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ABSTRACT: Multi-organ segmentation is the process of identifying and separating multiple organs in 

medical images. This segmentation allows for the detection of structural abnormalities by examining the 

morphological structure of organs. Carrying out the process quickly and precisely has become an 

important issue in today's conditions. In recent years, researchers have used various technologies for the 

automatic segmentation of multiple organs. In this study, improvements were made to increase the multi-

organ segmentation performance of the 3D U-Net based fusion model combining HSV and grayscale color 

spaces and compared with state-of-the-art models. Training and testing were performed on the MICCAI 

2015 dataset published at Vanderbilt University, which contains 3D abdominal CT images in NIfTI format. 

The model's performance was evaluated using the Dice similarity coefficient. In the tests, the liver organ 

showed the highest Dice score. Considering the average Dice score of all organs, and comparing it with 

other models, it has been observed that the fusion approach model yields promising results. 
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1. INTRODUCTION 

Segmentation of organs in medical images is of crucial importance for diagnosing diseases, planning 

treatment, and locating target organs for radiotherapy [1]. Automated multi-organ segmentation is 

difficult because of structural complexity and volumetric differences of organs. In recent years, there has 

been a growing interest in using deep learning methods to address these difficulties [2]. These methods 

automatically extract feature vectors, which are used for tasks such as object detection and classification. 

This feature vector extraction is achieved through non-linear layers. By using multiple layers, deep 

learning can learn different features from the data. For example, basic features like edges and patterns are 

learned in the first layers, while more complex features are learned in subsequent layers [3], [4]. Deep 

learning has been successfully applied in various fields, including face recognition [5], voice recognition 

[6], robotic applications [7], and particularly in the biomedical applications [8]. This is due to the increasing 

availability of medical images and the ability of deep learning architectures to provide fast and reliable 

results [9]. 

In this study, a 3D U-Net based fusion model combining different color spaces was used to overcome 

the limitations of traditional methods in multi-organ segmentation and compared with state-of-the-art 

approaches. Roth et al. [10] increased the segmentation success by combining image inputs of different 

resolutions. This success shows that fusion models are an effective strategy, and based on this, the fusion 

model used in this study combines different color spaces. In combining different color spaces, Ghosh et 

al. (2018) was effective. Ghosh et al. [11] also found that combining different color spaces was effective in 

detecting bleeding areas in endoscopy images, with the HSV color space performing the best. This 

highlights the impact of color spaces on model performance. Additionally, using different color spaces 

can improve segmentation accuracy and reliability by highlighting different features in images [12]. One 

of the important aspects of this study is the inclusion of optimizations and fine-tuning to enhance the 

performance of the fusion model. Another crucial part is the integration of different slice selection methods 

to better capture contextual information from the 3D data. This approach aims to augment the data and 
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ultimately improve the accuracy and reliability of the segmentation. 

2. RELATED WORK 

Automatic segmentation of organs in computed tomography images is difficult due to differences in 

shape and size. Improving segmentation accuracy by overcoming these challenges has become an active 

area of research. When deep learning methods were not widespread, traditional and atlas-based methods 

were used in multi-organ segmentation. In these methods, mathematical and techniques methods are used 

to perform the segmentation process. Their differences in organs complicated the segmentation process. 

In recent years, deep learning-based methods that address organ differences more effectively have been 

used and have been observed to yield successful results [13]. 

Trullo et al. [14] proposed two common deep architectures to jointly separate all organs, including 

aorta, heart, esophagus, and trachea, instead of separating them separately. The second deep architecture, 

using the Sharp Mask network, is trained to distinguish each target organ from the background. In this 

study, initial segmentation was found to be useful for the segmentation of target organs. Larsson et al. [15] 

proposed a two-stage convolutional neural network for organ segmentation. In this network, each organ 

is segmented independently. The central voxel of the organ is obtained using the feature-based multiple 

atlas approach, and a prediction mask is placed around it. Subsequently, a 3D convolutional neural 

network (CNN) is applied for voxel-wise classification. This initialization method enables the training of 

regional networks, where the voxel only needs to distinguish between a specific organ and the 

background. 

