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Abstract
There is no known closed form expression for the average sample number, also known as
average run length, of a multivariate CUSUM procedure N = min{M1,M2, · · · ,Mm} for
m ≥ 3, where Mi are univariate CUSUM procedures. The problem is generally considered
to be hopelessly complicated for any model. In this paper, for the multinomial model we
show, however, that there is a rather simple closed form expression for the average run
length of N with an elementary proof. A bit surprisingly, we further show that the average
run length of N is related to the average run lengths of Mi the same way as the capaci-
tance of a series network of capacitors is related to the capacitances of its own components.
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1. Introduction
The cumulative sum (CUSUM) procedure of Page [28] is a univariate continually process

monitoring algorithm when the information flow is observable sequentially. It is related
to Wald’s [40] sequential probability ratio test (SPRT), however, the main goal of the
CUSUM procedure is to detect deviations in the process. The SPRT is, on the other hand,
designed to test two competing classical statistical hypotheses in a sequential environment.
There are several approaches in analyzing the univariate CUSUM procedures [28], such as
solving the related integral equations, [15,16], or using the Wiener process approximations,
[2, 13, 33] or martingale approach, [17–19]. See also [6, 9, 36, 37, 45] for a more detailed
description and further references.

The univariate CUSUM procedure of Page [28] is known to have optimal properties.
Lorden [21] used a minimax approach to show an asymptotic optimality of CUSUM.
Moustakides [24] showed its optimality for the iid information flow and [25] extended
the results for some dependent information flow. Ritov [34], and later Beibel [3] provided
further results regarding the optimality of the CUSUM procedure in a Bayesian framework,
see also [8, 24]. Moustakides [26] provided the corresponding optimality results of the
CUSUM procedure in continuous time models. See [14, 30, 43] for further theory and
diverse applications.
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The univariate CUSUM procedure, Nh, may be described very briefly as follows when
Sn = X1 +X2 + · · ·+Xn are the partial sums of an independent and identically distributed
sequence of random variables,

Nh := inf{n ≥ 1 : Dn ≥ h}, Dn := Sn − min
0≤k≤n

Sk, S0 = 0.

This stopping rule has the following link with the boundary crossing problem
Nh = τ0,h +N∗ I(Sτ0,h

≤ 0),
where τ0,h is the boundary crossing stopping rule τa,h = inf{n ≥ 1 : Sn ̸∈ [a, h)}, with
a = 0, and N∗ is another identically distributed CUSUM stopping rule as Nh which is
independent of Sτ0,h

given τ0,h.
The CUSUM procedure has found a large collection of applications besides its traditional

usage in process monitoring and quality control. The monitoring process of the CUSUM
stopping rule, Dn, is related to the ladder index concept of queuing theory, [31], as well
as some other related fields such as insurance risk, dams, and data communication. The
classical trading the line strategy of finance used for fast financial trading platforms can
be analyzed by using the boundary crossing stopping rule τ , and its above link with the
CUSUM procedure [1]. The Media Access Control (MAC) layer of communication systems
contains a back-off protocol, should two clients approach the server exactly at the same
time and cause a collision. There is a potential for client misbehavior. Cardenas et. al.
[5] showed that the geometric model, if followed by the misbehaving client, leads to the
most difficult detection case. Such protocols can be analyzed with the help of the CUSUM
procedure as well, as we will describe in the examples at the end of the paper. For some
potential applications from a Bayesian perspective see for instance [23].

