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Abstract

In this study, we introduce the concept of d-bivariate Fibonacci polynomials, which is a generalization of the classical bivariate Fibonacci
polynomials. We obtain several fundamental properties for these new polynomials including the generating function, the Binet’s formula,
some combinatorial identities and summation formulas. Then, we define the infinite d-bivariate Fibonacci polynomials matrix, which is a
Riordan matrix. By Riordan method, we give two new factorizations of the infinite Pascal matrix whose etries are the d-bivariate Fibonacci
polynomials.
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1. Introduction

Many researchers have been interested in number sequences and their polynomials for long years since they have many applications in nature
and various fields. The Fibonacci numbers are one of the most widely recognized number sequences. Fibonacci numbers are defined by the
recurrence relation

Foyy=F+F-1, n21
with initial conditions Fy = 0 and F; = 1. In 1883, Fibonacci polynomials, studied by Catalan, were defined by the recurrence relation
Fo1(x) =xF(x)+Fy_1(x), n>1
with initial conditions Fy(x) = 0 and F; (x) = 1. In [16], Nalli and Haukkanen introduced /(x)-Fibonacci polynomials by
Fpy 1 (%) = h(x)Fy p(x) + F 1 (x), n>1
with initial conditions Fj, o(x) = 0 and F},  (x) = 1. Lee and Asci [15] defined (p,g)-Fibonacci polynomials by
Fpagt1(x) = PO Epgn () + 40 Fp gun1 (x), n > 1

with initial conditions F), 5 0(x) =0and F, 5 1(x) = 1. Letd € ZT = {1,2,...} and p;(x) be a real polynomial for each i = 1,2,...,d + 1.
Sadaoui and Krelifa [18] generalized (p, ¢)-Fibonacci polynomials to d- Fibonacci polynomials, which are defined such that

Fur1(x) = pr(x)Fy(x) + pa(x)F—1(x) + -+ -+ pay1 () Fy—g(x), n > 1

with initial conditions F;,(x) =0 for n <0 and Fj(x) = 1.
Catalani [8] defined the bivariate Fibonacci polynomials as

Fop1 (x,y) :an(x,y) +yFn*1(x7y)7 n>1

with initial conditions Fy(x,y) = 0 and Fj (x,y) = 1, where x # 0,y # 0 and x> 4+ 4y # 0. In [2], Bao and Yang introduced homogeneous
g-Laguerre polynomials and homogeneous little g-Jacobi polynomials. These polynomials can be viewed separately as solutions to two
g-partial differential equations. Ozimamoglu and Kaya [17] defined the Pell-Lucas and the symmetric Pell-Lucas matrices, and studied the
factorizations and eigenvalues of these matrices. In [7], Catalani introduced the generalized bivariate Fibonacci polynomials, and presented
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the summation and inversion formulas for these polynomials. Moreover, Catalani obtained some identities of bivariate Fibonacci and Lucas
polynomials in [8, 9].
In [13], Lawden defined the n x n lower triangular Pascal matrix P = [p,-, j} by

0, ifi<j
pij = i—1 e
(o), ifiz

fori,j=1,2,...,n (see, for example, [4] and [6]). In addition, the infinite Pascal matrix P is given by

1 0 00 0
1 1 0 0 0
1 210 0
P=11 3 3 1 -~ 0 (1.1)
1 4 6 4 1

The Pascal matrices have several applications in probability, numerical analysis, surface reconstruction and combinatorics. In [3], [5] and
[22], the authors investigated the linear algebras of the generalized Pascal functional matrix, the Pascal matrix and the generalized Pascal
matrix, respectively. In [14] and [21], the authors obtained two factorizations of the Pascal matrix involving the Fibonacci matrix.

In [19], Shapiro et al. defined the Riordan group as follows.

Leti,je N={0,1,2,...} and A = [ai,j] be an infinite matrix with entries in C. Let k € N and ¢, (v) = Y72, at"kv’ be the generating
function of the kth column of A. The matrix A = (g(v), f(v)) is called a Riordan matrix, if ¢y (v) = g(v) [f(v)]¥, where g(v) = Y28V and
F) =X, fof with go = fi = 1.

