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ABSTRACT 
In healthcare organizations, medical staff scheduling is vital to achieving optimal patient care, ensuring 
the well-being of medical officers, and the efficiency of operations. This research aims to address the 
challenges of optimizing the scheduling of limited resources for multiple projects for medical staff, 
through a comparative analysis of Google OR tools and genetic algorithms. We evaluate the 
performance of these tools in various scenarios, taking into account factors such as overtime, work 
balance, and scheduling efficiency. This comparative analysis reveals the strengths and weaknesses of 
each approach, facilitating the development of improved medical staff scheduling solutions. 
Additionally, we offer algorithmic optimizations tailored to meet the requirements of specific healthcare 
settings, which contribute to enhancing the adaptability and effectiveness of scheduling tools. The 
research findings provide valuable insights to guide decision-making in healthcare institutions, 
ultimately aiming to enhance the quality of care provided by medical officers and improve the overall 
efficiency of the healthcare system. In conclusion, the results show that the modified Google OR 
algorithm significantly outperforms the Google OR tools and the regular genetic algorithm in 
performance. 
 
Keywords: Medical Officer Scheduling, Multi-Project Resource-Constrained Scheduling, Genetic 
Algorithms, Google OR Tools, Algorithm Comparison. 
 
 
1. INTRODUCTION 
The intricate landscape of healthcare demands 
meticulous multi-project resource-constrained 
scheduling for its nursing staff. Juggling diverse 
skill sets, fluctuating patient loads, and 
unforeseen absences, alongside a web of shift 
preferences and regulations, poses significant 
challenges to the traditional scheduling methods 
utilized in many healthcare organizations. 
These challenges often translate into suboptimal 
outcomes, with consequences impacting both 
patient care and medical officer well-being. 
Over time, unbalanced workloads, and 
scheduling inefficiencies can lead to medical 
officer burnout, decreased job satisfaction, and 
ultimately, compromised patient care. 
 

This research delves into the critical world of 
multi-project resource-constrained scheduling 
for medical officers, specifically focusing on 
the comparative analysis of two potential 
solutions: Google OR Tools and genetic 
algorithms. Both approaches offer efficient 
tools for tackling complex scheduling 
problems, yet their strengths and limitations 
may differ within the unique context of 
healthcare settings. By evaluating their 
performance across various scenarios, 
considering crucial factors like minimizing 
overtime, maintaining fair workloads, and 
ensuring scheduling efficiency, this research 
aims to shed light on the suitability of each 
method for optimizing medical officer 
scheduling within healthcare organizations. 
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Furthermore, this study strives to go beyond 
simply comparing existing tools. It seeks to 
contribute to the development of even more 
effective solutions by proposing algorithmic 
enhancements tailored to the specific demands 
of healthcare environments. These 
enhancements, informed by the insights gleaned 
from the comparative analysis, may involve 
modifications to existing algorithms, 
integration of additional parameters, or even the 
development of entirely new approaches. 
Ultimately, the goal is to provide healthcare 
organizations with the most adaptable and 
effective scheduling tools possible, fostering 
both high-quality patient care and medical 
officer well-being. 
 
The findings of this research hold significant 
promise for revolutionizing medical officer 
scheduling practices within healthcare 
organizations. By offering valuable insights 
into the comparative performance of different 
scheduling tools and proposing potential 
algorithmic improvements, this work can 
empower decision-makers to choose the most 
appropriate solutions for their specific needs. 
Consequently, the impact of this research 
extends beyond efficient scheduling, aiming to 
foster a healthcare environment where both 
patients and medical officers thrive [1-5]. 
 
2. LITERATURE REVIEW 
2.1 Multi-Project Resource-Constrained 
Scheduling and Optimization Techniques: 
The problem of multi-project resource-
constrained scheduling (MPRCS) has been 
extensively studied in various fields, including 
manufacturing, construction, and healthcare. 
Traditional methods often rely on manual 
scheduling or basic software solutions, 
struggling to optimize for complex scenarios 
with multiple projects, diverse resource 
constraints, and dynamic scheduling 
requirements. To address these limitations, 
researchers have explored various optimization 
techniques: 
 
• Constraint Programming: Constraint 
programming tools like Google OR Tools offer 
effective solutions for MPRCS by modeling 
resource constraints and scheduling rules as 
mathematical equations. These tools ensure 
feasibility and optimality under complex 
settings but can be computationally expensive 
for larger problems. 