Roth et al. [16] propose a stepwise approach using a 3D fully convolutional network (FCN) trained on 

CT images. In the first stage, a mask of the patient's internal structure is obtained by applying simple 

thresholding with morphological operations. The FCN architecture is then trained using this mask, 

resulting in a reduction in the number of voxels required to calculate the loss function of the network. 

Additionally, the number of regions in the 3D image input to the convolutional neural network (CNN) is 

reduced by approximately 40%. In the second stage, the FCN architecture is trained with the mask 

obtained from the first stage. This architecture was tested on 150 CT images containing three organs (liver, 

spleen, and pancreas). Roth, Sugino, et al. [10] propose a multi-scale 3D FCN approach for high-resolution 

segmentation. The 3D FCN predictions of low-resolution inputs are combined with high-resolution 3D 

FCN inputs.  

Shen et al. [17] show that the performance of multi-organ segmentation depends on the loss function 

as well as the network architecture. They compared the effects of Dice-based loss functions on CT images 

for multi-organ segmentation. In addition, they examined the impact of three different weighting types 

(uniform, simple, and square) and initial learning rates on segmentation using a 3D FCN. The models 

were evaluated on a random subset of 340 training and 37 test patients. The network produced a predictive 

map with eight classes, including seven organs (liver, stomach, spleen, gallbladder, artery, portal vein, 

and pancreas) and background. 

Kakeya et al. [18] proposed a new deep learning model using transfer learning for automatic multi-

organ segmentation. This model, called 3D U-JAPA-Net, in addition to the raw CT data, also uses a 

probability atlas of organs (PA), which provides information about the positions of the organs. The 3D U-

JAPA-Net model utilizes transfer learning to effectively incorporate PA information. During the model 

training process, a 3D U-JAPA-Net with nine output classes (including eight organs and a background 

class) is trained using data from organs in their bounding boxes. 

Vesal et al. [19] utilized a deep learning architecture to segment organs at risk (OARs) in thoracic CT 

images. The architecture combines a 2D U-Net and Dense Residual (DR) network, consisting of four 

downsampling and upsampling convolution blocks in the encoder and decoder branches. Due to limited 

sample size, a deeper 2D version of the network was used. In each block, two 3x3 convolutions and ReLU 

activation function were applied. 

Mietzner and Mastmeyer [20] have developed an automated method for detecting and segmenting 

abdominal organs in CT scans. It is challenging to detect the pancreatic organ in particular. Using a 
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combination of the random forest regression method and the 2D U-Net architecture, the segmentation 

mask and bounding box of five organs, namely liver, kidneys, spleen, and pancreas were detected. A 

dataset of 50 CT scans was used in this study. Rister et al. [21] trained a deep neural network to perform 

multi-organ segmentation. 140 CT scans were used, including six organs: liver, lung, bladder, kidney, 

bone, and brain. First, the lungs and bones were segmented a 3D Fourier transform, followed by the use 

of a 3D U-Net architecture to segment the remaining organs. Liu et al. [22] aimed to develop a deep 

learning-based method for multi-organ segmentation. Eight organs, namely the large intestine, small 

intestine, duodenum, left kidney, right kidney, liver, spinal cord, and stomach, were labeled by experts in 

CT images. The segmentation process was performed using a 3D U-Net architecture. Fang and Yan [23] 

performed multi-organ segmentation using a multi-scale neural network. The system with pyramid input 

is integrated into the U-Net network to combine features at different scales. Finally, the pyramid outputs 

are combined to achieve improved segmentation. This proposed network is called PIPO-FAN. Zhang et 

al. [24] proposed a full volume-based method, the efficientSegNet network, for multi-organ segmentation. 

This method takes full advantage of the 3D context and aims to reduce computational costs. 