The CUSUM procedure has been extended to multivariate settings as well [7,11,20,29,
32, 35, 42]. One of the ways is by the use of the log-likelihood ratios, as is the case for
setting up the SPRT [11]. This variety of the CUSUM procedure therefore falls into the
category of primarily a parametric monitoring procedure, dependent on the underlying
model assumptions that the user makes. However, by reducing the underlying model
assumptions it can be made comparable to non-parametric setups. One of the main
weaknesses of this form of constructing the stopping procedure is that it does not directly
by itself identify the likely source of the deviations when this variety of CUSUM gets
triggered. An alternative version of the multivariate CUSUM procedure uses a separate
univariate CUSUM procedure and gets triggered when any one of the component univariate
CUSUM procedures gets triggered [20, 42]. This version allows one to identify the source
of the triggering stream. This procedure can also be used both in parametric as well as
non-parametric frame works. The non-parametric version of this CUSUM procedure is
basically the multinomial CUSUM, which is the subject matter of this paper.

Consider a sequence of independent observations of a m-dimensional multinomial ex-
periment Yn = (Y1n, Y2n, · · · , Ymn), n = 1, 2, · · · , with a common distribution, where
Yjn ∈ {0, 1} and

∑m
j=1 Yjn ∈ {0, 1}. The probabilities of success of face i being pi and

p1+p2+· · ·+pm < 1. The tracking process of face j being Wjn = max(0,Wj,n−1+2Yjn−1),
j = 1, 2, · · · ,m. The starting value Wj0, a nonnegative integer value, of the tracking
process is sometimes called the amount of head start [22]. The multinomial CUSUM stop-
ping rule with respective head start values i := (i1, i2, · · · , im) and triggering boundaries
h = (h1, h2, · · · , hm) is defined as

N i
h = min{M i1

h1,1,M
i2
h2,2, · · · ,M im

hm,1},

where M ij

hj ,j = inf{n ≥ 1 : Wjn ≥ hj} and Wj0 = ij . When all the triggering boundaries
are the same, we will denote the above stopping rule by using non-bold sub and super
scripts, N i

h. To date the average run length (ARL) of this basic CUSUM procedure is not
known. The main focus of the paper, Theorem 2.1 below, is to show that this problem
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can have a closed form solution when all the trigger constants are the same. We further
illustrate that our approach can lead to closed form results when the trigger constants
differ, albeit with more complicated closed form expressions.

The next section presents the main result and its proof. Section three provides some
examples and discussion. The paper concludes with a short summary in the last section.

2. The main result
We will use the Markov chain approach (see [4,41,44]) to obtain closed form expressions

of the ARL for the multinomial CUSUM procedure.

Theorem 2.1. For the m-dimensional CUSUM stopping rule under an m-dimensional
multinomial model with corresponding probability vector p = (p1, p2, · · · , pm) and p1 +
p2 + · · · + pm ≤ 1, consider the CUSUM stopping rule N i

h, with the common triggering
threshold h and started from the initial state i = (i1, i2, · · · , im), where 0 ≤ ij < h, and
j = 1, 2, · · · ,m, and i1 + i2 + · · · + im < h. Then the average run length is

Ep
(
N i

h

)
=

∏m
j=1Ah(pj) −

∑m
k=1 p

h−ik
k Aik

(pk)
∏m

j ̸=k Ah(pj)∑m
k=1 p

h
k

∏m
j ̸=k Ah(pj)

, where

Ah(p) := (1 − p)Ah−1(p) + hph−1 = · · ·

= (1 − p)h+1 − ph+1 − (h+ 1)(1 − 2p)ph

(1 − 2p)2 , h ≥ 1,

and we take A0(p) := 0. In particular, when i = 0, and p = p1 = p2 = · · · = pm, we
have the following link with the well known ARL, cf. [17, 27], of the one-dimensional
(Bernoulli) CUSUM procedure M0

h ,

Ep

(
N0

h

)
= 1

m
Ep

(
M0

h

)
= (1 − p)h+1 − ph+1 − (h+ 1)(1 − 2p)ph

mph(1 − 2p)2 . (2.1)

For a common head start, i = (i, i, · · · , i),

Ep

(
N i

h

)
= 1

m

{
E
(
M0

h(p)
)

−mE
(
M0

i (p)
)}

, p ≤ 1/m.

