
Ç.Ü. Sosyal Bilimler Enstitüsü Dergisi, Cilt 24, Sayı 2, 2015, Sayfa 337-348 

 
 

337 
 

POVERTY RATE AND ITS DETERMINANTS FOR 12 STATISTICAL 

REGIONS OF TURKEY: GENERALIZED MAXIMUM ENTROPY 

APPROACH
*
 

 

Hüseyin GÜLER** 

Fikri AKDENİZ*** 

Hasan Altan ÇABUK**** 

Sibel ÖRK ÖZEL***** 

 

ABSTRACT 

In this study, poverty rate of Turkey on 12 statistical regions (NUTS – 1 level) and 

some determinants of this rate is modeled by a linear regression model. Average 

household size, unemployment rate, high school and university enrollment rates, median 

income and urbanization rate as determinants of poverty rate are used as explanatory 

variables of this model. It is observed that the ordinary least squares (OLS) produce 

unstable estimates since the design matrix X is subject to strong multicollinearity. In 

order to obtain stabilized parameter estimates, two biased estimation methods known in 

the literature, namely Ridge regression and generalized maximum entropy (GME), are 

used. Inequality and sign constraints that are required in the context of economic theory 

are used for the GME estimator. Estimators are compared by their efficiency with the 

estimated mean squared error values obtained by the bootstrap method. 

Keywords: Generalized maximum entropy, Least squares, Ridge regression, 

Multicollinearity, Bootstrap. 

 

ÖZET 

Bu çalışmada Türkiye’nin NUTS – 1 düzeyinde 12 istatistiki bölgesi için yoksulluk 

oranı ve bu oranın belirleyicileri doğrusal regresyon modeli ile analiz edilmiştir. 

Kurulan modelde açıklayıcı değişken olarak yoksulluk oranının belirleyicileri olan 

ortalama hanehalkı büyüklüğü, işsizlik oranı, lise ve üniversite okullaşma oranları, 

medyan gelir ile şehirleşme oranı kullanılmıştır. Tasarım matrisi X’in yüksek dereceden 

çoklu iç ilişkiye sahip olduğu ve bu nedenle en küçük kareler (EKK) tahmin edicinin 

tutarsız sonuçlar verdiği tespit edilmiştir. Tutarlı tahminler elde edebilmek adına 

literatürde yer alan ridge regresyon ve genelleştirilmiş maksimum entropi (GME) yanlı 

tahmin edicileri modele uygulanmıştır. GME tahmin edici için iktisat teorisinin 
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gerektirdiği eşitsizlik ve işaret kısıtları da modele eklenmiştir. Tahmin edicilerin 

etkinliği bootstrap yöntemiyle tahmin edilen ortalama hata kareleri ile karşılaştırılmıştır. 

Anahtar kelimeler: Genelleştirilmiş maksimum entropi, En küçük kareler, Ridge 

regresyon, Çoklu iç ilişki, Bootstrap 

 

1. Introduction 

 

Parameters of a linear regression model can be estimated with the ordinary 

least squares (OLS) method. However, assumptions of OLS might be violated in real-

world datasets. Deviations from assumptions might arise from sample that is being 

used. Datasets might be influenced by some errors during sample selection or 

composing data. In this cases, various problems occur. 

One of these problems is the multicollinearity of the dataset. This problem is 

described as being ill-posed because of non-stationarity or since the number of 

parameters to be estimated exceeds to number of data points. Alternatively, it is 

described as being ill-conditioned when the parameter estimates are highly unstable. 

The least squares estimators are not biased but their variances and covariances 

might be inflated in the presence of multicollinearity. In this case, the existence of 

multicollinearity may result in wider confidence intervals for parameters, may lead 

estimates with unexpected signs and may affect decisions in hypothesis tests. 

