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Öz 

Tıp alanında segmentasyon özel bir öneme sahiptir. Segmentasyonun amaçlarından biri, herhangi bir organdaki 

hastalık tespiti sonrasında hastalıktan etkilenen bölgeyi görselleştirmektir. Son yıllarda, bu amaçla derin öğrenme 

modelleri ile etkili çalışmalar gerçekleştirilmiştir. Bu çalışmada, beyin parankimindeki kanama tespiti için 3 

segmentasyon algoritması karşılaştırılmıştır. Bu algoritmalar, en bilinen U-net, LinkNet ve FPN algoritmalarıdır. 

Bu algoritmaların arka planında, derin öğrenme modellerinden oluşan 5 farklı ana yapı kullanılmıştır. Bu ana 

yapılar, Resnet34, ResNet50, ResNet169, EfficientNetB0 ve EfficientNet B1'dir. Çalışma için orijinal bir veri 

kümesi oluşturulmuştur. Çalışmadaki veri kümesi uzmanlar tarafından doğrulanmıştır. Çalışmada, tıp alanındaki 

en yaygın metrikler olan Dice katsayısı ve Jaccard indeksi, değerlendirme metrikleri olarak seçilmiştir. 

Algoritmaların performans sonuçları göz önüne alındığında, eğitim verisi için FPN mimarisi 0.9495 Dice katsayısı 

değeri ile en iyi sonuçları verirken, test verisi için LinkNet 0.9244 Dice katsayısı ile en iyi sonuçları vermiştir. 

Ayrıca, kullanılan ana yapılar arasında EfficientNetB1 en iyi sonuçları sağlamıştır. Elde edilen sonuçlar 

incelendiğinde, mevcut çalışmalara göre daha iyi bir segmentasyon performansı elde edilmiştir. 
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Abstract 

Segmentation in the medical field has special importance. One of the purposes of segmentation is to visualize the area 

affected by the disease after disease detection in any organ. In recent years, efficient studies have been carried out for 

this purpose with deep learning models. In this study, three segmentation algorithms were compared for the detection of 

hemorrhage in brain parenchyma. These algorithms are the most familiar: U-net, LinkNet, and FPN algorithms. For the 

background of these algorithms, five backbones consisting of deep learning models were used. These backbones are 

Resnet34, ResNet50, ResNet169, EfficientNetB0, and EfficientNet B1. An original dataset was created for the study. 

The dataset in the study was verified by experts. In the study, the Dice coefficient and Jaccard index, which are the most 

common metrics in the medical field, were chosen as evaluation metrics. Considering the performance results of the 

algorithms, the FPN architecture with a 0.9495 Dice coefficient value for the training data and LinkNet with a 0.9244 

Dice coefficient for the test data gave the best results. In addition, EfficientNetB1 provided the best results among the 

backbones used. When the results obtained were examined, better segmentation performance was obtained than in 

existing studies. 
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1. Introduction  
 

Radiological data are primarily chosen by specialists for the detection of diseases. In these detection 

processes, faster results have been obtained with artificial intelligence and deep learning applications in 

recent years. With tools designed to assist experts, studies in the medical field continue to develop rapidly. 

These tools perform many functions, such as examining a given image and locating, segmenting, and 

recognizing the disease. These tools are used in the detection of many diseases, such as brain tumors [1], lung 

cancer [2], melanoma skin cancer [3], and diabetic retinopathy [4]. Non-traumatic spontaneous intracerebral 

hemorrhage (SIH) is an emerging disease of vascular origin in the brain that can cause high mortality and 

very serious functional disability, with an annual incidence of 25/1,000,000, accounting for 10-15% of all 

stroke patients [5, 6]. Systemic arterial hypertension, amyloid angiopathy, vascular malformation, and 

anticoagulant drug use are the most common risk factors [7]. Chronic arterial hypertension in patients causes 

lipohyalinosis and degenerative changes in penetrating arterioles over time. Charcot-Bouchard aneurysms 

occur in the posterior fossa, pons, basal ganglia, and thalamus localizations [8], which are deep brain 

structures, whereas in amyloid angiopathy, more amyloid depositions accumulate in the vessel wall with 

hemorrhages occurring in many lobar areas in the brain [9]. Pathophysiologically, it was determined that 

intracerebral hemorrhage causes compression in the surrounding neuronal tissue by creating a sudden and 

rapid mass effect in brain tissue, and neuronal injury is caused by damage to the signal pathways between 

neurons [10]. Non-contrast computed tomography (CT) is the gold standard neuro-imaging modality for the 

diagnosis of SIH due to its easy accessibility and rapid performance [11]. Although there is no definite and 

specific treatment, aggressive and early medical support, blood pressure regulation, intracranial pressure 

monitoring and control, management of secondary brain injury, prevention of complications, and, in selected 

cases, surgical intervention have positive effects on prognosis [12]. 

 

Intracerebral hemorrhage, which is a common disease, is an important disease that causes death if it is not 

detected. Therefore, rapid detection of the disease will increase the chances of early intervention. In our study, 

the aim was to present a rapid approach for the detection of this disease. For this purpose, different parameters 

and models were trialed to determine which of several segmentation algorithms would provide better results. 