Kaur et al. [25] present a systematic literature review for multi-organ segmentation in the study. 

Previous studies have shown that the most used architectures for abdominal multi-organ segmentation 

are CNN, FCN, and U-Net. Generally, segmentation of large organs such as liver, kidney and spleen has 

been performed. It is not preferred due to the difficulty of segmenting small organs such as duodenum, 

esophagus, pancreas, and gallbladder. More research is needed to segment small organs and improve 

segmentation accuracy in the future. 

3. MATERIAL AND METHODS 

In this study, the Python (3.6) programming language was utilized for automatic multi-organ 

segmentation. The Simple ITK library was used to read and process 3D tomography images, The Numpy 

library was used for numerical operations. The Pytorch library was also utilized for developing deep 

learning models. The fusion model used in this study was executed on NVidia GeForce RTX 2070 with 8 

GB of memory.  

In this section, the dataset used for training the model is discussed. The data preprocessing and data 

augmentation processes performed on this data set are explained. Additionally, details of the fusion model 

used for multi-organ segmentation are given. 

3.1. Dataset 

In this study, the dataset containing abdominal CT images provided by Vanderbilt University Medical 

Center (VUMC) was used. The dataset consists of 30 images. Volume dimensions of CT images are 512 x 

512 x 85 and 512 x 512 x 198, resolution 0.54 x 0.54 mm2 and 0.98 x 0.98 mm2 and slice thickness 2.5 mm 

and 5.0 mm varies between. Trained individuals labeled a total of 13 organs in each CT image, which were 

then validated by a radiologist. Some patients do not have a right kidney or gallbladder. For this reason, 

it was not labeled. The data was recorded in the NIfTI file format [26]. Figure 1 shows each labeled organ. 
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Figure 1. CT images of organs [26] 

 

3.2. Data Preprocessing and Augmentation 

Each CT image in the dataset varies in size from 512x512x85 and 512x512x195. Training with three-
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dimensional data requires expensive hardware resources. Therefore, resizing images can help overcome 

this challenge. Due to GPU limitations, the image sizes in the x and y planes were reduced by 1/4 and the 

number of slices of each image was set to 64. However, to compensate for the information lost during this 

resizing process and to diversify our training set, different slices were selected from the same image. Five 

different methods were used for this slice selection process: 

1. The first 64 slices of each image were selected. 

2. The last 64 slices of each image were selected. 

       3. Each image was divided into two subsets based on the first slice. Subset 1 (0,2,4…,126) and subset 

2 (1,3,5…,127) contain [27]. 

       4.    Each image was divided into two subsets based on the last slice. Subset 1 (69…191,193,195) and 

subset 2 (68…190,192,194) contain. 

5.    A random start slice was determined in the depth of each image, and 64 consecutive slices was 

selected from the start slice. 

As a result, the input image size for the network was set to 128x128x64. Additionally, a random 

rotation between -5 and 5 degrees was applied to the images obtained with the 5th method to increase the 

diversity of the data. As a result of these processes, the number of images to be trained was increased from 

24 to 192. In Table 1, the dimensions of the raw data, the preprocessing steps to equalize the slice sizes, the 

data augmentation process, and the result data are given. 'x' represents the random starting point selected 

from the slices, and 'z' represents the number of slices. 
 

Table 1. Data obtained as a result of preprocessing and data augmentation of raw data 

  Steps Width Height 

Slice 

Number 

Range 

Number of 

Data 

Selected  

Slices 
Rotation 

Raw Data   512 512 85-195 24 - - 

Preprocessing 

Steps 

1 128 128 64 24 (0….64) - 

2 128 128 64 24 (z-63 …z-2, z-1, z) - 

3 

128 128 64 24 

z>125 

(0,2,4…,126) 

z<125 

(x,x+1,x+2…x+63) 

- 

128 128 64 24 

z>126 

(1,3,5…,127)  

z<126 

(x, x+1, x+2…x+63) 

