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Abstract

In this study, we introduce the concept of d-bivariate Fibonacci polynomials, which is a generalization of the classical bivariate Fibonacci
polynomials. We obtain several fundamental properties for these new polynomials including the generating function, the Binet’s formula,
some combinatorial identities and summation formulas. Then, we define the infinite d-bivariate Fibonacci polynomials matrix, which is a
Riordan matrix. By Riordan method, we give two new factorizations of the infinite Pascal matrix whose etries are the d-bivariate Fibonacci
polynomials.
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1. Introduction

Many researchers have been interested in number sequences and their polynomials for long years since they have many applications in nature
and various fields. The Fibonacci numbers are one of the most widely recognized number sequences. Fibonacci numbers are defined by the
recurrence relation

Fn+1 = Fn +Fn−1, n≥ 1

with initial conditions F0 = 0 and F1 = 1. In 1883, Fibonacci polynomials, studied by Catalan, were defined by the recurrence relation

Fn+1(x) = xFn(x)+Fn−1(x), n≥ 1

with initial conditions F0(x) = 0 and F1(x) = 1. In [16], Nalli and Haukkanen introduced h(x)-Fibonacci polynomials by

Fh,n+1(x) = h(x)Fh,n(x)+Fh,n−1(x), n≥ 1

with initial conditions Fh,0(x) = 0 and Fh,1(x) = 1. Lee and Asci [15] defined (p,q)-Fibonacci polynomials by

Fp,q,n+1(x) = p(x)Fp,q,n(x)+q(x)Fp,q,n−1(x), n≥ 1

with initial conditions Fp,q,0(x) = 0 and Fp,q,1(x) = 1. Let d ∈ Z+ = {1,2, . . .} and pi(x) be a real polynomial for each i = 1,2, . . . ,d +1.
Sadaoui and Krelifa [18] generalized (p,q)-Fibonacci polynomials to d- Fibonacci polynomials, which are defined such that

Fn+1(x) = p1(x)Fn(x)+ p2(x)Fn−1(x)+ · · ·+ pd+1(x)Fn−d(x), n≥ 1

with initial conditions Fn(x) = 0 for n≤ 0 and F1(x) = 1.
Catalani [8] defined the bivariate Fibonacci polynomials as

Fn+1(x,y) = xFn(x,y)+ yFn−1(x,y), n≥ 1

with initial conditions F0(x,y) = 0 and F1(x,y) = 1, where x 6= 0,y 6= 0 and x2 +4y 6= 0. In [2], Bao and Yang introduced homogeneous
q-Laguerre polynomials and homogeneous little q-Jacobi polynomials. These polynomials can be viewed separately as solutions to two
q-partial differential equations. Özimamoğlu and Kaya [17] defined the Pell-Lucas and the symmetric Pell-Lucas matrices, and studied the
factorizations and eigenvalues of these matrices. In [7], Catalani introduced the generalized bivariate Fibonacci polynomials, and presented
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the summation and inversion formulas for these polynomials. Moreover, Catalani obtained some identities of bivariate Fibonacci and Lucas
polynomials in [8, 9].
In [13], Lawden defined the n×n lower triangular Pascal matrix P =

[
pi, j
]

by

pi, j =

{
0, if i < j( i−1

j−1
)
, if i≥ j

for i, j = 1,2, . . . ,n (see, for example, [4] and [6]). In addition, the infinite Pascal matrix P is given by

P =



1 0 0 0 · · · 0
1 1 0 0 · · · 0
1 2 1 0 · · · 0
1 3 3 1 · · · 0
1 4 6 4 1 · · ·

: : : : :
. . .


. (1.1)

The Pascal matrices have several applications in probability, numerical analysis, surface reconstruction and combinatorics. In [3], [5] and
[22], the authors investigated the linear algebras of the generalized Pascal functional matrix, the Pascal matrix and the generalized Pascal
matrix, respectively. In [14] and [21], the authors obtained two factorizations of the Pascal matrix involving the Fibonacci matrix.
In [19], Shapiro et al. defined the Riordan group as follows.
Let i, j ∈ N = {0,1,2, . . .} and A =

[
ai, j
]

be an infinite matrix with entries in C. Let k ∈ N and ck(v) = ∑
∞
t=0 at,kvt be the generating

function of the kth column of A. The matrix A = (g(v), f (v)) is called a Riordan matrix, if ck(v) = g(v) [ f (v)]k, where g(v) = ∑
∞
t=0 gtvt and

f (v) = ∑
∞
t=1 ftvt with g0 = f1 = 1.