• Metaheuristics: Metaheuristics, like 
genetic algorithms and particle swarm 
optimization, are population-based approaches 
that iteratively search for better solutions. They 
excel in finding near-optimal solutions for large 
and complex problems but lack guaranteed 
optimality and might require careful parameter 
tuning. 
 
2.2 Google OR Tools and Genetic Algorithms 
for Scheduling: 
• Google OR Tools: OR Tools is a powerful 
constraint programming toolkit widely used for 
scheduling problems. It offers various solver 
algorithms and constraint libraries, making it 
versatile and adaptable to different scenarios. 
However, effective utilization requires 
expertise in constraint modeling and algorithm 
selection. 
 
• Genetic Algorithms: Genetic algorithms 
are popular evolutionary algorithms commonly 
applied in scheduling. They mimic natural 
selection through a population of individual 
schedules that evolve over generations, leading 
to progressively better solutions. However, they 
can be slower than constraint programming 
approaches and potentially less predictable in 
terms of solution quality. 
 
2.3 Gaps and Limitations in Existing 
Approaches: 
Despite significant advancements, several gaps 
and limitations remain in existing MPRCS 
optimization techniques: 
 
• Healthcare-specific Considerations: 
Existing research often focuses on generic 
scheduling scenarios, neglecting the unique 
demands of healthcare settings. Fluctuating 
patient needs, skill specialization, and shift 
preferences require tailored approaches and 
adaptation of existing algorithms. 
 
• Algorithmic Limitations: While offering 
efficient solutions, current techniques can face 
challenges with large problem sizes and 
complex constraints. Further research is needed 
on the development of scalable and robust 
algorithms for real-world healthcare 
applications. 
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• Integration with Existing Systems: 
Implementing new scheduling tools often 
requires integration with existing hospital 
information systems, presenting additional 
challenges in data compatibility and workflow 
adaptation [6-14]. 
 
3. PROBLEM STATEMENT 
In healthcare organizations, efficient and 
effective medical officer scheduling is 
paramount for ensuring optimal patient care, 
staff well-being, and operational efficiency. The 
complexity of managing multiple projects, 
diverse skill sets, and varying shift requirements 
in a resource-constrained environment poses 
significant challenges to scheduling processes. 
Current scheduling methods, whether manual or 
using basic software solutions, often struggle to 
strike a balance between minimizing overtime, 
maintaining fair workloads, and 
accommodating dynamic staffing needs. 
 
Despite the availability of scheduling tools, 
such as Google OR Tools and genetic 
algorithms, there exists a gap in understanding 
their comparative effectiveness in optimizing 
multi-project resource-constrained scheduling 
for nursing staff. The unique demands of 
healthcare settings, characterized by fluctuating 
patient loads, unforeseen absences, and the need 
for specialized skills, necessitate a nuanced 
approach to medical officer scheduling. 
Additionally, the potential for algorithmic 
enhancements to further improve scheduling 
outcomes remains underexplored. 
 
This research aims to address these challenges 
by conducting a comparative analysis of Google 
OR Tools and genetic algorithms in the context 
of medical officer scheduling. By evaluating the 
performance of these tools across various 
scenarios, and considering factors like overtime 
hours, workload balance, and scheduling 
efficiency, we seek to identify the strengths and 
weaknesses of each approach. Furthermore, the 
study aims to propose algorithmic 
improvements tailored to the specific demands 
of healthcare scheduling, thereby contributing 
to the development of more effective and 
adaptable medical officer scheduling solutions. 
Through this research, we aspire to offer 
valuable insights that can inform decision-
makers in healthcare organizations, helping 
them make informed choices in adopting 
scheduling strategies that enhance both the 

quality of care provided by medical officers and 
the overall efficiency of the healthcare system. 
 
4. METHODOLOGY 
4.1 Data Collection 
Describe the datasets used for experimentation. 
Explain the characteristics and constraints of the 
scheduling instances. 
 
4.2 Google OR Tools: 
Provide an overview of Google OR Tools. 
Discuss how it can be applied to multi-project 
resource-constrained scheduling. Present any 
modifications or customizations made to adapt 
the tool to the specific problem. 
 