We denote by Z the set of Riordan matrices. It is well-known that Z is a group under matrix multiplication *, and is called Riordan group.
We present the following features related to Riordan group.

(1) ( (v), f(v)) = ( ) =g(v)C(f(v)), where C(v) is a column vector ~ (matrix multiplication * with C(v)),
(i) ((v), f(v))* (h(v),1(v)) = (g(W)h(f(v)),1(f(v)))  (matrix multiplication %),

(iii) i = (1,v), here t(,g is the identity element of 2,

(iv) (), f(») ! (W, f(v)), where f(v) is compositional inverse of f(v)  (inverse element).

Riordan group has many applications. In [19], the three applications of Riordan group are presented by Euler’s problem of the King walks,
binomial and inverse identities and a Bessel-Neumann expansion. Also, Cheon et al. [10] gave a generalization of Lucas polynomial
sequence by using the Riordan array which is derived from weighted Delannoy numbers.

This paper is structured as follows:

In Section 2, we describe the d-bivariate Fibonacci polynomials. These polynomials are a new generalization of the known bivariate
Fibonacci polynomials. We provide a variety of conclusions for the d-bivariate Fibonacci polynomials including the generating function, the
Binet’s formula, some combinatorial identities and summation formulas. We define the matrix Q,(x,y), and show that the power of Q4(x,y)
generates the d-bivariate Fibonacci polynomials. In Section 3, we introduce the infinite d-bivariate Fibonacci polynomials matrix, which is a
Riordan matrix. Then, we derive two factorizations of the infinite Pascal matrix including d-bivariate Fibonacci polynomials.

2. d-Bivariate Fibonacci Polynomials

In this part, we introduce a new generalization of bivariate Fibonacci polynomials.

Definition 2.1. Ler d € Z" and rj(x,y) be a real polynomial for j=1,2,...,d + 1. Then, d-bivariate Fibonacci polynomials F,,(d) (x,y) are
defined by the recurrence relation

D 03) = @) EO @) + () FS () + 4 raa () EG (ey), n =1
with initial conditions Fn<d) (x,y) =0forn <0and Fl(d) (x,y)=1.

We provide a few terms of d-bivariate Fibonacci polynomials in Table 1.

Table 1: Some values of d-bivariate Fibonacci polynomials.

(x,y) +ra(x,y)

(x,¥) +2r1 (x,¥)r2(x,y) + r3(x,y)

(6,3) + 37 (5, 9)r2 (x,3) + 271 (x,9)73(x,) + 13 (x,5) + r4(x,y)

(x,9) 417 (6,9)r2 (x,9) +3rF (x,)r3 (x,3) + 31 (6, 3) 73 (x5, 3) + 201 (6, 3)ra (x,) + 22 (x,9)r3 (x,9) + 75 (x,)

AN B~ WS
~
—Lo—

In Definition 2.1, if we take | (x,y) = x,r2(x,y) =y and ri(x,y) =0 for k =3,4,...,d + 1, so we obtain Fn(d) (x,y) = Fy(x,y). Then d-
bivariate Fibonacci polynomials are a generalization of the known bivariate Fibonacci polynomials. Also, for the special cases of d-bivariate
Fibonacci polynomials F,,(d> (x,y), we obtain the polynomials given in Table 2.

From Definition 2.1, for d-bivariate Fibonacci polynomials, the characteristic equation is given by

w =y = =g (x,y) = 0. @D
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Table 2: Special cases of F,,(d) (x,y) such that ry(x,y) =0fork=3,4,...,d+ 1.

ri(x,y)  r(x,y)  d-bivariate Fibonacci polynomials F,,(d) (x,)

X y Bivariate Fibonacci polynomials F;,(x,y) [7, 8, 9]

X -y Bivariate Vieta-Fibonacci polynomials V,,(x,y) [12]
2xy y Bivariate Pell polynomials P, (x,y) [11]

xy 2y Bivariate Jacobsthal polynomials J, (x,y) [20]

3y —2x Bivariate Mersenne polynomials M, (x,y) [1]

Theorem 2.2. Let n > d. Then we have

W= R @ (@ E ) e () E () ) !
(R F w3+ rast ) F 5 (60) )2 g () FY (x,9), 22)