We denote by R the set of Riordan matrices. It is well-known that R is a group under matrix multiplication ∗, and is called Riordan group.
We present the following features related to Riordan group.

(i) (g(v), f (v))∗C(v) = g(v)C( f (v)), where C(v) is a column vector (matrix multiplication ∗ with C(v)),
(ii) (g(v), f (v))∗ (h(v), l(v)) = (g(v)h( f (v)), l( f (v))) (matrix multiplication ∗),

(iii) iR = (1,v), where iR is the identity element of R,

(iv) (g(v), f (v))−1 =

(
1

g( f̄ (v))
, f̄ (v)

)
, where f̄ (v) is compositional inverse of f (v) (inverse element).

Riordan group has many applications. In [19], the three applications of Riordan group are presented by Euler’s problem of the King walks,
binomial and inverse identities and a Bessel-Neumann expansion. Also, Cheon et al. [10] gave a generalization of Lucas polynomial
sequence by using the Riordan array which is derived from weighted Delannoy numbers.
This paper is structured as follows:
In Section 2, we describe the d-bivariate Fibonacci polynomials. These polynomials are a new generalization of the known bivariate
Fibonacci polynomials. We provide a variety of conclusions for the d-bivariate Fibonacci polynomials including the generating function, the
Binet’s formula, some combinatorial identities and summation formulas. We define the matrix Qd(x,y), and show that the power of Qd(x,y)
generates the d-bivariate Fibonacci polynomials. In Section 3, we introduce the infinite d-bivariate Fibonacci polynomials matrix, which is a
Riordan matrix. Then, we derive two factorizations of the infinite Pascal matrix including d-bivariate Fibonacci polynomials.

2. d-Bivariate Fibonacci Polynomials

In this part, we introduce a new generalization of bivariate Fibonacci polynomials.

Definition 2.1. Let d ∈ Z+ and r j(x,y) be a real polynomial for j = 1,2, . . . ,d +1. Then, d-bivariate Fibonacci polynomials F(d)
n (x,y) are

defined by the recurrence relation

F (d)
n+1(x,y) = r1(x,y)F (d)

n (x,y)+ r2(x,y)F
(d)

n−1(x,y)+ · · ·+ rd+1(x,y)F
(d)

n−d(x,y), n≥ 1

with initial conditions F(d)
n (x,y) = 0 for n≤ 0 and F(d)

1 (x,y) = 1.

We provide a few terms of d-bivariate Fibonacci polynomials in Table 1.

Table 1: Some values of d-bivariate Fibonacci polynomials.

n F(d)
n (x,y)

2 r1(x,y)
3 r2

1(x,y)+ r2(x,y)
4 r3

1(x,y)+2r1(x,y)r2(x,y)+ r3(x,y)
5 r4

1(x,y)+3r2
1(x,y)r2(x,y)+2r1(x,y)r3(x,y)+ r2

2(x,y)+ r4(x,y)
6 r5

1(x,y)+4r3
1(x,y)r2(x,y)+3r2

1(x,y)r3(x,y)+3r1(x,y)r2
2(x,y)+2r1(x,y)r4(x,y)+2r2(x,y)r3(x,y)+ r5(x,y)

In Definition 2.1, if we take r1(x,y) = x,r2(x,y) = y and rk(x,y) = 0 for k = 3,4, . . . ,d + 1, so we obtain F(d)
n (x,y) = Fn(x,y). Then d-

bivariate Fibonacci polynomials are a generalization of the known bivariate Fibonacci polynomials. Also, for the special cases of d-bivariate
Fibonacci polynomials F(d)

n (x,y), we obtain the polynomials given in Table 2.
From Definition 2.1, for d-bivariate Fibonacci polynomials, the characteristic equation is given by

ud+1− r1(x,y)ud −·· ·− rd+1(x,y) = 0. (2.1)
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Table 2: Special cases of F(d)
n (x,y) such that rk(x,y) = 0 for k = 3,4, . . . ,d +1.