Several solutions are proposed in the literature to overcome the 

multicollinearity problem. One of the solutions is to use biased (but stable) estimators 

such as the ridge regression estimator proposed by Hoerl and Kennard (1970). They 

show that the ridge regression estimator is superior to OLS in terms of mean square 

error (MSE) for a suitably chosen biasing parameter. There is a vast amount of literature 

about ridge regression estimator following Hoerl and Kennard’s (1970) paper like 

Sarkar (1992), Akdeniz and Kaçıranlar (1995), Liu (1993), Kibria (2003) and Liu 

(2003) to name a few. 

A more recent solution to the multicollinearity problem is the generalized 

maximum entropy (GME) estimator proposed by Golan et. al. (1996). In this paper, we 

examine the GME estimator and compare it with ridge regression and OLS in the sense 

of mean square error (MSE) criteria on a real dataset. In order to do this, we estimate 

the parameters of a linear regression model about poverty rate and its determinants in 12 

statistical regions of Turkey and we calculate MSE values with the bootstrap method. 

The remainder of the paper is organized as follows: Section 2 reviews GME 

estimation in the linear regression model. In section 3, we consider the poverty dataset 

for 12 statistical regions of Turkey and estimate the parameters of the regression model 

with OLS, ridge regression and GME. We also compare these estimators according to 

the MSE values obtained with bootstrap replications. Section 4 concludes the paper. 

 

2. Generalized Maximum Entropy Estimator 

 

GME estimator is proposed by Golan, Judge and Miller (1996). The maximum 

entropy (ME) estimator is based on Shannon’s (1948) information entropy concept and 

Jaynes’ (1957) maximum entropy principle. ME has been used for the solution of pure 
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inverse problems under the cover of information concept. The ME principle suggests 

that the probability distribution which best represents the current state of knowledge is 

the one that has the maximum entropy. According to ME, the model with the maximum 

entropy gives the proper distribution for the problem being investigated. ME is used 

only for pure inverse problems while GME is used for both pure inverse problems and 

ill-posed inverse problems. 

To explain how GME works, consider the general linear model (GLM) 

         (1) 

where   is a     vector of sample observations on the dependent variable,   is a 

    design matrix,   is a     vector of unknown parameters and   is a     

vector of unknown errors. Golan, Judge and Miller (1996) redefines unknown 

parameters and unknown errors for GME estimation by using compact supports. Each 

regression coefficient    is reparametrized as a discrete random variable with a compact 

support interval consisting of       possible outcomes (Golan et. al., 1996, p. 

86). Thus, we can express each    as a convex combination      
   , where    

           are called support vectors (hypothesized values for the parameters) and 

              are corresponding unknown probabilities. These convex 

combinations may be written in the matrix form as 
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Similarly, each error term can be written as a convex combination 

hypothesized values and corresponding unknown probabilities. Let   a      matrix of 

unknown support values for  , and   a vector of probability weights      such that 

   , where   (     ) is the number of support values of errors. There exist sets 

of error bounds     and     for each    so that                may be made 

arbitrarily small (Golan et. al., 1996, p. 87). Then each error term    can be written as 

     
   , where               and              . These convex 

combinations may be written in the matrix form as 

      

 
 
 
 
 
 
  

       

   
      

       
     

    

      
        

  
 
 
 
 
 

    
 
 
 
 
 
 
  

  

 
  

 
   

 
 
 
 
 

    

. (3) 

Golan, Judge and Miller (1996) recommend using the three-sigma rule of Pukelsheim 

(1994) to establish bounds on the error components. 