Proof. To prove the theorem, we use mathematical induction on n. For n = 1, it is clear that the equation (2.2) is true. Suppose that the
equation (2.2) satisfies for n = k. We will show that the equation (2.2) is true for n = k+ 1. Using Definition 2.1 and the characteristic
equation (2.1), we derive

M = by
F ) (e - ragn (69) + (mCen) B 00 + o+ raa o) L (60) )

+ (VR ) i () FD () ) b (6 )L ()

d d d _
<r1 (x7y)Fk(—Zl+1 (5,y) + -4 rap (x,y)Fk(f)M+1 (x,y)) ul + (rZ(xJ)Fk(—ZJH (0, )+ +rge1 (x,y)F£7£d+2(x,y)) ud=1

d d d
et () B () raa (6 )R (9) ) e rat (600 (39),
which completes the proof. O

Theorem 2.3. The generating function of d-bivariate Fibonacci polynomials is given by

@) () — -
g4 w) L—ri(xy)u—ra(x,y)u? = —rgqq (x,y)ud T
Proof. We get
dDw = Y FD oy
i=0
= R+ R @t B eyl o+ B eyl 4 @3

If we multiply (2.3) by r1 (x,y)u, 72 (x,9)u2, ..., ra41(x,y)ud™1, respectively, then we obtain the following equations.

r g @ @) = () D ()it (e y) ED ()i 4 r1 (e ) XY ()i + -
R2e D) = () )i+ ra (e ) F D ()i + r (e, ) FSD (e, y)u -
rann N gD W) = g o) Fa® eyt 4 rg gy () B (e ) ut 2

If the necessary calculations are made, by Definition 2.1 we have

8w (1=ri(ryu—ra(e. ) =+ =g ()™ ) = B () + (B ) = (e )Ry (,3)

and so

u

Tl y)u— () == g () ud

8D (u)

Let the set of the roots of (2.1) be {a (x,y), 0 (x,y), ..., 01 (x,y)}. Namely, we get

u ol Ci(xvy)

l_rl (xvy)u_rz(x7y)u2 - “'_rd+1(x7y)ud+l B l:Z] - al'(x3y)u.
By Theorem 2.3, we find that
= @ o d+l o _
Y FE Yy =Y Cix,y) Y o (xy)ud.
i=0 i=1 j=0

Then, we can obtain the Binet’s formula for Fn(d) (x,) in the following corollary.
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Corollary 2.4. The Binet’s formula for d-bivariate Fibonacci polynomials is given by

(@) d+1
B (xy) =Y Cilx,y)af (x,y).
=

The multinomial coefficients, in particular, allow us to offer the explicit form of the d-bivariate Fibonacci polynomials.

Theorem 2.5. Forn > 0, then we have

d i1 tig+-oFiger i i
A= L (TR ) el ().
TR 1,02y 5ld+1
iy 42 (d+1)ig s | =n

Proof. From Theorem 2.3, we obtain

1
L= ri (e y)u—ra(xy)u? = = rgpq (x,y)udt!

Y E eyl =
i=0

i
= Y (nbey)utralyid 4 rgg eyttt
i=0

i

Liv+in+-tig1=i <ll>’2v o ld+l

Il
™

)ﬁmwwﬁgmw}

i=0
w20t (d+ Dian
- i1+i2+~-~+id+1) i i1 i
= L. . re\x,y)--r X,y u.
;) fl)vaZ;dH ( 1,12, -5 1d+1 ! () d+l( )
L i1 +2ip++(d+1)igy =i
Hence the proof is completed. O
Theorem 2.6. The sum of d-bivariate Fibonacci polynomials is given by
v g 1
FY(x,y) = .
L) = T ) = e
Proof. We get
o .(d d d d
ZF,-( () = Fo( )(x,y)+F1< Yoey) 4+ B )+ (2.4)
i=0
Multiplying (2.4) by ry(x,y),r2(x,¥),-- -, 4+1(x,), respectively, then we have
o ,.(d d d d
M) LR @) = B )+ ) FO )+ ) B )+
i=0
v _ F@ F@ " F@ .
rz(x»)’)z l(xvy) r2(x7y) 0 (x,y)+r2(x7y) 1 (.X7y)+ +}’2(.X7y) n (X7y)+
i=0
o .(d d d d
ran (o) YR y) = (eon) B ) ra () B () 4 ra () B () 4
i=0
If we take the necessary calculations, from Definition 2.1 we can have
o ,.(d d d d
YA () (1= r1(xy) = o) =+ = raa (59)) = B () + (K () = (e )Ry (,9)
i=0
and so
v (@) 1
FY(x,y) = .
L ) = G TG e )
O