Proof: Consider the Markov chain {Wn, n ≥ 0} starting from the initial state (i1, i2, · · · ,
im). Any one of the states of the form (i1, i2, · · · , im) for which 0 ≤ ij ≤ h, such that
i1 + i2 + · · · + im = h will trigger the multivariate CUSUM stopping rule, and we consider
this set of states as the stopping state. To find the expected first passage times, Ep

(
N i

h

)
,

for all non-stopping states, (i1, i2, · · · , im), we arrange these states in some order. Let R
represent the transition probability matrix from any non-stopping state to another non-
stopping state, and let V represent the corresponding vector of expected first passage
times starting form the non-stopping states, also arranged in the same order. We need
only verify that V = 1 + VR. This system of linear equations can also be obtained by
using the Chapman-Kolmogorov equations. It turns out to be easier to just directly verify
our proposed solution. For Theorem (2.1) the structure of these equations can be divided
into essentially two types. Those equations in which the starting state is “near” to the
exiting state and the rest. The exiting states are of the type (0, 0, · · · , 0, h, 0, · · · , 0), where
h can be in any one of the m coordinates. The m states “near” to the exiting states are of
the type (0, 0, · · · , 0, h− 1, 0, · · · , 0). Note that no state, which has more than one strictly
positive entry, can be the one from which the Markov chain can exit in one step. This
is due to the fact that all our starting states are assumed to have coordinates less than
h and when one coordinate value goes up by 1 all the rest of the entries reduce by one
without going below zero.
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Since the vector p = (p1, p2, · · · , pm) will remain fixed, E will stand for Ep from now
on. The key idea of the proof can be explained for the simple case when the initial state
is the origin. We need to verify that

E
(
N0,0,··· ,0

h

)
= 1 +

(
1 −

m∑
k=1

pk

)
E
(
N0,0,··· ,0

h

)
+

m∑
k=1

pkE
(
N0,··· ,0,1,0,··· ,0

h

)
,

where, in the last term, the 1 appears in the k-th coordinate. Here if h = 1, the last term
will become zero. Using the postulated result, the right hand side becomes

1 +
(

1 −
m∑

k=1
pk

) ∏m
j=1Ah(pj)∑m

k=1 p
h
k

∏m
j ̸=k Ah(pj)

+
m∑

k=1
pk

{∏m
j=1Ah(pj) − ph−1

k A1(pk)
∏m

j ̸=k Ah(pj)∑m
k=1 p

h
k

∏m
j ̸=k Ah(pj)

}

= 1 + E
(
N0,0,··· ,0

h

)
−

m∑
k=1

{
ph

k

∏m
j ̸=k Ah(pj)∑m

k=1 p
h
k

∏m
j ̸=k Ah(pj)

}
,

which is the postulated form of the left hand side. For other initial states the verification
depends on the location of the initial state, and whether h ≤ m or h > m. We explain the
idea when h > m in the following first two cases. In the third case h may be less than m.
First note that the ARL expression may be expressed as

E
(
N i1,··· ,im

h

)
= E(Nh) −

m∑
k=1

ph
kAik

(pk)
pik

k Ah(pk)

( ∏m
j=1Ah(pj)∑m

k=1 p
h
k

∏m
j ̸=k Ah(pj)

)

= E(Nh) − E(Nh)
m∑

k=1

ph
kAik

(pk)
pik

k Ah(pk)
,

where Nh represents N0,0,··· ,0
h . Its verification has three varieties. Case A. The initial state

is a non-boundary state, i.e., all 0 < ik < h− 1 for all k. For the first case, the Markovian
property gives that

E(N i1,··· ,im

h ) = 1 +
(

1 −
m∑

k=1
pk

)
E(N i1−1,··· ,im−1

h )

+
m∑

ℓ=1
pℓE

(
N

i1−1,··· ,iℓ−1−1,iℓ+1,iℓ+1−1,··· ,im−1
h

)
.