Using the reparameterized unknowns      and      given in (2) and 

(3), Judge and Golan (1992) rewrite the GLM in (1) as 

              . (4) 
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The objective of GME is to predict the unknown parameters of (3) using the sets of 

probabilities   and  . Accordingly, Golan et. al. (1996) expresses GME solution to the 

linear inverse problem with noise that selects       as follows: 

 

                      
 
   

 
              

 
   

 
    (5a) 

 subject to: 

               (5b) 

     
 
                      (5c) 

     
 
                     . (5d) 

GME parameter and error estimates are obtained by defining and solving a Lagrangian 

function for (5a) – (5d) and they are given by 

        (6) 

and 

        (7) 

where 

      
               

 
    

  
 
    

, (8) 

      
            

     
, (9) 

   
 
                     

 
     

   , (10) 

and 

                    
 
   . (11) 

The GME solution to (5a) – (5d) requires solving a non-linear programming system. 

Golan et. al. (1996) give more details about the estimation procedure. Since this is an 

iterated procedure, the standard errors of the GME estimates can be estimated with the 

bootstrap procedure as pointed out by Akdeniz et. al (2011). 

 

3. Comparing Estimators on Poverty Rate and Its Determinants for 12 Statistical 

Regions of Turkey 

 

In this section, we analyze the poverty rate and its determinants for 12 

statistical regions of Turkey in the first level (NUTS-1). We estimate the parameters of 

the linear regression model for poverty dataset using OLS, ridge, and GME estimators 

and compare aforementioned estimators according to MSE values obtained with 

bootstrap. Calculations and comparisons are done with GAUSS 10 codes. 

The statistical regions of Turkey in the first level are given in Table 1. We use 

the model of Campbell and Hill (2001) and Ramanathan (2002) and extend it with the 

suggestion of Vazquez et. al. (2009). We consider the following linear regression 

model: 

                                          . (12) 

where the dependent variable is the poverty rate ( ) and explanatory variables are 

average household size (  ), unemployment rate (  ), high school enrollment rate (  ), 

university enrollment rate (  ), median income (  ), urbanization rate (  ), and squared 
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urbanization rate (  ). Vazquez et. al. (2009) have pointed out a U-shape relationship 

between the level of urbanization and poverty. According to this, poverty decreases 

when urbanization level increases at the beginning but after a certain point, poverty 

increases when urbanization level decreases. For this reason, we add squared 

urbanization rate to the model. In addition to this, Campbell and Hill (2001) points out 

that poverty rate increases when average household size and unemployment rate 

increase. Moreover, it is expected that high school enrollment rate, university 

enrollment rate and median income have a negative impact on poverty rate. We also 

expect that urbanization rate has a negative effect and squared urbanization rate has a 

positive effect on poverty rate according to the U-shape relationship between 

urbanization and poverty given by Vazquez et. al. (2009). Therefore, the prior 

information about parameter signs are            and              . In addition 

to sign restrictions, it is also possible to add a magnitude restriction to the model 

following Campbell and Hill (2001). According to Campbell and Hill (2001), it is 

expected that the effect of the university enrollment rate to poverty rate is smaller than 

the effect of the high school enrollment rate. Therefore, we expect that        . 

 

Table.1 Statistical Regions of Turkey (NUTS-1 Level) 

Code  Region 

TR1 Istanbul 

TR2 West Marmara 

TR3 Aegean 

TR4 East Marmara 

TR5 West Anatolia 

TR6 Mediterranean 

TR7 Central Anatolia 

TR8 West Black Sea 

TR9 East Black Sea 

TRA Northeast Anatolia 

TRB Central East Anatolia 

TRC Southeast Anatolia 

 

The dataset is obtained from Turkish Statistical Institute and it covers the year 

2011. Descriptive statistics and the correlation matrix of the explanatory variables are 

given in Tables 2, and 3, respectively. As can be seen form Table 3, the sample 

correlation coefficients are quite high and many of them are above 80%. We also note 

that correlations are generally significant at 5% or 1% significant level. Therefore, it is 

possible to argue that the linear regression model in (12) might be affected by 

multicollinearity. 

OLS estimates, their standard errors and  -statistics along with some model 

statistics are given in Table 4. It is seen that the model has a high    statistic while the 

  and most of the  -statistics are insignificant. In addition to this, signs of     and     are 
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in contrast to the prior information and the magnitude restriction is not satisfied for     

and    . These results indicate that the model is under the influence of multicollinearity. 