Although the U-net model was used for intraparenchymal hemorrhage segmentation in studies, segmentation 

algorithms such as LinkNet and FPN were not used, providing significant motivation to our study in terms 

of showing the performance of these algorithms. While ready-made datasets were used in other studies, data 

labeled by experts in the field was used in our study. For the reliability of success in measuring accurate 

performance, images related to this disease provided by RSNA [13] were included in our study, as well as 

our own dataset. The originality of our dataset, which is among the innovative aspects of our study, and the 

ability to detect disease with high accuracy rates by using multiple segmentation algorithms trained with 

different models are important criteria that distinguish our study from other studies. The contributions of our 

study to the field can be listed as follows: 

 

 A new publicly available dataset showing expert-labeled intracranial intracerebral hemorrhage. 

 Investigation of the performance of multiple segmentation algorithms and different backbones 

applied for the first time for this disease. 

 

The organization of our study is as follows: in the second part, studies related to the disease are given. The 

methodology is given in the third section, and the results are given in the fourth section. The last sections 

contain the discussion and conclusion. 

 

2. Related Works 
 

In this section, firstly, segmentation studies on intracerebral hemorrhage detection and then classification 

studies are examined in detail. In the last part, studies in the medical field with the models we used in our 

study are given. 

 

Accurate segmentation and quantification of intraparenchymal hematoma is very important to be able to 

diagnose patients more quickly and at a higher rate, to predict the outcomes for patients more accurately with 

the correct estimation of bleeding volume, and to decide on treatment options [14]. In recent years, studies 
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estimated bleeding volume very rapidly using segmentation algorithms, treatment strategies were developed, 

and more accurate and stable performances were achieved by using different methods [15–17]. Falk et al. 

presented an ImageJ plugin to analyze cell detection and shape measurements in U-net [18]. Hu et al. 

proposed an encoder-decoder convolutional neural network (ED-Net) for the detection of intracerebral 

hemorrhage (ICH). The model they propose makes extensive use of both low-level and high-level semantic 

knowledge. Although they achieved good results in their studies, they stated that their models still do not 

take into account spatial information, and this is a limitation of their work. It was stated in their studies that 

a dice coefficient of over 80% and a Jaccard index of over 75% were obtained [17]. Arab et al. attempted to 

develop a fast and fully automated deep learning method that applied deep supervised convolutional neural 

networks (CNN-DS) for hematoma segmentation and volume measurement in CT scans. They compared 

CNN-DS with three different methods and obtained the best result of 0.84 for CNN-DS. It was mentioned in 

their studies that more labeled data is needed for the detection of hematoma and that there may be human-

induced errors while labeling. In our study, the tagged dataset was validated separately by three of our experts 

to minimize human-induced errors [19]. Jadon et al. used different image segmentation models (U-Net 2D, 

Inception-based UNet++ 2D model) to segment different phenotypes of hemorrhagic lesions in their study. 

In their study, they obtained a Dice coefficient of 0.94 for intraparenchymal hemorrhage (IPH) by using the 

Focal Tversky Loss Function in the UNet++ 2D model. This is a study showing the effect of the loss functions 

we used in our study on segmentation [20]. Cao et al. used the fuzzy C-means clustering method to separate 

the pixels on CT images and used the U-Net neural network they developed for auxiliary diagnosis of 

intracerebral hemorrhage. In the study, pixels in CT images are divided into four categories: white matter, 

gray matter, cerebrospinal fluid, and hemorrhage. The fact that this requires pre-processing before 

segmentation can be seen among the limits of the study. In the study, a 0.860 Dice coefficient value and a 

0.712 Jaccard value were obtained [21]. Wang et al. proposed a modified U-Net and curriculum learning 

strategy to distinguish ICH subgroups on CT images. They emphasized that more training should be done 

with more data in their studies, where they obtained low values such as 0.67 Dice Coefficient and 0.50 

Jaccard value [22]. Maya et al. classified the hemorrhage region into 3 types (epidural, subdural, and 

intraparenchymal hemorrhage) in their study using U-Net and CapsNet on CT images with stroke symptoms. 

In the study, first of all, some image processing methods were applied to the images. Then segmentation was 

done with U-net. In this segmentation, 75% Dice coefficent was obtained. Segmented images were classified 

with CapsNet. 92.1% validation accuracy was achieved with CapsNet [23]. Hssayeni et al. used an ICH 

segmentation method based on 5-fold cross-validation in their study, where they developed a deep fully 

connected network (FCN) named U-Net to segment ICH regions on CT scans in a fully automatic manner. 