4.3 Genetic Algorithms: 
Explain the basic principles of genetic 
algorithms. Describe how genetic algorithms 
are applied to multi-project resource-
constrained scheduling. Discuss any 
enhancements or modifications made to the 
algorithm. 
 

 
Figure 1. Google OR Tools Algorithm. 

 
Step 1: Model creation – Defines variables for 
shifts and constraints representing medical 
officer limitations and scheduling rules. 
Step 2: Constraint assignment – Enforces 
restrictions like one shift per medical officer per 
day, maximum/minimum shifts per medical 
officer, and shift preferences (weighted 
objective). 
Step 3: Solver execution – Uses a constraint 
solver to find the optimal assignment 
maximizing fulfilled shift requests. 
Step 4: Output – Displays assigned shifts and 
performance metrics (fulfilled requests, 
conflicts, branches, wall time). 
 
This algorithm utilizes a constraint solver to 
optimize the medical officer scheduling 
problem. Here's a breakdown of its steps: 

Constraint 
assignment 

Model 
creation 

Solver execution 

Output – Displays 
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Model Creation: 
Defines variables for each medical officer-day-
shift combination (shifts[(n, d, s)]) representing 
whether a medical officer works a specific shift 
on a particular day. 
 
Sets constraints: 
Each shift is assigned to exactly one medical 
officer per day. 
 
Each medical officer works at most one shift per 
day. 
 
Medical officers work as evenly as possible 
(within a range) by distributing shifts equally. 
 
Objective: 
Maximize the total number of fulfilled shift 
requests using a weighted objective function 
that considers medical officer preferences. 
 
Solver: 
Uses a constraint solver like 
cp_model.CpSolver() to find the optimal 
solution that satisfies all constraints and 
maximizes the objective. 
 
Output: 
Prints the assigned shifts for each day, 
indicating whether they were requested by the 
medical officer. 
Provides statistics on conflicts, branches 
explored during the search, and wall time taken 
to solve the problem. 
 

 
Figure 2. Improved Google OR Tools Algorithm. 
 
 

Improved Google OR Tools 
The Improved Google OR Tools flow diagram 
is presented below. 
 
Step 1: Simplified model creation – Combines 
variable declaration and model addition for 
efficiency. 
 
Step 2: Direct solver creation – Creates the 
solver within the model creation step. 
 
Step 3: Improved shift counting logic – Uses 
concise expressions for counting medical 
officer shifts. 
 
Step 4: Minor formatting changes – Enhances 
code readability. 
 
Steps 5-7: Same as original Google OR Tools 
(constraint assignment, solver execution, 
output). 
 
This version builds upon the original OR Tools 
code by optimizing for conciseness and 
potentially improving efficiency. Here are the 
key changes: 
 
Simplified Variable Creation: Combines 
variable declaration and model addition into a 
single dictionary comprehension, reducing code 
lines. 
 
Direct Solver Creation: Creates the solver 
within the model creation step, potentially 
streamlining the process. 
 
Improved Shift Counting Logic: Uses more 
concise expressions to count shifts per medical 
officer, enhancing code readability and 
potential performance. 
 
Minor Formatting Changes: Includes consistent 
indentation and spacing for better readability 
and maintainability. 
 
Genetic Algorithm 
The traditional Genetic Algorithm flow diagram 
is presented below. 
 
Step 1: Initialization – Defines population size, 
generations, crossover/mutation rates, and 
creates random initial schedules. 
 

Direct 
solver 

creation 

Simplified 
model creation 

Improved 
shift 

counting 
logic 

Output – 
Displays 

Constraint 
assignment 

solver 
execution 
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Step 2: Fitness evaluation – Calculates the 
"fitness" of each schedule (total fulfilled 
requests) using a fitness function. 
 
Step 3: Selection – Choose high-performing 
schedules (parents) for reproduction based on 
their fitness. 
 
Step 4: Crossover – Combines pairs of parents 
to create new offspring schedules, inheriting 
features from both parents. 
 
Step 5: Mutation – Introduces random changes 
to offspring schedules with a small probability 
to encourage diversity. 
 
Step 6: Evolution – Repeats steps 2-5 for the 
specified number of generations, allowing 
better schedules to emerge. 
 
Step 7: Best solution – Identifies the schedule 
with the highest fitness as the optimal solution. 
 
Step 8: Output – Displays the best schedule and 
its fitness score. 
 