- 

4 
128 128 64 24 (69…191,193,195)  - 

128 128 64 24 (68…190,192,194)  - 

5 128 128 64 24   (x, x+1, x+2…x+63) - 

Data 

Augmentation 
6 128 128 64 24   (x, x+1, x+2…x+63) -5,5 

  

Result Data   128 128 64 192    

 

The model used in this study has two stages. In the first stage, the gray images in the dataset were 

converted to images with HSV (Hue, Saturation, Value) [28] color space with the colormap function in the 

Simple ITK library. With this function, single channel images are normalized between 0 and 1 and a color 

map is used to assign colors to pixels in the image, pixels with a value of 1 are assigned the first color in 

the color map. The result is three-channel images with RGB (Red-Green-Blue) [28] color space. Images 

converted to RGB color space are converted to desired color space (HSV). In Eq. (1), ‘Δ’ represents the 

difference between the maximum (Cmax) and minimum (Cmin) values of the R, G, B components. To 

convert RGB images to the HSV color space, the maximum and minimum values of the R, G and B 

components are found, and the difference between them is calculated. In Eq. (2), 'H' represents the Hue, 
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which is calculated based on difference between color components (Δ) and the maximum component 

(Cmax). In Eq. (3), 'S' represents the Saturation, which is calculated based on the maximum component 

(Cmax). In Eq. (4), 'V' represents the Value or Brightness, which directly corresponds to the value of the 

maximum component. 

 

𝐶𝑚𝑎𝑥 =  𝑚𝑎𝑥 ( 𝑅 , 𝐺 , 𝐵 )                                                                 
𝐶𝑚𝑖𝑛 =  𝑚𝑖𝑛 ( 𝑅 , 𝐺 , 𝐵 )                                                                                                     (1) 
Δ =  𝐶𝑚𝑎𝑥 –  𝐶𝑚𝑖𝑛 

 

𝐻 = 0 , Δ = 0           

H =

{
 
 

 
 60𝑥 (

𝐺− 𝐵 

Δ 
𝑀𝑜𝑑6 )                ,     𝐶𝑚𝑎𝑥 = 𝑅 ′ 

60𝑥 (
𝐵−R

Δ
+ 2)                       ,     𝐶𝑚𝑎𝑥 = 𝐺 ′ 

60𝑥 (
R−G

Δ
+ 4)                       ,     𝐶𝑚𝑎𝑥 = 𝐵′ 

                                                                       (2) 

 

𝑆 =  {
     0                             , 𝐶𝑚𝑎𝑥 = 0 

Δ

𝐶𝑚𝑎𝑥
                         , 𝐶𝑚𝑎𝑥 ≠ 0

                                                                         (3)  

𝑉 = 𝐶𝑚𝑎𝑥                                                                                                                 (4) 
 

3.3. A 3D U-Net based on Early Fusion Model 

 

The model used in this study is based on the two-stage 3D U-Net with early fusion approach using 

different color spaces proposed by Kayhan [12]. The 3D U-Net model with early fusion approach uses 3D 

U-Net with the same layers in both stages. The model uses two different color maps (Grayscale and HSV) 

of CT images. In both stages, the proposed 3D U-Net network is trained with HSV images, and an output 

of 15 channels is obtained by combining the output of the first stage (13 organs and one background) with 

the grayscale image. The image obtained is determined as the input to the 2nd stage. This merging process 

is called early fusion. In this way, it is aimed to make the features of the organs more evident. These 

combined images are again trained with the proposed 3D U-Net architecture, and predictive segmentation 

results are obtained. The general structure of this model is given in Figure 2 [12]. 
 