It has been reported that a Dice coefficient of 0.31 was obtained in this segmentation process. They 

emphasized that this low dice coefficient value may be due to incorrect segmentation near the bone in 

grayscale images where the density is similar. They also stated that the model they developed in the study 

was not sufficient to detect small hemorrhages [24]. Abramova et al. used a 3D U-Net architecture with 

compression and excitation blocks to automatically segment hemorrhagic stroke lesions on CT scans, as well 

as restrictive patch sampling to alleviate the problem of class imbalance and resolve the issue of 

intraventricular hemorrhage not considered to be a stroke lesion. The average Dice coefficient value of 0.86 

was reached in the study. It has been stated that the performance of U-net increases when used with squeeze-

and-excitation blocks [25]. Liu et al. used the U-Net neural network model and contour recognition to extract 

the brain parenchymal region through intelligent tissue analysis of cerebral hemorrhage after segmentation 

to detect hypertensive intracerebral hemorrhages. It contributes to this field as a study that provides texture 

analysis after segmentation [26]. Manasa et al. used the U-Net algorithm for semantic segmentation in a study 

using 146 images for the detection of ICH [27]. 

 

He (2020) used SE-ResNeXt50 and EfficientNet-B3 to learn the classification for five subtypes of 

intracranial hemorrhage. The RNSA dataset, which is also included in our study, was used here. A 

classification has been made for all diseases in this dataset. As a result of classification, a 0.0548 loss score 

value was obtained in test sets [28]. Castro et al. used VGG-16 and CNN-4 for detection of intracranial 

hemorrhage (HIC). In their study, they made a classification that only states whether there is hemorrhage or 

not. For this binary classification, the accuracy rate they obtained with VGG-16 was 0.968, and the accuracy 

rate they obtained with CNN-4 was 0.981. As a result, they reported that CNN could be a useful tool for CT 

images in disease detection [29]. Burduja et al., in their intracranial hemorrhage detection study based on the 

RSNA 2019 dataset with CTs, used a lightweight deep neural network architecture consisting of a 
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convolutional neural network (CNN) and a long short-term memory (LSTM) network. In their studies, they 

tried to classify the feature vectors they obtained from the images. It has been stated that an accuracy of over 

96% has been achieved. In the limitations of the study, they demonstrated that their system was able to predict 

the correct label for a particular bleeding subtype without considering all sites for the relevant subtype. They 

concluded that although this behavior produces very good accuracy rates, it is not optimal for visualizing all 

bleeding sites. In our application, an accurate visualization of the bleeding site is provided [30]. 

 

Araújo et al. used a melanoma segmentation method based on U-Net and LinkNet deep learning networks 

combined with transfer learning and fine-tuning techniques. Additionally, they evaluated the model's ability 

to learn to segment the dataset by merging the disease or just the datasets. The experiments were performed 

on three datasets (PH2, ISIC 2018, and DermIS), and they stated that they obtained more promising results 

with U-net, whose Dice values averaged 0.923 in the PH2 dataset, 0.893 in ISIC 2018, and 0.879 for DermIS, 

respectively. Although there is no ICH segmentation in the study, it is one of the studies in which the 

performance comparisons of U-net and LinkNet are included [3]. Ghosh et al. detected brain tumors by 

comparing two different U-Net architectures (U-Net: baseline and U-Net: ResNeXt50 backbone) and a 

feature pyramid network (FPN) based on segmentation. The U-Net architecture with the ResNeXt50 

backbone achieved dice coefficients of 0.932, with values for basic U-Net and FPN of 0.846 and 0.899, 

respectively. In this study, U-net and FPN were used together. It is also seen that a better dice coefficient 

value can be obtained by using the ResNeXt50 backbone for U-net [31]. Sobhaninia et al. measured some 

biometric parameters, such as fetal head circumference (HC), to check the health and growth of the fetus. 

For this study, they used mini-LinkNet by modifying LinkNet as a multiscale light convolutional neural 

network. In this study, the effective structure of LinkNet is emphasized [32]. In their study using a cross-

scale feature pyramid for OCT images, Fan et al. achieved an average sensitivity (mAP) of 85.02 for FPN 

for OCT lesion detection [33]. Dai et al. used cone-beam CT (CBCT)-based adaptive radiotherapy in their 

study, in which they automatically identified at-risk head and neck organs using dual pyramid networks. 

When the results of the patient images were examined, the best DSC was 0.96 for the oral cavity and 0.66 

for the lowest optical chiasm [34]. Lo et al. proposed a deep learning (DL) framework for 2D fetal MRI 

segmentation using a cross-attention squeeze excitation network (CASE-Net) for research and clinical 

applications. The purpose of CASE-Net was to emphasize the localization of contextual information related 

to biomedical segmentation by combining attentional mechanisms with squeezing and excitation (SE) 

blocks. This was a retrospective study with 34 patients. In their experiments, they showed that the proposed 

CASE-Net outperformed other competitive segmentation architectures, achieving the highest segmentation 

Dice score of 87.36% [35]. Singh et al. used the ImageCLEF Med Tuberculosis 2019 dataset in their study 

about detecting tuberculosis lesions in the lungs using image segmentation. The dataset consisted of 3D CT 

images divided into 2D slices, and segmentation was applied to each slice using U-Net, FPN, and LinkNet 

architectures. In this study, three segmentation algorithms were compared, as in our study [36]. 