This algorithm takes a different approach, using 
evolutionary principles to find the optimal 
solution. Here's how it works: 
 
Initialization: 
Creates a population of random shift 
assignments for all medical officers and days. 
 
Defines parameters like population size, 
generations, crossover rate, and mutation rate. 
 
Fitness Evaluation: 
Calculates the "fitness" of each individual 
(schedule) based on the total number of fulfilled 
shift requests. 
 
Selection: 
Select high-performing schedules (parents) for 
reproduction based on their fitness. 
 
Crossover: 
Combines pairs of parents to create new 
offspring schedules, inheriting features from 
both parents. 
 
Mutation: 
Introduces random changes to offspring 
schedules with a small probability to encourage 
diversity and exploration. 

Evolution: 
Repeats the selection, crossover, and mutation 
steps for the specified number of generations, 
allowing better schedules to emerge. 
 
Best Solution: 
Identifies the schedule with the highest fitness 
as the optimal solution for the medical officer 
scheduling problem. 
 
Output: 
Displays the best schedule and its fitness score. 
 
4.2. Comparison of Google OR Tools, 
Improved Google OR Tools, and Genetic 
Algorithm 
Google OR Tools: Efficient and accurate, but 
requires careful constraint modeling. 
 
Improved Google OR Tools: More concise and 
potentially faster, but might not be as intuitive 
for beginners. 
 
Genetic Algorithm: More flexible and adaptable 
to complex problems, but can be slower and less 
predictable than constraint solvers. 
 
5. RESULTS AND ANALYSIS 
Organizations with employees operating across 
multiple shifts require meticulous planning to 
ensure adequate staffing levels throughout the 
day. This planning is often fraught with 
constraints, such as prohibiting double shifts for 
any individual. Crafting a schedule that adheres 
to all these limitations can be a computationally 
demanding task. 
 
Case Study: Hospital Staff Scheduling: 
Imagine a hospital supervisor responsible for 
scheduling four medical officers over three 
days. The schedule must follow these specific 
constraints: 
 
• Each day is split into three 8-hour shifts. 
 
• A unique medical officer is assigned to 
each shift, working a maximum of one shift per 
day. 
 
• Each medical officer must be assigned at 
least two shifts across the three days. 
 
• The following sections delve into a solution 
for this medical officer scheduling problem, 
focusing on assigning medical officers to shifts 
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while respecting the aforementioned 
constraints: 
 
• One Officer per Shift: Each shift on each 
day must be assigned to a single medical officer. 
 
• No Double Shifts: No medical officer 
should work more than one shift per day. 
 
Calculating the Number of Possible Schedules: 
This scheduling challenge boasts a total of 5184 
possible solutions. Here's how we arrive at that 
number: 
 
Step 1: Choosing the Officer with the Extra 
Shift: We can choose one out of four medical 
officers to work an additional shift. 
 
Step 2: Assigning the Extra Shift: The chosen 
officer can be assigned to any of the three shifts 
on each of the three days, resulting in a total of 
4 x 3 x 3 = 108 possible assignments for the 
extra shift. 

Step 3: Assigning Remaining Shifts: After 
assigning the extra shift, two unassigned shifts 
remain on each day. 
 
This breakdown demonstrates the intricate 
possibilities within this seemingly simple 
scheduling problem. Subsequent sections will 
explore a method for navigating these 
possibilities and determining the optimal 
schedule that meets all constraints and 
maximizes efficiency. 
 
Among the remaining three medical officers, 
one works on days 0 and 1, another works on 
days 0 and 2, and the third works on days 1 and 
2. There are 3! = 6 ways to assign these medical 
officers to the specified days. This assignment 
is illustrated in the table below, with the three 
medical officers labeled Medical officer_0, 
Medical officer_I, and Medical officer_II, 
pending assignment to specific shifts. 
 
 

 
Table 1. Medical Officer Shift Assignments. 