 
Figure 2. Fusion model [12] 

 

Kayhan [12], proposed a 3D U-Net model consisting of encoder and decoder stages. . In the first step 

of this model, images are fed into the encoder network. At each level, two 3x3x3 convolution operations 

are performed on the input images. Batch Normalization and ReLU activation function are used after each 

convolution operation. Maximum pooling and two-step 2x2x2 convolution are applied to the feature map 

obtained while transitioning from one level to another. The outputs obtained as a result of these processes 

are merged. In the decoding network, upsampling is performed with a two-step 2x2x2 transpose 

convolution until the input image size is obtained. Batch Normalization and ReLU activation function are 
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implemented after each transpose convolution. The feature map at each level in the decoding network and 

the feature map obtained from the corresponding encoder section are combined. Then, two 3x3x3 

convolutions are applied to this combined feature map. In the last layer, because of the 1x1x1 convolution 

operation, a 128x128x48 size feature map with 14 channels is obtained. Three-dimensional multi-organ 

segmentation was performed by applying the softmax activation function to the output feature map. 

In this study, the 3D U-Net model proposed by Kayhan [12] was fine-tuned to improve multi-organ 

segmentation performance. The two-step 2x2x2 convolution layer used for downsampling in the encoder 

network was removed, and a dropout layer was added after each inter-level transition in both the encoder 

and decoder networks. These fine-tuning operations were implemented to prevent overfitting of the 

model. Additionally, the number of slices was increased from 48 to 64 so that this model could learn more 

features from images and better capture context information. Figure 3 shows the 3D U-Net based model 

used in this study, and Table 2 shows the layers of this 3D U-Net model and the filter, input and output 

dimensions used in these layers. 
 

Table 2. 3D U-Net based model layers, input and output values 

Layers 

Input Size 

Output Size    Encoder Layers Input Size Output Size  Decoder 
HSV Image Gray Image 

Convolution 

128x128x64x3 128x128x64x1 128x128x64x32 
3x3x3 conv 

padding 1 

Deconvolution 16x16x8x256 32x32x16x128 

2x2x2 

Transposed 

conv 

128x128x64x32 128x128x64x32 
Concatenate 

Dropout 

32x32x16x128 

32x32x16x128 
32x32x16x256 

 

50% 

Pooling 128x128x64x32 64x64x32x32 

2x2x2  

max 

pooling Convolution 

32x32x16x256 32x32x16x128 
3x3x3 conv 

padding 1 

Dropout 64x64x32x32 64x64x32x32 50% 32x32x16x128 32x32x16x128 

Convolution 

64x64x32x32 64x64x32x64 
3x3x3 conv 

padding 1 

Deconvolution 32x32x16x128 64x64x32x64 

 

2x2x2 

Transposed 

conv 

64x64x32x64 64x64x32x64 
Concatenate 

Dropout 

64x64x32x64 

64x64x32x64 
64x64x32x128 

 

50% 

Pooling 64x64x32x64 32x32x16x64 

2x2x2  

max 

pooling Convolution 

64x64x32x128 64x64x32x64 
3x3x3 conv 

padding 1 

Dropout 32x32x16x64 32x32x16x64 50% 64x64x32x64 64x64x32x64 

Convolution 

32x32x16x64 32x32x16x128 

3x3x3 conv 

padding 1 

Deconvolution 64x64x32x64 128x128x64x32 

2x2x2 

Transposed 

conv 

32x32x16x128 32x32x16x128 
Concatenate 

Dropout 

128x128x64x32 

128x128x64x32 
128x128x64x64 

 

50% 

Pooling 32x32x16x128 16x16x8x128 

2x2x2  

max 

pooling Convolution 

128x128x64x64 128x128x64x32 
3x3x3 conv 

padding 1 

Dropout 16x16x8x128 16x16x8x128 50% 128x128x64x32 128x128x64x32 

Convolution 

16x16x8x128 16x16x8x256 
3x3x3 conv 

padding 1 
Convolution 128x128x64x32 128x128x64x14 1x1x1 conv 

16x16x8x256 16x16x8x256 

 



678  B. KAYHAN, S. A. UYMAZ 

 

 
Figure 3. 3D U-Net based model 

 

3.4. Hyperparameter Optimization 

 

Hyperparameter optimization was carried out to improve the performance of the fusion model used 

in this study. To optimize the fusion model, training was conducted using various parameter sets. The 

data was split into 80% for training and 20% for testing. The dice score was used as the evaluation metric. 