 

3. Methodology 
 

3.1. Dataset 
 

In our study, the data of 100 patients (44 males and 56 females) diagnosed with SIH who were hospitalized 

in the Neurology Department of Van Yüzüncü Yıl University were analyzed retrospectively. All permissions 

for the study were obtained from the hospital ethics committee. The mean age of the patients was 65.1 years 

(23–95 years). Patients with epidural, subdural, subarachnoid, ventricular hemorrhages, aneurysms, or 

hematomas secondary to vascular malformations were excluded from the study. In CT imaging, hematoma 

is easier to recognize because it appears brighter (hyperintense) than the surrounding brain tissue and 

cerebrospinal fluid. The ABC/2 formula, which is frequently used in clinical studies and daily practice, was 

used to calculate the hematoma volume. Using the ABC/2 formula, total hematoma volumes were calculated 

with perpendicular diameter measurements from CT images in both coronal and axial planes. These 

calculations were made independently by two neurologists in order to reduce observer variability and 

measure the hematoma volume as if it were larger than it is, especially in irregular hematomas. The hematoma 

volume average was 45.3 cm3 (0.49–273 cm3). For the segmentation process, both the images in the dataset 

and the contours of the hematoma on the CT images of the patients were manually marked with a red color 

by the neurologists using the cursor. 
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In order to contribute to the dataset in our study, 264 intracerebral hemorrhage images were identified from 

the RNSA [13] dataset. This dataset was created by four working groups consisting of Stanford University, 

Thomas Jefferson University, Unity Health Toronto, Universidade Federal de São Paulo (UNIFESP), and 

the American Society of Neuroradiology (ASNR) [13]. In the dataset, there are images of other intracranial 

hemorrhages. Among these, images that were confirmed as intracerebral hemorrhages were selected for use 

in our study. The selected images were again marked by our experts. Ground truth masks were removed from 

the marked images. Examples of images marked and unmasked by experts are given in Figure 1.   

        

   

   
 

Figure 1. Samples from the Dataset 

 

In Figure 1, the first row shows an example from the first dataset, and row 2 shows an example from the 

RNSA dataset. As can be seen, the second dataset has lower values in terms of both resolution and quality 

than the first dataset. 

 

3.2. Segmentation Algorithms 

  

3.2.1. U-Net 
 

The architecture known as the Fully Convolutional Network (FCN) stands out as a remarkably 

successful and frequently employed foundational structure recommended for semantic segmentation 

[37]. U-Net, another architectural framework derived from FCN, was specifically devised for the 

semantic segmentation of medical images [38]. The network's structure comprises two distinct 

segments, namely the contraction and expansion paths [26, 38]. Operations conducted on the left side, 

the contraction path, aim to grasp contextual details of the image, effectively extracting features from it. 

These operations closely adhere to the established logic of classical CNN architecture. 

 

Conversely, operations on the right side, the expansion path, precisely localize the segments within the 

image [38, 39]. The connection between the contraction and expansion paths employs a concatenation 

operator instead of summation, enhancing the direct application of spatial information to deeper layers 

and achieving a more precise segmentation outcome [40]. Unlike classical deep learning, which requires 

abundant examples and substantial computing resources, U-Net demonstrates adaptability with minimal 

training sets [39, 41]. Notably, this adaptability renders it particularly suitable for tasks involving the 

segmentation of medical images [39, 42]. 
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U-Net's distinctive strategy, which sets it apart from other segmentation architectures, involves 

combining feature maps from the contraction phase with their symmetrical counterparts in the expansion 

phase. This innovative approach facilitates the dispersion of contextual information into high-resolution 

feature maps [3]. The structural depiction of U-Net is illustrated in Figure 2. 

 

 
 

Figure 2. U-net Structure [38] 

 

3.2.2. LinkNet 
 

LinkNet features a streamlined deep neural network architecture that facilitates the acquisition of 

knowledge in semantic segmentation tasks without a notable surge in parameters. It bears resemblance 

to U-Net and other segmentation networks. Positioned on the left is an encoder, while on the right is a 

decoder [3]. The encoder operates by encoding data within the source space, and the decoder translates 

this data into spatial categorization to execute the segmentation [3, 43]. Unlike current neural network 

architectures, where encoders in segmentation processes perform multiple downsampling operations, 

LinkNet adopts a different approach. This deviation is crucial, as the conventional process tends to result 

in the loss of spatial information during cascading convolutions in the encoder segment [44]. Retrieving 

such lost information proves to be challenging [43]. 

 

In Link-Net, a distinctive feature is observed wherein the input of each encoder layer is concurrently 

assigned to the output of the corresponding decoder. The intent behind this mechanism is to reclaim 

spatial information that was lost, serving as a valuable resource for the decoder and the subsequent 

upsampling processes [43]. The utilization of fewer parameters is a noteworthy characteristic, attributed 

to the shared information learned by the encoder, facilitated by the decoder [36, 43]. Figure 3 illustrates 

the structural layout of LinkNet. 
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Figure 3. LinkNet Structure [43] 

 

3.2.3. FPN 
 

FPN utilizes the pyramidal hierarchy of deep convolutional networks to generate feature pyramids with 

minimal additional computational cost [45]. Image pyramids serve as a data structure specifically 

designed to facilitate convolution by employing downscaled versions of the original image at regular 

intervals. These downscaled copies effectively reduce both sample density and resolution [46]. The 

foundational concept of feature pyramids is established by image pyramids [47]. The pyramid 

framework is believed to offer a conceptual unification for representing and manipulating low-level 

visual information. It presents a versatile and convenient multi-resolution format that aligns with various 

scales present in visual scenes, mirroring the multiple processing scales within the human visual system 