Another diagnostic of multicollinearity is the condition number suggested by Belsley et. 

al. (1980) and it is defined as              where      and      are the largest and 

smallest eigenvalues of    . For the model in (12), the condition number           

indicates that model suffers from multicollinearity and OLS estimates are affected 

badly. 

 

 

Table.2 Means and Standard Deviations of Poverty and Its Determinants 

Variable Mean Standard Deviation 

  12.578 1.732 

   4.033 0.876 

   9.267 1.996 

   17.405 2.609 

   10.221 2.462 

   8.333 1.670 

   71.028 13.968 

   5223.867 2124.395 

 

Table.3 Correlations Between Explanatory Variables 

Variables                      

   1 0,453 -0,661* -0,578 * -0,626* -0,376 -0,362 

   0,453 1 0,157 0,100 0,135 0,464 0,453 

   -0,661* 0,157 1 0,873** 0,858** 0,812** 0,816** 

   -0,578** 0,100 0,873** 1 0,841** 0,805** 0,809** 

   -0,626* 0,135 0,858** 0,841** 1 0,835** 0,858** 

   -0,376 0,464 0,812** 0,805** 0,835** 1 0,996** 

   -0,362 0,453 0,816** 0,809** 0,858** 0,996** 1 

*:           , **:            

 

Table.4 OLS Estimates 

Variable    Standard Error   

Constant 47.731 40.035 1.192 

   -0.637 1.799 -0.354 

   0.258 0.459 0.563 

   -1.262 0.416 -3.032 

   0.905 0.350 2.584 

   -0.706 1.107 -0.637 

   -0.507 0.744 -0.682 
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   0.004 0.005 0.718 

                                        

 

In order to overcome the multicollinearity problem, we apply the ridge 

regression estimator defined by Hoerl and Kennard (1970): 

                     (13) 

where     is the biasing parameter. Various methods are proposed in the literature for 

the optimum choice of  . We use two different suggestions given in the literature. One 

of them is proposed by Hoerl et. al. (1975) and it is given as 

       
    

     
 (14) 

where   is the number of parameters,     and    are the least square estimates of error 

variance and model parameters, respectively. Hoerl et. al. (1975) show that ridge 

regression estimator is superior to OLS in the sense of MSE for the   value given in 

(14). Alternatively, we also use the   value suggested by Lawless and Wang (1976) 

which is given by 

      
    

      
  

   

 (15) 

where            are the eigenvalues of     and     (       ) are the least 

squares estimates of the canonical model parameters. 

Ridge estimates for       and      are given in Table 5. It is seen that the signs 

of ridge estimates are in contrast to the prior information except for     and    . We also 

observe that magnitude restriction (       ) is not satisfied ridge estimates. Since there 

is no sign restriction on the ridge estimator it is not assured that all estimates have the 

expected signs. However, these results show that the ridge estimator is not as suitable as 

it is expected to solve the multicollinearity problem for this dataset. 

 

Table.5 Ridge Estimates 

Variable                    

Constant 7.253 6.281 

   1.083 1.124 

   -0.104 -0.113 

   -0.979 -0.972 

   0.727 0.722 

   0.317 0.341 

   0.235 0.253 

   -0.001 -0.002 

 

The second estimator we use to overcome the multicollinearity problem is 

GME. Two different GME estimates are calculated in this paper: In the first one, GME 

is applied without any restrictions (unrestricted GME) and in the second we use sign 

and inequality restrictions on parameters according to prior information (restricted 

GME). 