r1(x,y) r2(x,y) d-bivariate Fibonacci polynomials F(d)
n (x,y)

x y Bivariate Fibonacci polynomials Fn(x,y) [7, 8, 9]
x −y Bivariate Vieta-Fibonacci polynomials Vn(x,y) [12]
2xy y Bivariate Pell polynomials Pn(x,y) [11]
xy 2y Bivariate Jacobsthal polynomials Jn(x,y) [20]
3y −2x Bivariate Mersenne polynomials Mn(x,y) [1]

Theorem 2.2. Let n≥ d. Then we have

un = F(d)
n−d+1(x,y)u

d +
(

r2(x,y)F
(d)
n−d(x,y)+ · · ·+ rd+1(x,y)F

(d)
n−2d+1(x,y)

)
ud−1

+
(

r3(x,y)F
(d)
n−d(x,y)+ · · ·+ rd+1(x,y)F

(d)
n−2d+2(x,y)

)
ud−2 + · · ·+ rd+1(x,y)F

(d)
n−d(x,y). (2.2)

Proof. To prove the theorem, we use mathematical induction on n. For n = 1, it is clear that the equation (2.2) is true. Suppose that the
equation (2.2) satisfies for n = k. We will show that the equation (2.2) is true for n = k+ 1. Using Definition 2.1 and the characteristic
equation (2.1), we derive

uk+1 = uku

= F(d)
k−d+1(x,y)

(
r1(x,y)ud + · · ·+ rd+1(x,y)

)
+
(

r2(x,y)F
(d)
k−d(x,y)+ · · ·+ rd+1(x,y)F

(d)
k−2d+1(x,y)

)
ud

+
(

r3(x,y)F
(d)
k−d(x,y)+ · · ·+ rd+1(x,y)F

(d)
k−2d+2(x,y)

)
ud−1 + · · ·+ rd+1(x,y)F

(d)
k−d(x,y)u

=
(

r1(x,y)F
(d)
k−d+1(x,y)+ · · ·+ rd+1(x,y)F

(d)
k−2d+1(x,y)

)
ud +

(
r2(x,y)F

(d)
k−d+1(x,y)+ · · ·+ rd+1(x,y)F

(d)
k−2d+2(x,y)

)
ud−1

+ · · ·+
(

rd(x,y)F
(d)
k−d+1(x,y)+ rd+1(x,y)F

(d)
k−d(x,y)

)
u+ rd+1(x,y)F

(d)
k−d+1(x,y),

which completes the proof.

Theorem 2.3. The generating function of d-bivariate Fibonacci polynomials is given by

g(d)(u) =
u

1− r1(x,y)u− r2(x,y)u2−·· ·− rd+1(x,y)ud+1 .

Proof. We get

g(d)(u) =
∞

∑
i=0

F(d)
i (x,y)ui

= F(d)
0 (x,y)+F(d)

1 (x,y)u+F(d)
2 (x,y)u2 + · · ·+F(d)

n (x,y)un + · · · . (2.3)

If we multiply (2.3) by r1(x,y)u,r2(x,y)u2, . . . ,rd+1(x,y)ud+1, respectively, then we obtain the following equations.

r1(x,y)ug(d)(u) = r1(x,y)F
(d)
0 (x,y)u+ r1(x,y)F

(d)
1 (x,y)u2 + r1(x,y)F

(d)
2 (x,y)u3 + · · ·

r2(x,y)u2g(d)(u) = r2(x,y)F
(d)
0 (x,y)u2 + r2(x,y)F

(d)
1 (x,y)u3 + r2(x,y)F

(d)
2 (x,y)u4 + · · ·

:

rd+1(x,y)u
d+1g(d)(u) = rd+1(x,y)F

(d)
0 (x,y)ud+1 + rd+1(x,y)F

(d)
1 (x,y)ud+2 + · · · .

If the necessary calculations are made, by Definition 2.1 we have

g(d)(u)
(

1− r1(x,y)u− r2(x,y)u2−·· ·− rd+1(x,y)u
d+1
)
= F(d)

0 (x,y)+
(

F(d)
1 (x,y)− r1(x,y)F

(d)
0 (x,y)

)
u

and so

g(d)(u) =
u

1− r1(x,y)u− r2(x,y)u2−·· ·− rd+1(x,y)ud+1 .

Let the set of the roots of (2.1) be {α1(x,y),α2(x,y), . . . ,αd+1(x,y)}. Namely, we get

u
1− r1(x,y)u− r2(x,y)u2−·· ·− rd+1(x,y)ud+1 =

d+1

∑
i=1

Ci(x,y)
1−αi(x,y)u

.