[46]. FPN, functioning as a feature extractor grounded in the pyramid concept, excels in both accuracy 

and speed [47]. While ConvNets provide a high level of semantic understanding and resistance to 

variance, the inclusion of pyramids remains essential for achieving optimal accuracy. Specifying each 

level of an image pyramid yields a multi-scale feature representation where all levels, including those 

with high resolution, exhibit significant semantic strength. However, the drawback of employing an 

image pyramid lies in the increased extraction time [47]. 

 

FPN employs a comprehensive approach, combining features through bottom-up, top-down paths, and 

lateral connections to leverage the feature hierarchy, ultimately creating a robust feature pyramid [48]. 

The bottom-up path facilitates a top-down progression, rendering higher-resolution layers compared to 

the base layer. Each stage in this progression is identified as a pyramid level [46]. Among the 

reconstructed layers, the final layer output is selected as a feature map to construct the pyramid [47]. 

The top-down path is enriched by incorporating lateral links between feature maps [36]. This path 

creates spatially coarser yet semantically stronger feature maps with higher-resolution layers in a top-

down manner. These features are further enhanced by integrating features from the bottom-up path 

through lateral links. Each lateral link connects feature maps with the same spatial dimensions from both 

the bottom-up and top-down paths [47]. The structural representation of FPN is visually depicted in 

Figure 4. 
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Figure 4. FPN Structure [45]  

 

3.3. Backbones   

 

3.3.1. ResNet 
 

Residual Network (ResNet) [49] is a deep learning network architecture using residual layers that won 

first place in the ImageNet competition in 2015. In this model, it is thought that a faster model will be 

created by adding residual values between the linear and ReLU layers and the blocks that feed the next 

layers (residual blocks). For this reason, in network structures where the residual block structure is used, 

the data in one layer is given as input to the next layer and transmitted to the next layers in 2 or 3 layers. 

The single residual block structure is shown in Figure 5. The output of the residual block can be 

formulated as in Equation 1. 

 
𝑦 = 𝐹(𝑥) + 𝑥 (1) 

 

where F is the residual function and x and y are the input and output of the residual function, respectively. 

The entire residual network consists of the first convolutional layer and a few basic blocks [50]. The 

structure of the ResNet 34 model is shown in Figure 6 [49]. 

 

 
 

Figure. 5. Single residual block [49] 
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Figure. 6. ResNet34 Structure  

 

3.3.2. EfficientNet 
 

EfficientNet is a deep learning model developed by the Google research team [51] in 2019. There are 

many different versions of this model, from B0 to B7, which were developed based on the hypothesis 

of increasing the width and resolution of the model as well as the depth of the model. As the number of 

parameters calculated in each version increased, the computational cost also increased. While 

performing EfficientNet, the ResNet model was used for the first performance comparisons. In our 

application, these models were selected as the backbones for segmentation algorithms, and performance 

comparisons were made. The three concepts this model considers are depth, breadth, and resolution. 

Depth refers to how deep the meshes are. In other words, it is equivalent to the number of layers. The 

width is the number of channels in the convolution layer. Resolution is the resolution of the image 

transmitted to the network. Researchers proposed a new scaling method that equally scales all 

dimensions of the network's depth, width, and resolution. We can summarize these concepts in Figure 

7 [51]. 

 

 
 

Figure 7. a) Basic network example, b)-d) traditional scalings that increase only one dimension of network 

width, depth or resolution, e) EfficientNet's composite scaling method 

 

The EfficentNet B0 structure is shown in Figure 8. The main building block of this mesh is MBConv, 

to which compression and excitation optimization are added. These blocks create shortcuts between the 

beginning and end of a convolutional block. Input activation maps are expanded using 1x1 convolutions, 

increasing the depth of feature maps. The shortcut links used in this model connect narrow layers 

together, while wider layers are located between jump links. This structure helps reduce the model size 

as well as the total number of operations required. Other parameters used in this model are as follows: 

kernel_size is the kernel size for convolution, for example, 5 x 5; num_repeat specifies that the repeat 

count of a given block must be greater than zero; input_filters and output_filters are the number of 

filters; expand_ratio is the input filter expansion rate; id_skip determines whether to use link skipping; 

and se_ratio shows the spin rate for squeezing and excitation blocks. 
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Figure 8. EfficientNet B0 Structure [51] 

 

3.4. Application 

 

The Python environment was used for the application. Before the application, 334 images in the dataset 

were reserved for model training, and 30 images were used for performance analysis after model training 

was completed. During the model training process, 20% of 334 images were used for validation. The 

dataset was run separately in each segmentation algorithm. Different backbones were tested in each run. 

At the end of the run, performance analysis was made for the models with test data. The parameter 

values used in the operation of the models are given in Table 1. 