The last term of the right hand side becomes:

E(Nh)
(

m∑
ℓ=1

pℓ

)
− E(Nh)

m∑
ℓ=1

pℓ

(
m∑

k=1

ph
kAik−1(pk)
pik−1

k Ah(pk)

−ph
ℓAiℓ−1(pℓ)
piℓ−1

ℓ Ah(pℓ)
+ ph

ℓAiℓ+1(pℓ)
piℓ+1

ℓ Ah(pℓ)

)

= E(Nh)
(

m∑
ℓ=1

pℓ

)
− E(Nh)

(
m∑

ℓ=1
pℓ

)
m∑

k=1

ph
kAik−1(pk)
pik−1

k Ah(pk)

+E(Nh)
m∑

ℓ=1

(
ph+2

ℓ Aiℓ−1(pℓ)
piℓ

ℓ Ah(pℓ)
− ph

ℓAiℓ+1(pℓ)
piℓ

ℓ Ah(pℓ)

)
.

Also we have

E
(
N i1−1,··· ,im−1

h

)
= E(Nh) − E(Nh)

m∑
k=1

ph
kAik−1(pk)
pik−1

k Ah(pk)
.

Using these expressions, along with the fact that

pkAik−1(pk) −Aik
(pk) − p2

kAik−1 +Aik+1(pk) = pik
k ,
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and some simplification gives the postulated expression for E
(
N i1,··· ,im

h

)
.

Case B. The initial state is a boundary state, “away” from the stopping state, i.e., for
some k, ik = 0 and no ij = h− 1. The Markovian property gives that

E(N i1,··· ,im

h ) = 1 +
(

1 −
m∑

k=1
pk

)
E(N [i1−1]+,··· ,[im−1]+

h )

+
m∑

ℓ=1
pℓE

(
N

[i1−1]+,··· ,[iℓ−1−1]+,iℓ+1,[iℓ+1−1]+,··· ,[im−1]+
h

)
,

where [x]+ stands for x if x > 0 and zero otherwise. The last term of the right hand side
becomes:

E(Nh)
(

m∑
ℓ=1

pℓ

)
− E(Nh)

(
m∑

ℓ=1
pℓ

)
m∑

k=1

ph
kA[ik−1]+(pk)

p
[ik−1]+
k Ah(pk)

+E(Nh)
m∑

ℓ=1

ph+1
ℓ A[iℓ−1]+(pℓ)

p
[iℓ−1]+
ℓ Ah(pℓ)

− ph
ℓAiℓ+1(pℓ)
piℓ

ℓ Ah(pℓ)

 .
The other term is

E
(
N

[i1−1]+,··· ,[im−1]+
h

)
= E(Nh) − E(Nh)

m∑
k=1

ph
kA[ik−1]+(pk)

p
[ik−1]+
k Ah(pk)

.

Plugging these into the last Markovian equation the verification holds provided the fol-
lowing equation holds.

1 = E(Nh)
m∑

k=1

ph
k

Ah(pk)

A[ik−1]+(pk)

p
[ik−1]+
k

− Aik
(pk)
pik

k

−
pkA[ik−1]+

p
[ik−1]+
k

+ Aik+1(pk)
pik

k

 .
When an ik = 0, the expression in the curly braces becomes

A[ik−1]+(pk)

p
[ik−1]+
k

− Aik
(pk)
pik

k

−
pkA[ik−1]+

p
[ik−1]+
k

+ Aik+1(pk)
pik

k

= 1.