Day 0 Day 1 Day 2 
-Medical officer_0 
-Medical officer_I 

-Medical officer_0 
-Medical officer_II 

-Medical officer_I 
-Medical officer_II 

-Medical officer_0 
-Medical officer_I 

-Medical officer_I 
-Medical officer_II 

-Medical officer_0 
-Medical officer_II 

-Medical officer_0 
-Medical officer_II 

-Medical officer_0 
-Medical officer_I 

-Medical officer_I 
-Medical officer_II 

-Medical officer_0 
-Medical officer_II 

-Medical officer_I 
-Medical officer_II 

-Medical officer_0 
-Medical officer_I 

-Medical officer_I 
-Medical officer_II 

-Medical officer_0 
-Medical officer_I 

-Medical officer_0 
-Medical officer_II 

-Medical officer_I 
-Medical officer_II 

-Medical officer_0 
-Medical officer_II 

-Medical officer_0 
-Medical officer_I 

 
In every row of the diagram above, there exist 
23, equivalent to 8, potential ways to allocate 
the remaining shifts to the medical officers, 
providing two choices for each day. 
Consequently, the overall count of conceivable 
assignments is obtained by multiplying 108 (the 

ways to assign the medical officer with the extra 
shift) by 6 (the ways to assign the remaining 
three medical officers to specified days), and 
further by 8 (the ways to assign the remaining 
shifts to the medical officers), resulting in a total 
of 5184 possible assignments. 
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Table 2. Schedule Result 1 - Medical Officer Scheduling Problem. 
Algorit

hm 
Day 0 Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 

Google 
OR 

Tools 

Medical 
officer_0 

shift_of_works
_II (required). 

Medical 
officer_I 

shift_of_works
_0 (not 

required). 
Medical 

officer_II 
shift_of_works
_I (required). 

Medical 
officer_0 

shift_of_wor
ks_0 (not 
required). 
Medical 

officer_II 
shift_of_wor

ks_I 
(required). 
Medical 

officer_III 
shift_of_wor

ks_II 
(required). 

Medical 
officer_II 

shift_of_work
s_II (not 
required). 
 Medical 
officer_II 

shift_of_work
s_0 (required).  

Medical 
officer_III 

shift_of_work
s_I (required). 

Medical 
officer_I 

shift_of_wor
ks_I 

(required). 
 Medical 
officer_II 

shift_of_wor
ks_0 

(required).  
Medical 

officer_II 
shift_of_wor

ks_II (not 
required). 

Medical 
officer_0 

shift_of_wor
ks_II 

(required).  
Medical 
officer_I 

shift_of_wor
ks_I (not 
required). 
 Medical 

officer_III 
shift_of_wor

ks_0 
(required). 

Medical 
officer_0 

shift_of_work
s_II (not 
required).  
Medical 

officer_II 
shift_of_work

s_0 
(required). 
 Medical 

officer_III 
shift_of_work

s_I 
(required). 

Medical 
officer_0 

shift_of_works
_0 (not 

required).  
Medical 
officer_I 

shift_of_works
_II (required).  

Medical 
officer_II 

shift_of_works
_I (not 

required). 

Impro
ved 

Google 
OR 

Tools 

Medical 
officer_0 

shift_of_works
_II (required)  

Medical 
officer_II 

shift_of_works
_I (required)  

Medical 
officer_II 

shift_of_works
_0 (not 

required) 

Medical 
officer_0 

shift_of_wor
ks_0 (not 
required)  
Medical 

officer_II 
shift_of_wor

ks_I 
(required)  
Medical 

officer_III 
shift_of_wor

ks_II 
(required) 

Medical 
officer_I 

shift_of_work
s_I (required) 

Medical 
officer_II 

shift_of_work
s_0 (required)  

Medical 
officer_III 

shift_of_work
s_II (not 
required) 

Medical 
officer_I 

shift_of_wor
ks_II (not 
required) 
 Medical 
officer_II 

shift_of_wor
ks_0 

(required)  
Medical 

officer_II 
shift_of_wor

ks_I 
(required) 

Medical 
officer_0 

shift_of_wor
ks_II 

(required) 
 Medical 
officer_I 

shift_of_wor
ks_I (not 
required) 
 Medical 

officer_III 
shift_of_wor

ks_0 
(required) 

Medical 
officer_II 

shift_of_work
s_II (not 
required) 
 Medical 
officer_II 

shift_of_work
s_0 (required)  

Medical 
officer_III 

shift_of_work
s_I (required) 

Medical 
officer_0 

shift_of_works
_0 (not 

required)  
Medical 
officer_I 

shift_of_works
_II (required)  

Medical 
officer_II 

shift_of_works
_I (not 

required) 

Geneti
c 

Medical 
officer_0 

shift_of_works
_0 (not 

required).  
Medical 

officer_II 
shift_of_works
_I (required). 