By Theorem 2.3, we find that

∞

∑
i=0

F(d)
i (x,y)ui =

d+1

∑
i=1

Ci(x,y)
∞

∑
j=0

α
j

i (x,y)u
j.

Then, we can obtain the Binet’s formula for F(d)
n (x,y) in the following corollary.
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Corollary 2.4. The Binet’s formula for d-bivariate Fibonacci polynomials is given by

F(d)
n (x,y) =

d+1

∑
j=1

C j(x,y)αn
j (x,y).

The multinomial coefficients, in particular, allow us to offer the explicit form of the d-bivariate Fibonacci polynomials.

Theorem 2.5. For n≥ 0, then we have

F(d)
n+1(x,y) = ∑

i1 ,i2 ,...,id+1
i1+2i2+···+(d+1)id+1=n

(
i1 + i2 + · · ·+ id+1

i1, i2, . . . , id+1

)
ri1
1 (x,y)r

i2
2 (x,y) · · ·r

id+1
d+1(x,y).

Proof. From Theorem 2.3, we obtain

∞

∑
i=0

F(d)
i+1(x,y)u

i =
1

1− r1(x,y)u− r2(x,y)u2−·· ·− rd+1(x,y)ud+1

=
∞

∑
i=0

(
r1(x,y)u+ r2(x,y)u2 + · · ·+ rd+1(x,y)u

d+1
)i

=
∞

∑
i=0

[
∑

i1+i2+···+id+1=i

(
i

i1, i2, . . . , id+1

)
ri1

1 (x,y) · · ·r
id+1
d+1(x,y)

]
ui1+2i2+···+(d+1)id+1

=
∞

∑
i=0

 ∑
i1 ,i2 ,...,id+1

i1+2i2+···+(d+1)id+1=i

(
i1 + i2 + · · ·+ id+1

i1, i2, . . . , id+1

)
ri1

1 (x,y) · · ·r
id+1
d+1(x,y)

ui.

Hence the proof is completed.

Theorem 2.6. The sum of d-bivariate Fibonacci polynomials is given by

∞

∑
i=0

F(d)
i (x,y) =

1
1− r1(x,y)− r2(x,y)−·· ·− rd+1(x,y)

.

Proof. We get

∞

∑
i=0

F(d)
i (x,y) = F(d)

0 (x,y)+F(d)
1 (x,y)+ · · ·+F(d)

n (x,y)+ · · · . (2.4)

Multiplying (2.4) by r1(x,y),r2(x,y), . . . ,rd+1(x,y), respectively, then we have

r1(x,y)
∞

∑
i=0

F(d)
i (x,y) = r1(x,y)F

(d)
0 (x,y)+ r1(x,y)F

(d)
1 (x,y)+ · · ·+ r1(x,y)F

(d)
n (x,y)+ · · ·

r2(x,y)
∞

∑
i=0

Fi(x,y) = r2(x,y)F
(d)
0 (x,y)+ r2(x,y)F

(d)
1 (x,y)+ · · ·+ r2(x,y)F

(d)
n (x,y)+ · · ·

:

rd+1(x,y)
∞

∑
i=0

F(d)
i (x,y) = rd+1(x,y)F

(d)
0 (x,y)+ rd+1(x,y)F

(d)
1 (x,y)+ · · ·+ rd+1(x,y)F

(d)
n (x,y)+ · · · .

If we take the necessary calculations, from Definition 2.1 we can have

∞

∑
i=0

F(d)
i (x,y)(1− r1(x,y)− r2(x,y)−·· ·− rd+1(x,y)) = F(d)

0 (x,y)+
(

F(d)
1 (x,y)− r1(x,y)F

(d)
0 (x,y)

)
and so

∞

∑
i=0

F(d)
i (x,y) =

1
1− r1(x,y)− r2(x,y)−·· ·− rd+1(x,y)

.

Nalli and Haukkanen [16] defined the matrix

Qh(x) =
[

h(x) 1
1 0

]
,

Lee and Asci [15] introduced the matrix

Qp,q(x) =
[

p(x) q(x)
1 0

]
,
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that plays the role of the Fibonacci matrix

Q =

[
1 1
1 0

]
.

Then in [18], Sadaoui and Krelifa defined the matrix

Qd(x) =



p1(x) p2(x) · · · pd+1(x)
1 0 0

0
. . .
. . .