Ç.Ü. Sosyal Bilimler Enstitüsü Dergisi, Cilt 24, Sayı 2, 2015, Sayfa 337-348 

 
 

344 
 

Parameter and error supports for the unrestricted GME are obtained from OLS 

estimates. The lower and upper bounds of parameter supports are determined with 

              where     is the OLS estimate of    and         is the standard error 

of the estimate. In this method, prior means of parameter supports are equal to OLS 

estimates of related parameters. Table 6 gives parameter supports for unrestricted GME. 

For restricted GME, we consider the sign restrictions            and 

              by assigning nonnegative and nonpositive supports, respectively. In 

order to account the magnitude restriction        , we consider the following 

reparametrization 

  
  

  
     

  

  
   

  
  

  
   

   
  

  
  (16) 

where    is a submatrix of support points for    and   , and    and    represent the 

unknown probabilities. Since the elements of   
  and   

  are nonpositive and    and    

are probabilities, it is easy to verify that      
      

         
     . 

Parameter supports for restricted GME is given in Table 7. 

The error support for GME estimates are determined by following Golan et. al. 

(1996) and Pukelsheim (1994) and the lower and upper bounds of error supports are 

determined with      .  

 

Table.6 Parameter Supports for Unrestricted GME 

Variable Parameter Support 

Prior 

Mean 

Constant                                          47.731 

                                      -0.637 

                                     0.258 

                                       -1.262 

                                    0.905 

                                      -0.706 

                                      -0.507 

                                     0.004 

 

Table.7 Parameter Supports for Restricted GME 

Variable Parameter Support 

Prior 

Mean 

Constant                   0 

                    5 

                   1 

                       -1 
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                   -2 

                       -1 

                   1 

 

Table 8 gives unrestricted and restricted GME parameter estimates with the 

95% confidence intervals for supports given in Tables 6 and 7, respectively. Confidence 

intervals are obtained with the bootstrap method proposed by Efron (1979). Campbell 

and Hill (2001) and Çabuk and Akdeniz (2007) suggest bootstrap to obtain confidence 

intervals for GME and Akdeniz et. al. (2011) suggest this method to obtain MSE values 

for GME. The details of the bootstrap replications are as follows: Let    be an estimate 

of the coefficient vector  ,     denotes the estimated residual variance and    denotes the 

standardized estimated residual vector. For each replication  ,    
 , a random sample 

taken with replacement from   , is chosen and multiplied by   . Then the bootstrap 

sample of   for replication   is obtained by   
         

 . For this bootstrap sample   
  

and design matrix  ,    
 , the estimate of   for replication  , is obtained. This procedure 

is repeated   times to obtain the empirical sampling distribution of   . The 2.5
th

 and 

97.5
th

 percentiles of the empirical sampling distribution gives 95% bootstrap confidence 

interval for  . Similar to this, MSE of    can be computed from the empirical sampling 

distribution as 

                                          (17) 

where         and          are the estimated covariance matrix and bias vector from 

the empirical sampling distribution, respectively. Since the true value of   is unknown, 

         can be estimated with                     where        is the average vector 

of the empirical sampling distribution and    is the least squares estimate  . This 

procedure is repeated for 400 times to obtain confidence intervals and MSE values for 

GME estimators. We also apply this method to obtain MSE values of OLS and ridge 

estimators and report them with the MSE estimates for GME in Table 9. 

It is seen from Table 8 that the unrestricted GME estimates for     and     

doesn’t meet the expected signs. In addition to this, it is possible to note that         

which is in contrast to the prior information about the magnitudes of     and    . 

However, the restricted GME satisfies the sign and magnitude restrictions about the 

parameters. 95% confidence intervals for unrestricted and restricted GME show that all 

coefficients are significant at 5% confidence level. We also observe that confidence 

intervals of restricted GME are wider than the confidence intervals of unrestricted 

GME, which leads to the result that restricted GME has larger standard errors. 