In Table 3, the dice score results of different parameter sets on the test data set are given. When Table 3 is 

examined, batch size two was used in all samples, and the Adam optimization algorithm was used. 

Different learning rate values, dropout rates, activation functions and epoch numbers used with these 

parameters were compared. The dropout layer had a positive effect on the dice score result. The learning 

rate that gives the highest dice score is 1e-3, the activation function is ReLU, the dropout rate is 0.5, and 

the epoch number is 200. As a result of this optimization, the parameter set giving the best result was 

determined.  

 

3.5. Performance Evaluation Metric 

 

The segmentation process performed in this study was evaluated using the Dice similarity coefficient. 

This metric evaluates the level of similarity in two images by measuring the number of matching pixels.  

Dice similarity coefficient formula is given in Eq. (5). The meaning of the symbols used in this equation is 

explained below [29]. 

• Y   : Actual labels 
• Ý   : Predicted labels  

• ӯ𝑖𝑗. : Elements in Ý 

• 𝑦𝑖𝑗 : Elements in Y 

• n : Row elements 

• m: Column elements 

 

𝐷𝐶 = 2|Ý∩𝑌|

     |Ý|+|𝑌|  

2∑ ∑ ӯ𝑖𝑗.𝑦𝑖𝑗
𝑚
𝑗=1  

𝑛

𝑖=1

∑ ∑ ӯ𝑖𝑗+
𝑚
𝑗=1  

𝑛

𝑖=1
∑ ∑ 𝑦𝑖𝑗

𝑚
𝑗=1  

𝑛

𝑖=1

                                                                               (5) 
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Table 3. Test dice results of different parameter sets 
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0.96 0.951 0.948 0.718 0.707 0.964 0.876 0.872 0.809 0.742 0.787 0.591 0.545 0.805 

5e
-3

 

R
eL

U
 0.938 0.94 0.91 0.724 0.698 0.96 0.87 0.876 0.813 0.74 0.745 0.619 0.621 0.804 

5e
-4

 

0.943 0.95 0.946 0.636 0 0.961 0.872 0.879 0.819 0.744 0.741 0.627 0.634 0.75 

 

4. RESULTS  

 

The fusion model used in this study was evaluated on the MICCIA 2015 dataset. Train and test 

performance results of the best parameter set determined because of hyperparameter optimization are 

given in Table 4. In multi-organ segmentation, the training and test dice results are 0.932 and 0.82, 

respectively. The curves of the results obtained during the training and test set are given in Figure 4, and 

the final test set results for each organ are given in Figure 5. 

 

Table 4. Training and test dice results of each organ 

Dice Coefficient 
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Train set 0.962 0.951 0.95 0.935 0.922 0.968 0,945 0,932 0.914 0.881 0.887 0.939 0.931 0.932 

Test set 0.954 0.948 0.949 0.743 0.719 0.96 0.885 0.881 0.80 0.764 0.779 0.641 0.632 0.82 
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Figure 4. Multi-organ segmentation training and test result curves 

 

 
Figure 5. Test dice results of each organ 

 

Figure 6 shows the predicted segmentation mask images and actual mask images of the final test 

results. These images are slices of a CT image. In addition, each organ is numbered. The confusion matrix 

of the fusion model is given in Figure 7. The confusion matrix shows the number of correct and incorrect 

pixels of each organ. Precision recall, f1 score and accuracy results of the fusion model are given in Table 

5. These metrics were calculated for each organ using the pixel counts from the confusion matrix.  
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Figure 6. CT Image, actual mask and prediction mask 

 

 
Figure 7. Confusion matrix for multi-organ segmentation 
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Table 5. Precision, recall, f1-score, accuracy results of each organ 
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Precision 0.966 0.965 0.942 0.78 0.707 0.979 0.849 0.811 0.745 0.712 0.758 0.641 0.631 0.806 