Also, when ik > 0, the expression inside the curly braces becomes
1
pik

k

{
pkAik−1(pk) −Aik

(pk) − p2
kAik−1 +Aik+1(pk)

}
= 1

pik
k

{pk(1 − pk)Aik−1(pk) −Aik
(pk) +Aik+1(pk)}

= 1
pik

k

{
−Aik+1(pk) + (ik + 1)pik

k − ikp
ik
k +Aik+1(pk)

}
= 1,

and the verification holds.
Case C. The initial state is a boundary state, “next to” the stopping state, i.e., (0, 0, · · · ,

h − 1, 0, · · · , 0)), where h > 1. Without loss of generality consider (h − 1, 0, · · · , 0)), and
the Markovian equation becomes

E(Nh−1,0,··· ,0
h ) = 1 +

(
1 −

m∑
k=1

pk

)
E(Nh−2,0,··· ,0

h )

+
m∑

ℓ=2
pℓE

(
Nh−2,0,··· ,0,1,0,··· ,0

h

)
,
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where in the last expression the exponent 1 is in the ℓ-th coordinate. The verification
proceeds as in the previous two cases, except here we need to use the recursive property
of Ah(p), giving

p1 − p1Ah−1(p1)
Ah(p1)

= −p2
1Ah−2(p1)
Ah(p1)

+ p3
1Ah−2(p1)
Ah(p1)

+ ph
1

Ah(p1)
.

This completes the proof. �

3. Discussion & examples
In this section we present several examples dealing with some applications. In particu-

lar, an electrical engineering analogy of the multinomial CUSUM with a series network of
capacitors in a direct current, some extensions of our main theorem, a numerical exam-
ple, and a comparison of the multinomial CUSUM with the likelihood ratio multivariate
CUSUM procedure.

Example 3.1. Theorem (2.1) shows a somewhat surprising similarity with the total ca-
pacitance property of capacitors. If there are 2 (or more) capacitors connected in a series
network with individual capacitances Ep1(M0

h) and Ep2(M0
h), then the total capacitance

of the circuit is Ep1,p2(N0,0
h,h). This indicates that the multinomial CUSUM procedure can

be made more sensitive so that it triggers quickly while the component CUSUM proce-
dures are set to trigger less frequently to avoid false alarms. The triggering aspect may be
thought of as an dielectric breakdown when the electric field exceeds the rated maximum.
Just as capacitors need charging, as the CUSUM is started it goes into its charging mode.
We may now reinterpret the idea of Lucas and Crosier [22] regarding giving a head start
to CUSUM. In terms of the capacitors analogy it is essentially as if starting with a charged
capacitor. Since the charge, Q = CV , where C is the capacitance and V is the voltage,
for any fixed capacitance C, the charge is proportional to the voltage applied. In terms
of the CUSUM, the trigger constant of a CUSUM procedure controls the “capacitance”
aspect, the larger the constant the longer it will take to “charge the capacitor”. The head
start concept is essentially to start the procedure with an appropriately “charged” setting
of the univariate CUSUM. The analog of a triggered CUSUM suggests a self destruction
event of the capacitor as too high a voltage is applied to the capacitor. These analogies
from electrical engineering of the multinomial CUSUM procedure may be helpful while
tuning the multinomial CUSUM.

When the triggering constants start to differ with wider gaps the expressions for the
ARL quickly become more complicated. The following results illustrate these aspects for
the two dimensional (trinomial) models, starting with the adjacent triggering constants
case, for which the analogous conclusions of Theorem (2.1) remain valid. We omit their
completely analogous proofs.

Proposition 3.2. For the 2-dimensional multinomial (trinomial) model and the 2-dimen-
sional CUSUM stopping rule N i,j

h,h−1(p1, p2), which started from the state (i, j), where
0 ≤ i < h and 0 ≤ j < h− 1 with i+ j < h, we have

Ep1,p2

(
N i,j

h,h−1

)
= Ep1,p2

(
N0,0

h,h−1

){
1 − ph

1Ai(p1)
pi

1Ah(p1)
− ph−1

2 Aj(p2)
pj

2Ah−1(p2)

}
,

= Ep1,p2

(
N0,0

h,h−1

){
1 − Ep1(Mi))

Ep1(Mh)
− Ep2(Mj)

Ep2(Mh−1)

}
.