. . .
0 · · · 0 1 0

 . (2.5)

Now we introduce the matrix Qd(x,y) which is a generalization of the Qd(x) in (2.5) as follows:

Qd(x,y) =



r1(x,y) r2(x,y) · · · rd+1(x,y)
1 0 0

0
. . .
. . .

. . .
0 · · · 0 1 0

 . (2.6)

This implies instantly that the determinant of Qd(x,y) is the polynomial (−1)drd+1(x,y). We present matrix representation of F(d)
n (x,y) in

the next theorem.

Theorem 2.7. For n≥ 1, then we have

Qn
d(x,y) =


F(d)

n+1(x,y) r2(x,y)F
(d)
n (x,y)+ · · ·+ rd+1(x,y)F

(d)
n−d+1(x,y) · · · rd+1(x,y)F

(d)
n (x,y)

F(d)
n (x,y) r2(x,y)F

(d)
n−1(x,y)+ · · ·+ rd+1(x,y)F

(d)
n−d(x,y) · · · rd+1(x,y)F

(d)
n−1(x,y)

: : : :
F(d)

n−d+1(x,y) r2(x,y)F
(d)
n−d(x,y)+ · · ·+ rd+1(x,y)F

(d)
n−2d+1(x,y) · · · rd+1(x,y)F

(d)
n−d(x,y)

 .
Proof. We will use induction method on n to demonstrate the theorem. Let n = 1. By using Definition 2.1 and (2.6), we have

Qd(x,y) =


F(d)

2 (x,y) r2(x,y)F
(d)
1 (x,y)+ · · ·+ rd+1(x,y)F

(d)
2−d(x,y) · · · rd+1(x,y)F

(d)
1 (x,y)

F(d)
1 (x,y) r2(x,y)F

(d)
0 (x,y)+ · · ·+ rd+1(x,y)F

(d)
1−d(x,y) · · · rd+1(x,y)F

(d)
0 (x,y)

: : : :
F(d)

2−d(x,y) r2(x,y)F
(d)
1−d(x,y)+ · · ·+ rd+1(x,y)F

(d)
2−2d(x,y) · · · rd+1(x,y)F

(d)
1−d(x,y)

 .
Assume that the hypothesis is true for n = k. That is,

Qk
d(x,y) =


F(d)

k+1(x,y) r2(x,y)F
(d)
k (x,y)+ · · ·+ rd+1(x,y)F

(d)
k−d+1(x,y) · · · rd+1(x,y)F

(d)
k (x,y)

F(d)
k (x,y) r2(x,y)F

(d)
k−1(x,y)+ · · ·+ rd+1(x,y)F

(d)
k−d(x,y) · · · rd+1(x,y)F

(d)
k−1(x,y)

: : : :
F(d)

k−d+1(x,y) r2(x,y)F
(d)
k−d(x,y)+ · · ·+ rd+1(x,y)F

(d)
k−2d+1(x,y) · · · rd+1(x,y)F

(d)
k−d(x,y)

 .
We will show that it is true for n = k+1. So

Qk+1
d (x,y) = Qk

d(x,y)Qd(x,y)

=


F(d)

k+2(x,y) r2(x,y)F
(d)
k+1(x,y)+ · · ·+ rd+1(x,y)F

(d)
k−d+2(x,y) · · · rd+1(x,y)F

(d)
k+1(x,y)

F(d)
k+1(x,y) r2(x,y)F

(d)
k (x,y)+ · · ·+ rd+1(x,y)F

(d)
k−d+1(x,y) · · · rd+1(x,y)F

(d)
k (x,y)

: : : :
F(d)

k−d+2(x,y) r2(x,y)F
(d)
k−d+1(x,y)+ · · ·+ rd+1(x,y)F

(d)
k−2d+2(x,y) · · · rd+1(x,y)F

(d)
k−d+1(x,y)

 ,
which completes the proof.

For n, t ≥ 0, we have Qn
d(x,y)Q

t
d(x,y) = Qn+t

d (x,y). Also, we know that the first entry of matrix Qn+t
d (x,y) is the production of the first row

in Qn
d(x,y) by the first column of Qt

d(x,y). So by Theorem 2.7, we can obtain the following corollary.