Recall 0.945 0.942 0.965 0.733 0.774 0.939 0.981 0.889 0.814 0.813 0.82 0.65 0.686 0.842 

F1 -Score 0.955 0.953 0.953 0.755 0.738 0.958 0.91 0.848 0.777 0.759 0.787 0.645 0.657 0.823 

Accuracy 0.954 0.948 0.949 0.743 0.719 0.96 0.885 0.881 0.80 0.764 0.779 0.641 0.632 0.82 

 

5. DISCUSSION 

The dataset was initially trained using a single-stage 3D U-Net based model. This model was trained 

separately on both grayscale images and HSV images. Finally, the dataset was trained with a fusion model 

combining different color spaces (HSV and grayscale). In Table 6, the test results of the 3D U-Net with 

HSV, 3D U-Net with Grayscale, and the fusion model are compared. 

 

Table 6. Comparison of 3D U-Net with grayscale, 3D U-Net with HSV, and fusion model 

Dice Coefficient 
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3D U-Net 

with 

Grayscale 

0.92 0.936 0.895 0.587 0.709 0.956 0.857 0.87 0.82 0.735 0.718 0.642 0.588 0.787 

3D U-Net 

with  

HSV 

0.938 0.932 0.927 0.71 0.72 0.956 0.832 0.896 0.817 0.703 0.644 0.583 0.554 0.786 

Fusion 

Model 
0.954 0.948 0.949 0.743 0.719 0.96 0.885 0.881 0.80 0.764 0.779 0.641 0.632 0.82 

 

In Table 7, the fusion model is compared with the results presented in Larsson et al. [15] and with the 

results of the model proposed by Kayhan[12]. The fusion model used in this study is a fine-tuned version 

of the 3D U-Net model proposed by Kayhan. The model results presented in the study of Larsson et al. 

and Kayhan were obtained from the MICCIA 2015 data set used in this study.  The CNN and FCN 

architectures in Table 7 were developed by Larsson et al. [15].  IMI and CLS models are the two models 

that gave the best results in the "Multi-Atlas Abdomen Labeling Challenge" competition. The fusion model 

outperformed other models in terms of segmentation accuracy for all organs except two (inferior vena 

cava and right adrenal gland). The IMI model had the highest correct prediction rate for the inferior vena 

cava, while the FCN model had the highest correct prediction rate for the right adrenal gland. The fusion 

model ranks 2nd in accuracy of the Inferior vena cava and right adrenal gland organs. In addition, the 

fusion model gave the highest segmentation result in the mean of all organs, and it was observed that the 
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fine-tuning made to the 3D U-Net model proposed by Kayhan increased the performance. 

 

Table 7. Comparison of the results of the fusion model with the results of other models 

Dice Coefficient 
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CNN[15] 0.93 0.866 0.911 0.624 0.662 0.946 0.775 0.860 0.776 0.567 0.602 0.631 0.583 0.75 - 

FCN[15] 0.936 0.897 0.911 0.613 0.588 0.949 0.764 0.87 0.72 0.758 0.715 0.646 0.63 0.767 1 

CLS 

(MICCAI  

2015) 

0.911 0.893 0.901 0.375 0.607 0.940 0.704 0.811 0.76 0.649 0.643 0.557 0.582 0.723 - 

IMI 

(MICCAI  

2015) 

0.919 0.901 0.914 0.604 0.692 0.948 0.805 0.857 0.828 0.754 0.74 0.615 0.623 0.790 1 

Kayhan’s 

Model[12]  
0.94 0.934 0.937 0.698 0.703 0.951 0.847 0.873 0.816 0.698 0.774 0.611 0.558 0.796 - 

Fusion 

 Model 
0.954 0.948 0.949 0.743 0.719 0.96 0.885 0.881 0.80 0.764 0.779 0.641 0.632 0.82 11 

 

The fusion model results in Table 8 are compared with the results of the state-of-the-art models (Swin-

Unet [30], TransUNet [31], LeViT-UNet [32], MISSFormer [33], CoTr [34], nnFormer [35], nnU-Net [36], 

UNETR [37], Swin UNETR [38]) on the MICCIA 2015 dataset. When the results are examined, it is seen 

that the fusion model is at a level to compete with state-of-the-art models. 