 
Table 1. Parameter Settings 

 
Parameter Value 

Optimizer Adam 

Learning Rate 0.0005 

Epoch 100 

Batch Size  8 

Input Size (256,256,3) 

Activation Sigmoid 

callbacks ReduceLROnPlateau and ModelCheckPoint 

 

4. Evaluation Metrics  
 

The application was run on a workstation with an I7 processor and 16 GB of RAM. The workstation 

had a graphics card with a Geforce 1070 GPU. Evaluation metrics are covered in two different sections. 

The first of these is the segmentation metric that is needed to examine the segmentation results, while 

the second is the model metrics used to examine the accuracy of the models. 

 

4.1. Segmentation Metrics 

 

4.1.1. Jaccard Index 
 

The Jaccard index is a metric that measures the similarity between the reference value and the predicted 

value in segmentation applications. For this metric value, similar features between the two values are 

divided into the union of the two sets; in other words, by taking the intersection of the two sets. The 

formula used for the Jaccard index is given in equation 2. This metric ranges from 0–1 (0–100%); 0 

indicates no overlap, and 1 indicates perfectly overlapping segmentation. 

 

𝐽(𝑌, 𝑌′) =
|𝑌 ∩ 𝑌′|

|𝑌| + |𝑌′| − |𝑌 ∩ 𝑌′|
 

 

(2) 

Where Y is the ground truth and Y’ is the prediction. 
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4.1.2. Dice Coefficient 
 

This metric is very similar to the Jaccard index. There is a positive relationship between them. It is a 

well-known metric that measures the similarity between the reference value and the predicted value in 

segmentation. Like the Jaccard index, this metric has values between 0 and 1, where 0 indicates no 

overlap and 1 indicates perfectly overlapping segmentation. Equation 3 is used for the Dice coefficient. 

 

𝐽(𝑌, 𝑌′) =
2|𝑌 ∩ 𝑌′|

|𝑌| + |𝑌′|
 

 

(3) 

 

Where Y is the ground truth and Y’ is the prediction. 

 

4.2. Model Metrics 
 

4.2.1. Binary Cross Entropy Loss 
 

This loss function is used in binary classification tasks. As is known, masks used consist of binary 

images as background 0 and foreground 1. Equation 4 is used for this function. 

 
𝐿𝐵𝐶𝐸(𝑦, �̂�) = −(𝑦𝑙𝑜𝑔(�̂�) + (1 − 𝑦) log(1 − �̂�)) 
 

(4) 

Here �̂� denotes the value predicted by the model and y is the target value. 

 

4.2.2. Dice Loss 
 

Dice is a loss function often used to evaluate success in biomedical images. Equation 5 is used for this 

function. 

 

DiceLoss = −
2

|C|
∑

∑ Si
kLi

k
k

∑ Si
k + ∑ Li

k
kk

C

i

 

 

(5) 

 

Where C is the number of classes, k is every pixel in the image, S is the prediction and L is the ground 

truth label. 

 

4.2.3. Focal Loss 
 

Loss of focus (FL) [52] attempts to reduce the contribution of easy examples so that CNN can focus 

more on difficult examples. It does this by giving more weight to samples that are difficult or easily 

misclassified. Focal loss is included in the literature as a more developed version of cross-entropy. 

Therefore, Equation 6 was used to calculate the focal loss. 

 
𝐹𝐿(𝑝𝑡) = −(1 − 𝑝𝑡)

𝛾log⁡(𝑝𝑡) 
 

(6) 

 

As can be seen from the formula, it adds the factor (1 − 𝑝𝑡)
𝛾 to cross-entropy. Relative loss is reduced 

for samples classified well when γ>0. 

 

5. Results 

 
It is possible to evaluate the results of our study as an ablation study. Two different threshold values 

were used for the Jaccard index and Dice coefficient values in the study. These are values of 0.5 and 

0.6. The aim was to take the results into consideration if the intersection point between the estimated 
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and actual values was greater than these values. First, the results obtained from the 0.5 threshold value 

are given in Table 2. 
Table 2. Results of models (threshold: 0.5) 

 

U-net Training Data Test Data 

Model Jaccard Index Dice Coefficient Jaccard Index Dice Coefficient  

resnet34 0.8976 0.9354 0.8563 0.9213 

resnet50 0.8716 0.9075 0.8223 0.8872 

resnet101 0.8939 0.9361 0.8449 0.9146 

effnetb0 0.9028 0.9366 0.8554 0.9212 

effnetb1 0.9078 0.9426 0.8579 0.9227 

      

LinkNet Training Data Test Data 

Model Jaccard Index Dice Coefficient Jaccard Index Dice Coefficient  

resnet34 0.876 0.9187 0.8498 0.9169 

resnet50 0.8605 0.9028 0.839 0.9105 

resnet101 0.8351 0.8866 0.8382 0.9099 

effnetb0 0.8996 0.9363 0.8492 0.9176 

effnetb1 0.903 0.9431 0.8611 0.9244 

      