Corollary 2.8. Let n,k ≥ 0. Then we get

F(d)
n+k+1(x,y) = F(d)

n+1(x,y)F
(d)
k+1(x,y)+ r2(x,y)F

(d)
n (x,y)F(d)

k (x,y)+ r3(x,y)
(

F(d)
n−1(x,y)F

(d)
k (x,y)+F(d)

n (x,y)F(d)
k−1(x,y)

)
+r4(x,y)

(
F(d)

n−2(x,y)F
(d)
k (x,y)+F(d)

n−1(x,y)F
(d)
k−1(x,y)+F(d)

n (x,y)F(d)
k−2(x,y)

)
+ · · ·+ rd+1(x,y)

(
F(d)

n−d+1(x,y)F
(d)
k (x,y)+ · · ·+F(d)

n (x,y)F(d)
k−d+1(x,y)

)
.
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Theorem 2.9. For n≥ 0, then we have

F(d)
(d+1)n(x,y) = ∑

i1 ,i2 ,...,id+1
(d+1)i1+di2+···+id+1=n

(
i1 + i2 + · · ·+ id+1

i1, i2, . . . , id+1

)
ri1

1 (x,y)r
i2
2 (x,y) · · ·r

id+1
d+1(x,y)F

(d)
n−(i1+i2+···+id+1)

(x,y). (2.7)

Proof. We denote the right hand side of (2.7) by S(x,y). From Binet’s formula in Corollary 2.4 and the characteristic equation in (2.1), for
n≥ 2, we obtain

S(x,y) = ∑
i1 ,i2 ,...,id+1

(d+1)i1+di2+···+id+1=n

(
i1 + i2 + · · ·+ id+1

i1, i2, . . . , id+1

)
ri1

1 (x,y)r
i2
2 (x,y) · · ·r

id+1
d+1(x,y)

[
d+1

∑
j=1

C j(x,y)α
n−(i1+i2+···+id+1)
j (x,y)

]

= ∑
i1 ,i2 ,...,id+1

(d+1)i1+di2+···+id+1=n

(
i1 + i2 + · · ·+ id+1

i1, i2, . . . , id+1

)
ri1

1 (x,y)r
i2
2 (x,y) · · ·r

id+1
d+1(x,y)

[
d+1

∑
j=1

C j(x,y)α
di1+(d−1)i2+···+id
j (x,y)

]

= C1(x,y) ∑
i1 ,i2 ,...,id+1

(d+1)i1+di2+···+id+1=n

(
i1 + i2 + · · ·+ id+1

i1, i2, . . . , id+1

)[
r1(x,y)αd

1 (x,y)
]i1 [

r2(x,y)αd−1
1 (x,y)

]i2
· · · [rd+1(x,y)]

id+1

+ · · ·+Cd+1(x,y) ∑
i1 ,i2 ,...,id+1

(d+1)i1+di2+···+id+1=n

(
i1 + i2 + · · ·+ id+1

i1, i2, . . . , id+1

)[
r1(x,y)αd

d+1(x,y)
]i1 [

r2(x,y)αd−1
d+1 (x,y)

]i2
· · · [rd+1(x,y)]

id+1

= C1(x,y)
[
r1(x,y)αd

1 (x,y)+ r2(x,y)αd−1
1 (x,y)+ · · ·+ rd+1(x,y)

]n

+ · · ·+Cd+1(x,y)
[
r1(x,y)αd

d+1(x,y)+ r2(x,y)αd−1
d+1 (x,y)+ · · ·+ rd+1(x,y)

]n

=
d+1

∑
j=1

C j(x,y)α
(d+1)n
j (x,y)

= F(d)
(d+1)n(x,y).

Theorem 2.10. For n≥ 0, then we get
n

∑
k=0

(
n
k

)
[−2rd+1(x,y)]

k F(d)
(d+1)(n−k)(x,y)

= ∑
i1 ,i2 ,...,id+1

(d+1)i1+di2+···+id+1=n

(
i1 + i2 + · · ·+ id+1

i1, i2, . . . , id+1

)
ri1

1 (x,y)r
i2
2 (x,y) · · ·

(
−rid+1

d+1(x,y)
)

F(d)
n−(i1+i2+···+id+1)

(x,y). (2.8)

Proof. We denote the right hand side of (2.8) by T (x,y). Next, considering the proof of Theorem 2.9, we find that

T (x,y) = C1(x,y)
[
r1(x,y)αd

1 (x,y)+ · · ·+ rd(x,y)α1(x,y)− rd+1(x,y)
]n

+ · · ·+Cd+1(x,y)
[
r1(x,y)αd

d+1(x,y)+ · · ·+ rd(x,y)αd+1(x,y)− rd+1(x,y)
]n

=
d+1

∑
j=1

C j(x,y)
[
α

d+1
j (x,y)−2rd+1(x,y)

]n

=
d+1

∑
j=1

C j(x,y)
n

∑
k=0

(
n
k

)
α
(d+1)(n−k)
j (x,y) [−2rd+1(x,y)]

k

=
n

∑
k=0

(
n
k

)
[−2rd+1(x,y)]

k F(d)
(d+1)(n−k)(x,y).