 

Table 8.  Comparison of the results of fusion model with the results of state-of-the-art models 
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Swin-Unet 0.906 0.796 0.832 0.665 0.942 0.766 0.854 0.565 

TransUNet 0.936 0.77 0.818 0.631 0.94 0.764 0.872 0.558 

LeViT-UNet 0.888 0.802 0.846 0.622 0.931 0.727 0.873 0.59 

MISSFormer 0.919 0.82 0.852 0.686 0.944 0.808 0.869 0.656 

CoTr 0.922 0.864 0.853 0.814 0.968 0.76 0.921 0.802 

nnFormer 0.898 0.87 0.875 0.781 0.954 0.825 0.89 0.819 

nnU-Net 0.923 0.897 0.848 0.806 0.971 0.823 0.928 0.82 

UNETR 0.861 0.797 0.813 0.698 0.942 0.762 0.889 0.589 

Swin UNETR 0.887 0.891 0.852 0.765 0.969 0.797 0.927 0.772 

Fusion Model 0.954 0.948 0.949 0.719 0.96 0.885 0.881 0.779 

 

Multi organ segmentation was performed in this study. However, this study has limitations. The small 

size of the dataset may restrict the model's ability to accurately detect certain organ. Additionally, the 
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fusion model, which combines different color spaces, may increase computational costs. However, this 

approach has provided a unique perspective in the literature by allowing for more comprehensive image 

analysis and improved detection of organ boundaries. This approach could be a roadmap for similar 

applications in the future. 

6. CONCLUSION 

In this study, a model with early fusion approach is used to automatically perform multi-organ 

segmentation on CT images. Experimental studies and fine tuning were carried out to determine the 

model that gives better results. Firstly, a single-stage 3D U-Net model was trained for multi-organ 

segmentation with only Grayscale and only HSV images with the selected parameter set. The performance 

of the 3D U-Net model with grayscale, the 3D U-Net model with HSV, and the fusion model were 

compared.  The 3D U-Net test set accuracy rate with grayscale is 0.787, the 3D U-Net test set accuracy rate 

with HSV is 0.786, and the test set accuracy rate of the fusion model is 0.82. In the fusion model, 

segmentation accuracy of the spleen, right kidney, left kidney, and liver is 90%, stomach, aorta, and 

inferior vena cava segmentation accuracy is 80%, esophagus, gallbladder, portal, and spleen vein, and 

pancreas segmentation accuracy is over 70%. The right and left adrenal glands, which give the lowest 

segmentation result among the organs, are over 60%. The fusion model achieved a high segmentation 

success rate in large-volume organs. It has been observed that the success of segmentation is low in small 

volume organs (right adrenal gland and left adrenal gland). 

When this study is evaluated in general, the segmentation of organs is the first step to examining the 

internal structure of the organs. As a result of segmentation, various diseases can be diagnosed. However, 

the segmentation and classification of organs by radiologists is difficult and time-consuming because the 

shapes of the organs vary. In addition, since it requires knowledge and experience, the rate of making 

mistakes is high. To overcome these difficulties, a fusion model based on 3D U-Net combining different 

color spaces was used for automatic multi-organ segmentation on CT images. In addition, this fusion 

model was compared with state-of-the-art models made in this field. As a result, successful and promising 

results were obtained. 

For future work, increasing the diversity of data used in multi-organ segmentation and incorporating 

attention mechanisms may improve the performance for small-sized organs. Additionally, using 

computers with high hardware capabilities to increase the resolution and number of slices in the images 

may also lead to better segmentation results. 
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