 

Table.8 GME Estimates 

 Unrestricted GME  Restricted GME 

Variable Estimate 

95% Confidence 

Interval 

 

Estimate 

95% Confidence 

Interval 

Constant 47.933 41.369 53.002  38.146 30.193 53.115 

   -0.647 -1.134 -0.099  1.374 0.149 3.050 
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   0.260 0.117 0.440  0.401 0.188 0.830 

   -1.263 -1.449 -1.130  -0.340 -0.670 -0.116 

   0.902 0.719 1.013  -0.629 -1.381 -0.305 

   -0.710 -1.269 -0.332  -1.055 -1.860 -0.411 

   -0.510 -0.661 -0.288  -0.654 -0.981 -0.437 

   0.004 0.002 0.005  0.276 0.004 0.277 

 

Bootstrap MSE estimates for OLS, ridge and GME are given in Table 9. 

According to this table, it is possible to note that the best estimator for the poverty 

dataset is GME. Both unrestricted and restricted versions of GME have considerably 

smaller MSE values compared with OLS and ridge. It is also seen that unrestricted 

GME has a smaller MSE than the restricted one. Since prior mean of the unrestricted 

GME is equal to least squares estimates, we expect that the bias estimate of unrestricted 

GME is smaller than restricted GME’s. We’ve also observed that the restricted GME 

has larger standard errors than the unrestricted GME’s. Combining these two might 

explain the larger MSE value of restricted GME versus the unrestricted one. We also 

note that ridge estimators are outperformed by OLS, which is an unexpected result 

under multicollinearity. This might be explained with the fact that ridge estimates 

doesn’t have the expected signs and they are far more different than the OLS estimates 

(especially for the constant term). Differences between ridge and OLS estimates make 

the bootstrap bias estimate larger, hence leads to higher MSE values for ridge than OLS.  

 

Table.9 Bootstrap MSE Estimates 

Estimator Bootstrap MSE Estimate 

   1245,359 

          2182,614 

         2213,540 

Unrestricted GME 9,495 

Restricted GME 65,293 

 

Despite the larger MSE value of restricted GME estimator compared with 

unrestricted GME, we might argue that restricted GME is the best estimator in this 

study since it also satisfies the sign and magnitude restrictions about the parameters. 

MSE is a general but not the best criteria to choose among estimators. In an applied 

research, it is expected that parameter estimates do not violate strict assumptions of an 

explicitly stated theoretical model. In the light of this, we state that the restricted GME 

overcomes the multicollinearity problem and leads to good parameter estimates which 

are justifiable with the economic theory. 

 

4. Conclusions 

 

In this study, we consider the linear regression model subject to 

multicollinearity problem. In the presence of multicollinearity, the least squares 

estimator may produce unreliable results. Biased estimators such as ridge and 
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generalized maximum entropy (GME) can be used to overcome this problem. In this 

paper, we evaluate GME estimator and compare it with OLS and ridge regression 

estimators on a real dataset. We estimate parameters of a linear regression model to 

examine the poverty rate and its determinants in 12 statistical regions of Turkey. Our 

results show that the dataset is prone to high levels of multicollinearity problem and the 

signs and magnitudes of OLS are distorted due to the problem. Sign and magnitude 

distortions still persist for the ridge regression and unrestricted GME estimator while a 

solution to this problem is obtained with restricted GME. We also compare 

aforementioned estimators with the mean square error (MSE) criteria. MSE values are 

estimated with bootstrap and they show that both unrestricted and restricted GME are 

superior to OLS and ridge regression while OLS dominates ridge regression estimator. 

Even though unrestricted GME is better than the restricted one in the sense of MSE, our 

results show that restricted GME leads to good parameter estimates which are justifiable 

with the economic theory. Therefore, the restricted GME estimator is chosen as the best 

estimator for the model being considered. Our results show that the restricted GME 

estimator might produce reliable parameter estimates that are consistent with the 

economic theory. As a general result, we suggest researchers to apply different 

estimators when the model assumptions are not satisfied and choose the best one that 

fits the model of interest. 
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