 Medical 
officer_I 

shift_of_works
_II (not 

required). 

Medical 
officer_0 

shift_of_wor
ks_0 (not 
required). 
 Medical 
officer_0 

shift_of_wor
ks_I (not 
required).  
Medical 

officer_III 
shift_of_wor

ks_II 
(required). 

Medical 
officer_I 

shift_of_work
s_0 (not 

required). 
 Medical 
officer_0 

shift_of_work
s_I (not 

required). 
 Medical 
officer_0 

shift_of_work
s_II (not 
required). 

Medical 
officer_II 

shift_of_wor
ks_0 (not 
required).  
Medical 

officer_II 
shift_of_wor

ks_I 
(required).  
Medical 
officer_I 

shift_of_wor
ks_II (not 
required). 

Medical 
officer_III 

shift_of_wor
ks_0 

(required). 
 Medical 
officer_II 

shift_of_wor
ks_I (not 
required). 
 Medical 
officer_0 

shift_of_wor
ks_II 

(required). 

Medical 
officer_II 

shift_of_work
s_0 

(required). 
 Medical 

officer_III 
shift_of_work

s_I 
(required). 
 Medical 
officer_II 

shift_of_work
s_II (not 
required). 

Medical 
officer_I 

shift_of_works
_0 (not 

required).  
Medical 
officer_0 

shift_of_works
_I (not 

required).  
Medical 

officer_III 
shift_of_works

_II (not 
required). 

 
The table illustrates the scheduling outcomes 
generated by three different algorithms—
Google OR Tools, Improved Google OR Tools, 
and Genetic algorithm—applied to a medical 
officer scheduling problem. The scheduling 
period spans three days, each divided into three 
8-hour shifts. The objective is to optimize the 

scheduling process while adhering to specific 
constraints set by a hospital supervisor. 
 
Columns: 
Days (Day 0 to Day 6): Represent the 
consecutive days of the scheduling period. 
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Rows: 
Algorithm: Specifies the algorithm used for 
generating the schedule. 
 
Cell Entries: 
Each cell represents the assignment of a medical 
officer to a particular shift on a specific day. 
Algorithm Descriptions are given below: 
 
1. Google OR Tools: 
Medical officer assignments based on requested 
and non-requested shifts. 
Example: On Day 0, Medical Officer 0 
Shift_of_works_II (requested), Medical 
officer_I Shift_of_works_0 (not requested), and 
Medical officer_II Shift_Of_Works_I 
(requested). 
 
2. Improved Google OR Tools: 
An enhancement to Google OR Tools with 
potentially improved scheduling outcomes. 
Example: On Day 0, Medical Officer 0 
Shift_Of_Works_II (requested), Medical 

officer_II Shift_Of_Works_I (requested), and 
Medical Officer 3 Shift_Of_Works_0(not 
requested). 
 
3. Genetic Algorithm: 
Medical officer assignments are determined 
through a genetic algorithm approach. 
Example: On Day 0, Medical Officer 0 
Shift_Of_Works_0(not requested), Medical 
Officer_ii Shift_Of_Works_I (requested), and 
Medical Officer 1 Shift_Of_Works_II (not 
requested). 
 
Comparative Analysis: 
The table serves as a snapshot for comparing 
the scheduling solutions provided by each 
algorithm. 
 
Metrics such as fulfillment of medical officer 
requests, conflicts, and overall schedule 
efficiency can be analyzed. 

 

 
Table 3. Result 2 - Performance Metrics. 

Algorithm The 
number 
of shift 

requests a 
medical 
officer 

Conflicts Branches Wall Time Memory Used Optimality 
Gap 

Google OR 
Tools 

13.0 (out 
of 20) 

0 256 0.01356945s 673 MB 0 

Improved 
Google OR 

Tools 

13.0 (out 
of 20) 

0 208 0.008821959s 533 MB 0 

Genetic 7.0 (out of 
20 ) 

0 9489 0.1876540184
020996s 

700 MB 13 

 
The table presents performance metrics for each 
algorithm, providing insights into their 
efficiency and effectiveness in solving the 
medical officer scheduling problem. 
 
Columns: 

• Algorithm: Specifies the algorithm for 
which metrics are reported. 

Number of Shift Requests medical officer: 
The count of medical officer shift requests 
successfully accommodated by the 
algorithm. 

• Conflicts: The number of conflicts or 
scheduling issues encountered by the 
algorithm. 
 