Ep1,p2

(
N0,0

h,h−1

)
= Ah(p1)Ah−1(p2)

ph
1Ah−1(p2) + ph−1

2 Ah(p1)
, h ≥ 2.
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Again if there are 2 (or more) capacitors connected in a series network of direct current,
with individual capacitances Ep1(M0

h) and Ep2(M0
h−1), then the total capacitance of the

circuit is Ep1,p2(N0,0
h,h−1). The complexity of the expressions of ARL increases as the gap

size between the triggering constants increases.

Proposition 3.3. For the two dimensional CUSUM stopping rule in the trinomial model
N i,j

h,h−2(p1, p2), where 0 ≤ i < h, 0 ≤ j < h− 2 with i+ j < h, we have

Ep1,p2(N0, 0
h,h−2) = Ah−2(p2)(ah−2Ah(p1) − (−1)⌊

h−1
2 ⌋(p1p2)h−2)

ah−2Ah−2(p2)ph
1 + ph−2

2 (ah−2Ah(p1) − (−1)⌊
h−1

2 ⌋(p1p2)h−2)

=
(

ah−2p
h
1

ah−2Ah(p1) − (−1)⌊
h−1

2 ⌋(p1p2)h−2
+ ph−2

2
Ah−2(p2)

)−1

.

For the CUSUM with head start, if i+ j < h− 1, the ARL, Ep1,p2(N i,j
h, h−2), is given by

Ep1,p2(N0,0
h,h−2)

(
1 − ah−2p

h−i
1 Ai(p1)

ah−2Ah(p1) − (−1)⌊
h−1

2 ⌋(p1p2)h−2
− ph−2−j

2 Aj(p2)
Ah−2(p2)

)
.

For the case i+ j = h− 1, the ARL, Ep1,p2(N i,j
h,h−2), is given by

Ep1,p2(N0,0
h,h−2)

(
1 − ah−2p

h−i
1 Ai(p1)

ah−2Ah(p1) − (−1)⌊
h−1

2 ⌋(p1p2)h−2
− ph−2−j

2 Aj(p2)
Ah−2(p2)

−(−1)⌊
h−1

2 ⌋+⌊ j−1
2 ⌋ · ajp

h−1
1 ph−2−j

2

ah−2Ah(p1) − (−1)⌊
h−1

2 ⌋(p1p2)h−2

)
where a0 = 0, a1 = 1, an = p1p2an−2 + (−1)nan−1, n ≥ 3. Or in other words,

a2k = {(p1p2 − 1
2

+ r

2
)k − (p1p2 − 1

2
− r

2
)k}/r

a2k+1 = {(p1p2 − 1
2

+ r

2
)k(r − 1) + (p1p2 − 1

2
− r

2
)k(r + 1)}/(2r),

and r = (1 − 4p1p2)1/2.

The expression for the ARL when the trigger constants differ by three, analogous results
can be derived, however, the complexity of the results increases. We omit the details. Also,
using a result of Khan [20], we get

Nh
h

a.s.→ min
{

β1
E(X1)

, · · · , βm

E(Xm)

}
, as h → ∞,

and also E(Nh
h ) has the same limit, where βi = limh

hi
h , i = 1, 2, · · · ,m. The asymptotic

approximations are of limited value since the trigger constants are usually rather small
in practice. However, the larger the dimension, m, of the process being monitored, the
larger the values of hi can be deployed while keeping the chances of a false alarm in a
manageable range.