3. The Infinite d-Bivariate Fibonacci Polynomials Matrix

In this section, we introduce a new infinite matrix called the infinite d-bivariate Fibonacci polynomials matrix. Then, we present two
factorizations of infinite Pascal matrix.

Definition 3.1. The infinite d-bivariate Fibonacci polynomials matrix is defined by

Fd(x,y) =



1 0 0 · · ·
r1(x,y) 1 0 · · ·

r2
1(x,y)+ r2(x,y) r1(x,y)

. . . · · ·

r3
1(x,y)+2r1(x,y)r2(x,y)+ r3(x,y) r2

1(x,y)+ r2(x,y)
. . . · · ·

:
. . .

. . . · · ·


,
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where [Fd(x,y)]i,1 = F(d)
i (x,y) for i ∈ Z+.

From Definition 3.1, we can write the infinite d-bivariate Fibonacci polynomials matrix as follows:

Fd(x,y) =



F(d)
1 (x,y) 0 0 · · ·

F(d)
2 (x,y) F(d)

1 (x,y) 0 · · ·

F(d)
3 (x,y) F(d)

2 (x,y)
. . . · · ·

F(d)
4 (x,y) F(d)

3 (x,y)
. . . · · ·

:
. . .

. . . · · ·


.

Therefore the matrix Fd(x,y) is a Riordan matrix. As the first column of Fd(x,y) is(
1,r1(x,y),r2

1(x,y)+ r2(x,y),r3
1(x,y)+2r1(x,y)r2(x,y)+ r3(x,y), . . .

)T

by Theorem 2.3, we can derive the following corollary.

Corollary 3.2. The generating function of the first column of the matrix Fd(x,y) is

gFd(x,y)(u) =
1

1− r1(x,y)u− r2(x,y)u2−·· ·− rd+1(x,y)ud+1 .

In the matrix Fd(x,y), for n≥ 1 and j ∈ Z+, we have

[Fd(x,y)]n+1, j = r1(x,y) [Fd(x,y)]n, j + r2(x,y) [Fd(x,y)]n−1, j + · · ·+ rd+1(x,y) [Fd(x,y)]n−d, j

by Definition 2.1. So if we take fFd(x,y)(u) = u, for the matrix Fd(x,y) we get the following corollary.

Corollary 3.3. The infinite d-bivariate Fibonacci polynomials matrix Fd(x,y) is

Fd(x,y) =
(

gFd(x,y)(u), fFd(x,y)(u)
)

=

(
1

1− r1(x,y)u− r2(x,y)u2−·· ·− rd+1(x,y)ud+1 ,u
)
.

For i, j ∈ Z+, we define the infinite matrix Γd(x,y) such that

[Γd(x,y)]i, j =
d+1

∑
k=0
−rk(x,y)

(
i− k−1

j−1

)
,

where r0(x,y) =−1. Then we get

Γd(x,y) =



1 0 0 0 · · ·
1− r1(x,y) 1 0 0 · · ·

1− r1(x,y)− r2(x,y) 2− r1(x,y) 1
. . . · · ·

1− r1(x,y)− r2(x,y)− r3(x,y) 3−2r1(x,y)− r2(x,y) 3− r1(x,y)
. . . · · ·

:
. . .

. . . · · ·


. (3.1)

Now we provide the first factorization of the infinite Pascal matrix in the next theorem.

Theorem 3.4. Let Fd(x,y) be the infinite d-bivariate Fibonacci polynomials matrix and Γd(x,y) be the infinite matrix as in (3.1), then we
have

P = Fd(x,y)∗Γd(x,y),

where P is the infinite Pascal matrix as in (1.1).

