42}, e4) = ({2, 3, 8}, 4). We have that σ(v0v1) = σ(v5v6) = σ(v8v9) =
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Figure 9. C13(1, 4) for d2
1,2 = 2. d2

1,3 = 4 in subfigure (1) and d2
1,3 = 11 in

subfigure (2)

σ(v10v11) = 4. We then have σ(v1), σ(v5), σ(v9), σ(v10) ̸= 4. It follows {d40, d41, d42} =
{4, 4, 5} ̸= {2, 3, 8} (see Figure 9 (2)), a contradiction.

Case 3. d2
1,2 = 4. Then d2

1,3 ∈ {1, 2, 9, 11, 12}. If d2
1,3 ∈ {1, 9, 11, 12}, d2

2,3 /∈ {1, 2, 4, 9, 11,
12}. Hence, d2

1,3 = 2, which is analogous to Case 2.2.
From Cases 1-3, the assumption does not hold. Thus, C13(1, 4) does not have a 5-total

coloring, i.e. χ′′(C13(1, 4)) ≥ 6. However, according to reference [8], χ′′(C13(1, 4)) ≤ 6.
So, χ′′(C13(1, 4)) = 6. □

5. Conclusion
In conclusion, we have completely determined the total chromatic numbers of Cn(1, 4)

for all n ≥ 9. By combining Lemmas 2.1, 3.1 and 4.6, we obtain the following theorem.

Theorem 5.1. χ′′(Cn(1, 4)) = 6 for n = 13, and χ′′(Cn(1, 4)) = 5 for all others.

In other words, circulant graphs Cn(1, 4) are Type I for all n ≥ 9 except for 13, which
is Type II. These results contribute to the conjecture that 4-regular circulant graphs are
all Type 1 graphs except for a finite number of Type 2 graphs, proposed by Khennoufa
and Togni [7].
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