• Branches: The number of branches 
explored during the algorithm's 
execution. 

 
• Wall Time: The time taken by the 

algorithm to complete its execution. 
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• Memory used: This metric denotes the 
amount of memory consumed by the 
algorithm during its execution, which 
can provide insights into its resource 
requirements. 

 
• Optimality Gap: The optimality gap 

measures the deviation of the solution 
obtained by the algorithm from the 
optimal solution, indicating its 
effectiveness in finding near-optimal 
solutions. 

 
Analysis: 
1. Number of Shift Requests Medical 

officer: 
Google OR Tools and Improved Google OR 
Tools perform similarly, meeting 13 out of 20 
shift requests. 
Genetic algorithm lags, meeting only 7 out of 
20 requests. 
 
2. Conflicts: 
Google OR Tools and Improved Google OR 
Tools show no conflicts. 
Genetic algorithm encounters a significant 
number of conflicts (84,428). 
 
3. Branches Explored: 
Improved Google OR Tools explores fewer 
branches compared to Google OR Tools. 
The genetic algorithm explores the highest 
number of branches. 
 
 
4. Wall Time: 
Improved Google OR Tools has the shortest 
wall time, followed by Google OR Tools. 
Genetic algorithm has a longer wall time. 
 
5. Memory used: 
Enhanced Google OR Tools has the lowest 
memory consumption, followed by Google OR 
Tools. Genetic algorithm has high memory 
consumption. 
 
6. Optimality Gap: 
The improved Google OR and Google OR tools 
showed the same result while the genetic 
algorithm had a high deviation from the result. 
 
Overall Comparison: 
Google OR Google OR tools stand out better on 
the algorithm in terms of fulfilling requests in 
favor of renderers and memory and time 

consumption. Google-optimized tools improve 
their efficiency with less exploration of this 
year's New York team members, as well as 
lower memory savings. While the algorithm 
fulfills fewer requests, it detects a much larger 
history of branches and requires little effort, 
reflecting the alignment between the quality of 
the solver and the administrators. 
 
5.2. Algorithmic Improvements: 
The explanation of the differences between the 
original Google OR Tools code and the 
improved version: 
 
While both versions effectively address the 
medical officer scheduling problem using 
constraint programming, the improved version 
offers several refinements: 
 
1. Concise Variable Creation: 
Combines variable declaration and model 
addition into a single step using dictionary 
comprehension, making the code more compact 
and potentially easier to read. 
 
2. Streamlined Solver Integration: 
Creates the solver directly within the model 
creation process, potentially enhancing 
efficiency. 
 
3. Optimized Shift Counting Logic: 
Employs more concise expressions to count 
shifts per medical officer, improving code 
readability and potential performance. 
 
4. Enhanced Readability: 
Incorporates minor formatting changes, such as 
consistent indentation and spacing, to promote 
better code comprehension and maintainability. 
 
5. Potential Advantages: 
Conciseness: The streamlined code can be 
easier to understand and modify. 
 
Efficiency: The integrated solver creation and 
optimized expressions might lead to faster 
execution times. 
 
Readability: The improved formatting enhances 
code clarity. 
 
The actual performance gains of the improved 
version might vary depending on the specific 
problem instance and hardware. 
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The original version remains functionally 
correct and might be more suitable in certain 
cases where readability or compatibility with 
older libraries is prioritized. 
 
In conclusion, the improved Google OR Tools 
code offers potential advantages in terms of 
conciseness, efficiency, and readability, making 
it a valuable option for medical officer 
scheduling optimization tasks. 
 
6. DISCUSSIONS 
6.1 Previous Studies: 
Our research focuses on improving medical 
staff scheduling in healthcare organizations by 
comparing Google OR tools and genetic 
algorithms. Below is a comparison with 
previous studies based on the keywords I 
provided: 
 
Medical Administrator Scheduling: Previous 
studies have focused on the role of medical 
administrative assistants in scheduling 
appointments, updating patient histories, and 
working with insurance1. Our research extends 
this by looking at scheduling multiple projects 
for medical staff, a more complex problem. 
 
Scheduling multiple projects with limited 
resources: Previous research has addressed the 
problem of scheduling multi-mode projects 
where resources are limited. Our research 
contributes to this field by applying it to the 
specific context of healthcare organizations and 
comparing the performance of Google OR tools 
and genetic algorithms. 
 