Lee and Asci [15] introduced the matrix
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that plays the role of the Fibonacci matrix

o=[i o
Then in [18], Sadaoui and Krelifa defined the matrix
pi(x)  pa(x) Pa+1(%)
1 0 0
Qu(x)=| 0 : 2.5)
0 . O. 1 0

Now we introduce the matrix Q,(x,y) which is a generalization of the Q4 (x) in (2.5) as follows:

rl(x,y) ”2()‘7)’) rd+1(x7y)
1 0 0
Qa(xy)=1| 0 : 2.6)
0 e 0 1 0
This implies instantly that the determinant of Q,(x, y) is the polynomial (—1)¢r41(x,y). We present matrix representation of Fn(d) (x,y) in
the next theorem.
Theorem 2.7. Forn > 1, then we have
d d d d
dﬁ(» mwwd;@>+m+mﬂwwﬂéyuw = mﬂuwdgmn
Oy | AEN RS E b G E e R ()
q d d . "
) mnE )+t ran e )+ rann)EO )
Proof. We will use induction method on # to demonstrate the theorem. Let n = 1. By using Definition 2.1 and (2.6), we have
d d d d
@J’ mxwﬁgmw+m+mﬂmw@ﬁuw - mﬂwwﬁgmw
0ulx,y) = | 1 (xy) @YY@y ot rap ()RS Ey) e e () Fy Y (x,y)
d . d . . d
A 0y) ()R () 4+ +mﬂuw@guw )R (x0)
Assume that the hypothesis is true for n = k. That is,
d d d
FOy)  neFR )+ e R @) e (e ()
d d d d
Gy = | B )RS @)t e By B ()
Q- d ’ d ' Y
F(ey) @B )+t ) F D () o ran () E ()
We will show that it is true for n = k+ 1. So
0 () = Qi(x,y)Qu(x.y)
d d d d
ROy n@R @)+ @R H0y) e e () (k)
d d d d
F ) B @)+t GR O () R ) |
o : ) : »
Ra(ey) B )+ o) E () o rant )R ()
which completes the proof. O

For n,t > 0, we have Q% (x,y) Q% (x,y) = Q5 (x,y). Also, we know that the first entry of matrix Q"' (x,y) is the production of the first row
in Q% (x,y) by the first column of Q% (x,y). So by Theorem 2.7, we can obtain the following corollary.

Corollary 2.8. Let n,k > 0. Then we get

Ea@y) = ES @R ) + @) E ) B () +rs09) (D o) B ) + B ) F (x,)
+ra(03) (F 0 (03) + E e E () + B () EE () )

+...+rd+l(x7y)(Fn(f)dJrl(x,y)F()(7y)+ A ED )F,fffi+1(x,y)>.



Konuralp Journal of Mathematics 83

Theorem 2.9. Forn > 0, then we have

Z (i1+i2+"'+id+1
150255 0g 41

(d

F ) ) A By ) @

@)=}
(d+1)iy+dig+-+ig 1 =n

Proof. We denote the right hand side of (2.7) by S(x,y). From Binet’s formula in Corollary 2.4 and the characteristic equation in (2.1), for
n > 2, we obtain

L . d+1
i+ Figer\ i ids1 n—(iy+iz+-+ig1)
Sy = (M ) i ) it ) | B G ()
i1~iz;d+1 11,025+ 51441 ! 2 arl J; ! J
(d+1)i+dig+tigy  =n
i +i+- gy g ; i atl diy+(d—1)ig+-+i
= Y e . A s () - (e y) | ) Gl )™ T (x,y)
i i 4 ] 1502551441 j=1

(d+1)iy+dig+++ig 1 =n

iW+i+-+ige i - i .
= Ci(xy) Yy ( o ] +){rl(x,y)ocij(x,y)] {rz(x,y)ald 1(x,y)} e [rag ()]
i3 e | 1,02, 5 ld41
(d+1)ij+dig+-+igyj=n
i]+i2+'-'+l'd 1 i _ i .
sty L (TR [ yad o] [t 0] e ol
1302 emigy | 382y bd+