Proof. By the definition of the infinite Pascal matrix, we know that

P =

(
1

1−u
,

u
1−u

)
. (3.2)

The generating function of the first column of the matrix Γd(x,y) is

gΓd(x,y)(u) = 1+(1− r1(x,y))u+(1− r1(x,y)− r2(x,y))u2 +(1− r1(x,y)− r2(x,y)− r3(x,y))u3 + · · ·

= (1+u+u2 +u3 + · · ·)− r1(x,y)
(

u+u2 +u3 + · · ·
)
− r2(x,y)

(
u2 +u3 +u4 + · · ·

)
−·· ·− rd+1(x,y)

(
ud+1 +ud+2 +ud+3 + · · ·

)
=

1
1−u

− r1(x,y)u
1−u

− r2(x,y)u2

1−u
−·· ·− rd+1(x,y)ud+1

1−u

=
1− r1(x,y)u− r2(x,y)u2−·· ·− rd+1(x,y)ud+1

1−u
. (3.3)
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On the other hand, the generating function of the second column of the matrix Γd(x,y) is

gΓd(x,y)(u) fΓd(x,y)(u) = u+(2− r1(x,y))u2 +(3−2r1(x,y)− r2(x,y))u3 + · · ·

= (u+2u2 +3u3 + · · ·)− r1(x,y)u(u+2u2 +3u3 +−r2(x,y)u2(u+2u2 +3u3 + · · ·)
−·· ·− rd+1(x,y)u

d+1(u+2u2 +3u3 + · · ·)
= (1− r1(x,y)u− r2(x,y)u2−·· ·− rd+1(x,y)u

d+1)(u+2u2 +3u3 + · · ·)

=

(
1− r1(x,y)u− r2(x,y)u2−·· ·− rd+1(x,y)ud+1

1−u

)(
u

1−u

)
,

and so from the equation (3.3), we have

fΓd(x,y)(u) =
u

1−u
. (3.4)

Hence by the equations (3.3) and (3.4), we obtain

Γd(x,y) =
(

gΓd(x,y)(u), fΓd(x,y)(u)
)

=

(
1− r1(x,y)u− r2(x,y)u2−·· ·− rd+1(x,y)ud+1

1−u
,

u
1−u

)
. (3.5)

By Corollary 3.3, (3.2) and (3.5), we can obtain P = Fd(x,y)∗Γd(x,y).

For i, j ∈ Z+, we define the infinite matrix ∆d(x,y) such that

[∆d(x,y)]i, j =
d+1

∑
k=0
−rk(x,y)

(
i−1

j+ k−1

)
,

where r0(x,y) =−1. Then we get

∆d(x,y) =



1 0 0 0 · · ·
1− r1(x,y) 1 0 0 · · ·

1−2r1(x,y)− r2(x,y) 2− r1(x,y) 1
. . . · · ·

1−3r1(x,y)−3r2(x,y)− r3(x,y) 3−3r1(x,y)− r2(x,y) 3− r1(x,y)
. . . · · ·

:
. . .

. . . · · ·


. (3.6)

We will present the second factorization of the infinite Pascal matrix in the next corollary.

Corollary 3.5. Let Fd(x,y) be the infinite d-bivariate Fibonacci polynomials matrix and ∆d(x,y) be the infinite matrix as in (3.6), then we
have

P = ∆d(x,y)∗Fd(x,y),

where P is the infinite Pascal matrix as in (1.1).

We can simply obtain the inverse of Fd(x,y) in Corollary 3.3 via the definition of the reverse element of the Riordan group in the following
corollary.

Corollary 3.6. The inverse of the infinite d-bivariate Fibonacci polynomials matrix Fd(x,y) is

F−1
d (x,y) =

(
1− r1(x,y)u− r2(x,y)u2−·· ·− rd+1(x,y)u

d+1,u
)
.

4. Conclusions

In this work, we generalize the known bivariate Fibonacci polynomials, and call these polynomials as d-bivariate Fibonacci polynomials
F(d)

n (x,y). We present the generating function, Binet’s formula, combinatorial identities and summation formulas of F(d)
n (x,y). We introduce

the new matrix Qd(x,y), whose powers generate F(d)
n (x,y). Also, we define the infinite d-bivariate Fibonacci polynomials matrix Fd(x,y),

which is a Riordan matrix. In order to factorize the infinite Pascal matrix P, we use the Riordan method, and so find that two factorizations of
P including the matrix Fd(x,y). Finally, we give the Riordan representation for the inverse of the matrix Fd(x,y).
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