Example 3.4. As a potential application of the multinomial CUSUM procedure, consider
detection of a misbehaving client in the 802.11 computer network communication protocol,
see van Holt and Huang [12]. Upon collision of two clients trying to access the tower, the
two clients must back off and wait a uniformly distributed random amount of time chosen
from [0, w]. In 802.11 protocol, the starting width is w = 31. Since this random number
generation mechanism is in the possession of the client, there is a potential for misbehavior
(quicker re-attempt to access the tower) and a resulting unfairly higher utilization of the
resources. Monitoring the client only by the available information regarding its sequence of
choices, gives rise to detecting any change in an underlying symmetric (fair) multinomial
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model of dimension w. The multinomial CUSUM may be used for “all sided” monitoring
or “some special sides” monitoring. When a smaller subset, consisting of m ≤ w number
of choices need to be monitored for their occurrence above and beyond their fair share,
Theorem (2.1) can be used directly where them+1-th category represents all the remaining
categories. Their respective probabilities being p1, p2, · · · , pm, pm+1 with p1 + p2 + · · · +
pm+1 = 1. For the “all sided” alternative, we may use the result of Theorem (2.1) after
taking the limit as pm+1 → 0. In the following we present some numeric performance
statistics while taking small values of m for illustration purposes.

Consider the problem of sequentially testing if an m+ 1 sided die is fair. Now one may
define

Xkℓ := 2Ykℓ − 1, ℓ = 1, 2, · · · ,m+ 1, k = 1, 2, · · · ,
where Yk = (Yk1, · · · , Yk,m+1) is a multinomial random vector representing the outcome of
a role of the die, Yk1+· · ·+Yk,m+1 = 1. Let Snℓ = S0ℓ+

∑n
k=1Xkℓ, ℓ = 1, 2, · · · ,m+1 be the

partial sum sequence where S0ℓ is used to give a head start. To detect an “upward shift”
for a specified subset of faces, say faces 1, 2, · · · ,m, we may use the resulting multinomial
CUSUM stopping rule N i

h with head start values i = (i1, i2, · · · , im) and p = (p1, · · · , pm).
As an example consider the performance of a five sided die, leading to a multinomial
CUSUM for detecting a departure from a uniform model. Our aim is to see which types of
departures from the uniform model are more difficult to detect for m = 4 for which the five
faces/categories are ordered. The null hypothesis is uniform, i.e., θi0 = 1

5 , i = 1, 2, 3, 4, 5.
We will take

max
1≤i≤m+1

|pi1 − pi0| = ∆,

to remain the same for the various alternatives. Table 1 provides the various alternatives
that we will compare with.

Table 1. Various alternative hypotheses.

Various Alternatives
Name ∆1 ∆2 ∆3 ∆4 ∆5
L-Shape ∆ −0.25∆ −0.25∆ −0.25∆ −0.25∆
Tent −0.5∆ 0 ∆ 0 −0.5∆
Slope −∆ −0.5∆ 0 0.5∆ ∆
Dome −∆ 0.666∆ 0.668∆ 0.666∆ −∆
Ramp −∆ −∆ 0 ∆ ∆

We use h = h1 = · · · = h5 for various values of h. When h is chosen so that EH0(Nh)
is sufficiently large so our ability of rejecting the null hypothesis wrongly (type I error)
is made virtually impossible, we may compare the table entries E∆(Nh) indicating which
types of alternatives take longer time to detect by the multinomial CUSUM. Table 2 gives
these expected values under the various alternatives.

Table 2. Average run lengths.

h Fair L-Shape Tent Slope Dome Ramp
3 27 23 23 21 19 18
4 112 78 75 65 59 52
5 453 228 218 184 171 134
6 1818 609 584 489 479 331
7 7279 1527 1479 1252 1328 795

It is clear that from these alternatives the L-Shape is the most difficult one for the
multinomial CUSUM to detect.
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Example 3.5. While monitoring the inner diameters of ball bearings, the recorded in-
formation is whether the diameter is within specification or larger or smaller than the
specified range. In the latter case of out of specification range the component can be
reworked to bring it back into compliance while in the former case the component is lost
and has to be discarded. The i-th observable random vector (Yi1, Yi2) has a trinomial
distribution indicating which type of out of specification may have occurred. One may
monitor the process with a standard multivariate CUSUM which uses a transformation of
the type,