(d+1)ig+dig+-+ig 1 =n
n

= Cixy) [n (ey)od (x,y) +ra(xy)od (e, y) + - 4 g (x,y)}
n
++Capr(x,y) [n ()l (6,y) +ra(x,y) e | (6,y) + -+ 1 (x7y)]

d+1
= Y Ciayal(xy)
j=1

_ ()
= F(d-‘rl)n(x’y)'
O
Theorem 2.10. For n > 0, then we get
(1 k p(d)
k;J (k) [=2r411(x,y)] F(d+1)(n—k) (x,y)
_ it tig+-+iger\ i i i (d)
o ) Z < i1,00, ... ,ig41 )rlll (X7y)rl22 (x,)- - (_rddr‘ (x,y)) Iil*(il+iz+"'+id+l)(x’y)' 23
014300 iy ] 242y ’
(d+1)iy+dig+-+igyj=n
Proof. We denote the right hand side of (2.8) by T'(x,y). Next, considering the proof of Theorem 2.9, we find that
n
T(x,y) = Cl(x7y) |:rl(x7y)a1d(x7y)+'“+rd(x7y)al(x7y)_rd+1(x7y):|
n
o G (009) [P (6) 0 (603) -+ P (6, 3) 01 (59) = P (5,9)]
d+1 . .
= Y i) [ () = 2r (1)
j=1
d+1 n
n\ (d+1)(n—k k
= Y GEnY) (k) 06,( 1078 (e, y) [=2ra11 (x,9)]
j=1 k=0
(1 k p(d)
= 3 (3) 2 L)
O

3. The Infinite d-Bivariate Fibonacci Polynomials Matrix
In this section, we introduce a new infinite matrix called the infinite d-bivariate Fibonacci polynomials matrix. Then, we present two
factorizations of infinite Pascal matrix.

Definition 3.1. The infinite d-bivariate Fibonacci polynomials matrix is defined by

1 0 0
ri(x,y) 1 0
Falxy) = () +r2(x.) ri(x.y) 7

1 (x,y) +2r (x, ) (x,y) +r3(xy) 1 (xy) +ra(x,y)
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where [Z4(x,y)]; 1 = F[<d> (x,y) fori€ Z .

From Definition 3.1, we can write the infinite d-bivariate Fibonacci polynomials matrix as follows:

Fy) 0 0 -]

F2(d)(x7y) Fl(d)(x7y) O
Fay) = |F ) F9xy)

Fy)  F9(xy)

Therefore the matrix .%;(x,y) is a Riordan matrix. As the first column of .%,(x,y) is

(L) R y) +ra(e ). R (y) 420 (e )ra(e0) + ().
by Theorem 2.3, we can derive the following corollary.
Corollary 3.2. The generating function of the first column of the matrix F4(x,y) is

1
= y)u—ra(xy)ud — - — rgp (xy)ud

8F4(xy) (M)

In the matrix .%,(x,y), forn > 1 and j € Z", we have

[gd(xvy)]rH»l,j = rl(xvy) [ﬂd(x7y)]n,j+r2(x7y) [‘gzd(x7y)}n—1,j+'”+rd+l(x7y) [ﬂd(xvy)}n—d,j
by Definition 2.1. So if we take fz, (. ,) (1) = u, for the matrix ., (x,y) we get the following corollary.

Corollary 3.3. The infinite d-bivariate Fibonacci polynomials matrix F4(x,y) is

‘gzd()@y) (gffd(x.y) (u)vfff’-‘"d(x,y) (u))

1
( L—r1 (e, y)u—ra(x,y)u? — -+ = rgqq (x,y)ud+! ’u> '
For i, j € ZT, we define the infinite matrix [;(x,y) such that
d+1 :
i—k—1
TaCen)l, = ¥ —m(x,y)( - )
k=0 J-

where ro(x,y) = —1. Then we get

1 0 0
1—ri(x,y) 1 0 0
Ti(x,y) = 1—r1(x,y) —r2(x,y) 2—ri(x,y) 1 (3.1)
L=ri(x,y) —r(xy) —r3(x,y)  3=2r(x,y) —r2(xy) 3—ri(xy)

Now we provide the first factorization of the infinite Pascal matrix in the next theorem.