FPN Training Data Test Data 

Model Jaccard Index Dice Coefficient Jaccard Index Dice Coefficient  

resnet34 0.9079 0.9429 0.8546 0.9202 

resnet50 0.8994 0.9361 0.841 0.9116 

resnet101 0.8511 0.9015 0.8403 0.911 

effnetb0 0.8887 0.9278 0.8448 0.9145 

effnetb1 0.914 0.9495 0.8589 0.9233 

 

When we evaluate the table obtained for threshold value 0.5, it is possible to see the highest Jaccard 

index and dice coefficient values with the EfficientNet B1 backbone in all segmentation algorithms. If 

they are evaluated among themselves, FPN reached the highest Dice coefficient value with a value of 

0.9495 for the training data. The Jaccard index here is 0.9140. When the values obtained for the test data 

are examined, the LinkNet algorithm obtains a 0.9244 Dice coefficient value and a 0.8611 Jaccard index 

value. In Table 3, the results obtained from threshold 0.6 are given. 

  

In the table for threshold 0.6, a 0.9451 Dice coefficient value for training data and a 0.9096 Jaccard 

index were obtained for the ResNet34 backbone in the FPN model. This value is the highest value for 

training data. The highest values for the test data were also obtained with the FPN algorithm, but from 

the EfficientNet B1 backbone. These values are 0.9241 Dice coefficient and 0.8605 Jaccard index 

values. 
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Table 3.  Results of models (threshold: 0.6) 

 

U-net Training Data Test Data 

Model Jaccard Index Dice Coefficient Jaccard Index Dice Coefficient  

resnet34 0.8663 0.9098 0.8364 0.9076 

resnet50 0.8976 0.9328 0.8355 0.9081 

resnet101 0.8682 0.9161 0.8282 0.9025 

effnetb0 0.8995 0.939 0.8521 0.9191 

effnetb1 0.8904 0.9295 0.8538 0.92 

      

LinkNet Training Data Test Data 

Model Jaccard Index Dice Coefficient Jaccard Index Dice Coefficient  

resnet34 0.8732 0.9127 0.8516 0.9187 

resnet50 0.8592 0.9049 0.8288 0.9034 

resnet101 0.877 0.9229 0.8511 0.9187 

effnetb0 0.8807 0.921 0.8506 0.9178 

effnetb1 0.8954 0.9359 0.8563 0.9218 

      

FPN Training Data Test Data 

Model Jaccard Index Dice Coefficient Jaccard Index Dice Coefficient  

resnet34 0.9096 0.9451 0.8538 0.9199 

resnet50 0.8993 0.9311 0.8476 0.9164 

resnet101 0.8695 0.9107 0.8371 0.9086 

effnetb0 0.9011 0.9336 0.8535 0.9196 

effnetb1 0.8983 0.9339 0.8605 0.9241 

 

The highest results obtained from the training and test data for both threshold values are given in Table 

4 and Table 5, respectively. 

 
Table 4. Threshold results for training data 

 
 Train Data 

Threshold Algorithm 

Model Jaccard Index 

Dice 

Coefficient 

0.5 FPN EfficientNetB1 0.914 0.9495 

0.6 FPN Resnet34 0.9096 0.9451 

 
Table 5. Threshold results for test data 

 
 Test Data 

Threshold Algorithm Model Jaccard Index Dice Coefficient 

0.5 LinkNet EfficientNetB1 0.8611 0.9244 

0.6 FPN EfficientNetB1 0.8605 0.9241 

 

When we examine the table comparing the threshold values, the FPN algorithm with a 0.5 threshold and 

the EfficientNet B1 backbone training data obtained the highest values with a 0.9495 Dice coefficient 

and a 0.9140 Jaccard index. In the test data, the highest values were obtained at the 0.5 threshold. These 

values were obtained from the LinkNet algorithm and the EfficientNet B1 model. The resulting Jaccard 

index was 0.8611, and the Dice coefficient value was 0.9244. In Figure 9, the loss charts for the models 

that provided the best values in the test data are given. 
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a) LinkNet EfficientNet B1 model loss values (threshold 

0.5) 

b) FPN EfficientNet B1 model loss values (threshold 0.6) 

Figure 9. Loss function values of best models 

 

In Figure 10, some examples of the segmentation results from the algorithms where these values were 

obtained are shown. The aim was to show the segmentation performance by obtaining segmentation 

results for the same samples in both models. The first line shows the hospital data, and the second line 

shows sample data from the RNSA dataset. As can be seen, the images obtained are clearer based on 

the device quality. Although the picture quality is low in the models we compared, successful results 

were obtained. While a 0.80 Jaccard index was obtained for LinkNet in the first line image, a 0.70 

Jaccard index was obtained for the same image in FPN. For the picture in the second line, a 0.94 Jaccard 

index was obtained in LinkNet, while a 0.93 Jaccard index was obtained in FPN. 
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Figure 10. Results of the best models 
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 6. Discussion 
 

Our study started with marking images obtained from the hospital by experts and obtaining the masks 

with image preprocessing techniques. Cases where the obtained images may be insufficient for the 

performance of the segmentation algorithms are taken into account. For this reason, new images of 

intracerebral hemorrhages were taken from the Kaggle database and marked by our experts. The 

selection of this disease in our study is also important. As reported by the experts where we live, 

intracerebral hemorrhage is detected more frequently among intracranial hemorrhages. Carrying out the 

study with three segmentation algorithms is a preliminary process for the web-based software we plan 

to develop to detect this disease. With the use of our web-based software in hospitals, it will be a 

decision-support mechanism that will help experts make decisions more quickly. 