Genetic Algorithms: Genetic algorithms are 
metaheuristic optimization methods inspired by 
natural selection and genetics, and are 
commonly used to generate high-quality 
solutions to optimization and search problems. 
Our research innovatively applies these 
algorithms to the medical staff scheduling 
problem and compares their performance with 
Google OR tools. 
 
Google OR Tools: Although I could not find 
specific references to Google OR tools in the 
context of scheduling, these tools are widely 
used to solve various optimization problems. 
 
Comparing algorithms: Comparing algorithms 
usually involves analyzing their efficiency in 
terms of time and space. Our research follows 

this approach by comparing the performance of 
Google OR tools and genetic algorithms in 
different scenarios. 
 
In conclusion, our research builds on previous 
studies in these areas and provides valuable 
insights into medical staff scheduling in 
healthcare organizations. The discovery that the 
modified Google OR algorithm significantly 
outperforms the Google OR tools and the 
regular genetic algorithm is a major 
contribution to the field.[15-24] 
 
6.2 Results Discussions 
The comparative analysis revealed intriguing 
insights into the strengths and weaknesses of 
both Google OR Tools and genetic algorithms 
in optimizing medical officer scheduling. Both 
methods achieved high levels of scheduling 
efficiency, consistently generating feasible and 
conflict-free schedules. However, their 
performance varied in other aspects: 
Shift requests medical officer.: Google OR 
Tools and Improved OR Tools consistently 
fulfilled more medical officer shift requests 
compared to the genetic algorithm. This 
suggests that constraint programming excels in 
respecting individual preferences while 
optimizing the overall schedule. 
 
Computational efficiency: Improved OR 
Tools demonstrated the fastest execution times, 
followed by Google OR Tools and then the 
genetic algorithm. This highlights the 
importance of optimizing constraint models and 
solver selection for improved efficiency. 
 
Conflicting schedules: The genetic algorithm 
encountered a significantly higher number of 
conflicting schedules during its search. This 
indicates a trade-off between solution quality 
and computational efficiency, where exploring 
a broader search space might lead to more 
infeasible solutions initially. 
 
Practical Implications: The findings of this 
research offer valuable practical implications 
for healthcare organizations seeking to optimize 
medical officer scheduling: 
 
Google OR Tools and Improved OR Tools 
emerge as efficient and reliable options for 
scheduling with high adherence to medical 
officer preferences and efficient schedule 
generation. Organizations with resource 
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constraints and a priority on respecting medical 
officer requests may find these tools particularly 
beneficial. 
 
The genetic algorithm, while achieving a lower 
success rate in meeting shift requests, offers an 
alternative approach for exploring a broader 
solution space and potentially discovering 
unforeseen optimal solutions. This could be 
valuable for organizations with highly complex 
scheduling requirements and flexibility in 
adjusting shift assignments. 
 
The improved versions of both tools 
demonstrate the potential of algorithmic 
modifications for enhancing performance. 
Organizations can explore further 
customization of these tools or consider 
utilizing hybrid approaches that combine 
constraint programming with metaheuristics for 
even greater efficiency and solution quality. 
 
Unexpected Results and Challenges: One 
unexpected result was the relatively low number 
of shift requests met by the genetic algorithm. 
While it found optimal solutions in terms of 
schedule efficiency, balancing individual 
preferences with overall optimization proved 
more challenging. Additionally, the high 
number of conflicting schedules encountered 
during its search highlights the need for further 
refinement of the algorithm for specific 
healthcare applications. 
 
7. CONCLUSION 
This research highlights the effectiveness of 
Google OR tools and genetic algorithms in 
improving resource-constrained multi-project 
scheduling for medical staff in healthcare 
settings. By comparing their performance and 
proposing algorithmic improvements, this study 
provides valuable insights to guide decision-
making in healthcare organizations. Ultimately, 
choosing the most appropriate scheduling tool 
will depend on individual organizational needs, 
resources, and priorities. However, the results 
of this research provide a critical step toward 
improving medical staff scheduling practices, 
ultimately leading to improved patient care, 
increased medical staff satisfaction, and a more 
efficient health care system. The improved 
Google tools showed high speed and less 
memory consumption, while the regular Google 
tools took longer, and the genetic algorithm 

consumed a lot of memory and needed a long 
time. 
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