Theorem 3.4. Let .F,(x,y) be the infinite d-bivariate Fibonacci polynomials matrix and T 4(x,y) be the infinite matrix as in (3.1), then we

have

P= ﬂd(x

where P is the infinite Pascal matrix as in (1.1).

) *Ta(x,y),

Proof. By the definition of the infinite Pascal matrix, we know that

a

1 u

lfu’lfu)'

The generating function of the first column of the matrix I'y(x,y) is
L (1= ry (e, y))ut (1= (6,y) =2 (e,3))ie? 4 (1= r1 (6,y) =12 (x,y) = r3 (e, )’ -

(tuti? +1+) = (x,y) <u+u2+u3+---> — (%) <u2+u3+u4+~->

8Ty (x,y) (Lt)

g () (ud+1+ud+2+ud+3+m)

L reyu nxy? ras1 (xy)ut!
1—u 1—u 1—u 1—u
1—r (-x7y)u_ r2(-x7y)u2 — o ld+ (xay)ud+1

1—u

3.2)

(3.3)
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On the other hand, the generating function of the second column of the matrix I';(x,y) is

8 (e) W fry ey () = ut 2= () + (3 =2r1(x,3) = ra (3, 3))u” + -
= (ut2l 43+ ) = r () uu+2u% + 303 + —ro (x, y)u? (u+ 20> 430 +---)
— g (o) U+ 2 30+ )

= (1=r(xyu— rz(x,y)u2 —— rdH(x,y)udH)(u—ﬁ—Zuz +3u + - )
1—ry(x,0)u—ra(x,y)u? — -+ = rgqq (x,y)ud ™! u
1—u 1—u)’
and so from the equation (3.3), we have
u
o) @) = T G4

Hence by the equations (3.3) and (3.4), we obtain

Ly (x,y) - (gl"d(x.,y)(u)vfl"d(x,y) (u))

17rl(x',y)u7r2(x7y)u27'“7rd+1(x7y)ud+l u
_ , . 3.5)
1—u 1—u
By Corollary 3.3, (3.2) and (3.5), we can obtain P = .Z;(x,y) x[4(x,y). O
For i, j € ZT, we define the infinite matrix A, (x,y) such that
d+1 i—1
atx)l = 3, () (b))
where ro(x,y) = —1. Then we get
[ 1 0 0 0 ]
1—ri(x,y) 1 0 0
Ad(x7y): ]_Zrl(x7y)_r2(x7))) Z—VI(X,y) 1 . R (36)

1=3r1(x,y) =3n(xy) —r3(xy)  3=3r(xy)—nly) 3-rnxy)

We will present the second factorization of the infinite Pascal matrix in the next corollary.

Corollary 3.5. Let % ,(x,y) be the infinite d-bivariate Fibonacci polynomials matrix and Ay(x,y) be the infinite matrix as in (3.6), then we
have

P:Ad(xay)*ﬁd(xﬂ/)a

where P is the infinite Pascal matrix as in (1.1).

We can simply obtain the inverse of .%,(x,y) in Corollary 3.3 via the definition of the reverse element of the Riordan group in the following
corollary.

Corollary 3.6. The inverse of the infinite d-bivariate Fibonacci polynomials matrix F4(x,y) is
Z ') = (1= @y ra(ryd = =g (o) u)

4. Conclusions

In this work, we generalize the known bivariate Fibonacci polynomials, and call these polynomials as d-bivariate Fibonacci polynomials
F,Ed) (x,¥). We present the generating function, Binet’s formula, combinatorial identities and summation formulas of Fn(d) (xx,y). We introduce

the new matrix Qy(x,y), whose powers generate Fn(d) (x,y). Also, we define the infinite d-bivariate Fibonacci polynomials matrix %4(x,y),
which is a Riordan matrix. In order to factorize the infinite Pascal matrix P, we use the Riordan method, and so find that two factorizations of
P including the matrix .%,(x,y). Finally, we give the Riordan representation for the inverse of the matrix .%4(x,y).
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