 

For these purposes, a detailed examination of segmentation algorithms was made in our study. By adding 

backbones to the standard structure of these algorithms, it was seen that the features were better 

extracted, and thus they performed better. EfficientNet, which is used as a backbone in the study, is one 

of the state-of-the-art deep learning models. Although ResNet is not as new as EfficientNet, it is still a 

powerful model that is frequently used in studies. This algorithm takes its power from the residual layers 

of the layers, which provide information from the previous layer. With these layers, information 

transmission is provided between the layers. It is undesirable to have information lost in feature 

extraction in medical images. Again, EfficientNet is one of the current models that has found a solution 

to this problem. Therefore, in this study, we wanted to compare the strong results of the models over 

time by taking an old and a new model. 

 

In Section 2, studies for ICH classification and segmentation are discussed separately. While examining 

the studies, explanations were given about their limitations and how our study dealt with these 

limitations. For example, in [24], it was reported that small hemorrhages could not be detected and an 

incorrect segmentation process occurred due to density similarity. In our study, it was reported that even 

small hemorrhages could be easily detected, according to the determination of our experts. Arab et al. 

reported that erroneous results may be obtained as a result of human-induced markings in the dataset 

[19]. We tried to minimize the error rate by labeling the datasets of the three experts in our study and 

validating them separately. In addition, in the studies we examined, after using image processing 

techniques on images, segmentation or classification was made. With the backbones we used and the 

extraction of features, there was no need for any image processing before the training. 

 

When the results of our study are examined, looking at the values obtained from the three segmentation 

algorithms, it is possible to say that the FPN algorithm achieves better results than the other algorithms, 

considering the metrics accepted for intracerebral hemorrhage segmentation. As we know, many deep 

learning models are used as backbones in the background of these algorithms. In this study, we chose 

different versions of the ResNet and EfficientNet models as backbones. In summary, our study covers 

three segmentation algorithms and five backbones. Among these backbones, EfficientNet models 

achieved better results. Additionally, with the models developed, our approach will have the advantage 

of further speeding up the pre-processing step that requires an expert so that the patient can be intervened 

with more quickly. 

 

In Section 2, where segmentation studies in different fields are examined, segmentation performance 

above 90% was not achieved in most of the studies related to ICH. In our study, there was a success rate 

of 0.9495. Considering the results obtained and the studies we examined in the literature, it was 

confirmed by our experts that better results were obtained in the detection of intracerebral hemorrhage 

with the models we developed. In addition, the segmentation architectures used in our study and studies 

using multiple backbones were not encountered in the literature at the time of this study. It motivated us 

to include different architectures in our study and to add the performance results of different backbones 

used with these architectures to the literature. Another result encountered while examining previous 

studies was that the studies were not used as software; in other words, they were not practically included 

in clinical studies. For this purpose, the necessary models were created for our web-based ICH detection 

software, which we will present in our future studies. 
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In addition, as mentioned in the dataset introduction, our work achieved successful results even with the 

RNSA dataset, which consists of low-quality images. This is noteworthy in terms of demonstrating the 

power of segmentation algorithms and their backbones. The dataset we labeled in the study will be 

shared publicly, and other researchers will benefit from it. We think that this will be another contribution 

of our study to the field. 

 

As is known, deep learning applications have high computational costs. When GPU graphics cards are 

used, operations are performed in a very short time. If the calculation times in the study are investigated, 

each epoch lasted between 10 and 30 seconds in our study. The shorter this period, the earlier the disease 

can be detected, and thus the patient can be intervened in in a short time. 

  

7. Conclusions 
 

In this study, we attempted to demonstrate the performance of three different segmentation algorithms for 

the segmentation of intracerebral hemorrhage detection. An original dataset obtained from the hospital and 

marked by experts was prepared for the study. In addition, this dataset was enriched with images of this 

disease obtained from the Kaggle platform. For the backbone selection of the models, the ResNet and 

EfficientNet deep learning models were chosen. A total of five backbones were used. When the results were 

examined, the FPN model provided better results for the training data, and the LinkNet model provided better 

results for the test data. When a comparison is made between backbones, EfficientNet models give better 

results than ResNet models. The results were evaluated by experts, and it is predicted that it will be a decision-

support mechanism that helps expert opinion in hospitals. It has led us to predict that our study can be used 

objectively in clinical applications after the results were verified separately by three experts. In addition to 

this foresight, we are aware that better models can emerge by making performance evaluations and receiving 

feedback with each new piece of data received. For this purpose, the aim is to transfer this study to a web 

platform for future studies and to continue testing in the hospital environment. We consider this original 

study a suitable option when rapid diagnosis or a second opinion is required for the detection of intracranial 

hemorrhage. With the publication of the dataset prepared for the application, a unique dataset will be included 

in the literature. In addition, we continue to work on other intracranial hemorrhage detection models. 
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