Xk = ψ(Yk1, Yk2) := b1Yk1 + b2Yk2 − c, k = 1, 2, · · · ,

where b1, b2, c are chosen in some optimal way. For instance, when the null hypothesis is
p1 ≤ 0.05 and p2 ≤ 0.05 and the alternative hypothesis is p1 = π1 > 0.05 or p2 = π2 > 0.05
for specified values π1, π2 we may use the likelihood ratio method to set the constants
b1, b2, c. For the case when π1 = π2 > 0.05 the likelihood ratio method to determine ψ
makes b1 = b2, and therefore, without loss of generality, can be taken to be any fixed
positive value, which we will take to be 2. For our example we will take c = 1 since in
this case an exact expression for the ARL, E(M0

h), is available and is given by (2.1). Here
p = p1 + p2, is the probability of observing Xk equal to 1, where p1 is the probability of
diameter being above the specification and p2 being the probability of the diameter being
below the specification.

The construction of a likelihood based univariate CUSUM depends on the alternative
hypothesis. Therefore its optimality properties are guaranteed only in the framework of
correctly identifying both the null and the alternative hypotheses. When this is not valid,
by converting a multivariate version model into a univariate model, the transformation ψ
may lose some information. Alternatively, we may use the results of the main theorem to
run a two dimensional CUSUM procedure, N i,j

h , by using

Xkℓ := 2Ykℓ − 1, ℓ = 1, 2, k = 1, 2, · · · ,

Now i, j are the head start values of W0. Theorem (2.1) allows us to compare the perfor-
mances of the two procedures, Ep1+p2 (Mh) with Ep1,p2 (Nh), when p1 ≥ 0.05 or p2 ≥ 0.05
after the values of h are chosen for the two procedures to give a large roughly equal ARL
value under the null hypothesis. As the top left plot of Figure 1 shows, the two procedures
give about the same ARL for p1 = p2 = 0.05 when we take h = 9 for M and h = 7 for N .
The remaining three plots indicate that on average M9 detects faster than N7, when p1, p2,
lie in a neighborhood of 0.05 with both p1 and p2 get larger than 0.05, as should be the
case. Since the likelihood ratio principle will make b1 = b2 and hence the resulting proce-
dure M9 will be sensitive to the combined effects of the two types of shifts. N7 performs
better when one of the pi, i = 1, 2 gets larger than 0.05. Besides the N7 CUSUM gives
one more benefit. It can identify the source of shift from its one dimensional components
that triggered the stopping rule. The likelihood ratio CUSUM, however, needs further
analysis.

As another application of this model, in randomized clinical trials context it is of interest
to detect changes in the response variable that may take place during the trials. For
example, De Leval et al. [10] describe the problem of detecting the success or failure of
surgeries when the response variable has three levels: death, near miss or success. The
‘near miss’ situation indicates that certain serious complications occurred that had to
be tackled for the recovery of the patient. Similar problems arise not only in various
contexts in medical profession, [38, 39], but also in quality control and other disciplines.
For instance, in quality control while monitoring the inner diameters of ball bearings, the
recorded information is whether the diameter is within specification or larger or smaller
than the specified range. In the latter case of out of specification range the component
can be reworked to bring it back into compliance while in the former case the component
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Figure 1. E(M9) versus E(N7) for Various Alternatives

is lost and has to be discarded. This sequential monitoring problem is essentially the same
as in the above setup of De Leval et al. [10].

4. Summary & open problems
There are several varieties of multivariate CUSUM procedures and, unfortunately, not

all are known to be optimal. The likelihood based version of the CUSUM procedure
essentially turns the problem into a univariate version and hence the above cited optimality
results remain valid. Even when the CUSUM (or another) procedure is optimal, and when
it is applied to a wrong model it loses its optimality. Hence, they are sensitive to the
parametric model assumption and it is paramount that the assumed model be accurate,
which in real life is unlikely to be so. The likelihood ratio based, as well as some other
varieties of multivariate CUSUM procedures, are parametric procedures. The multinomial
CUSUM procedure, considered in this paper, is a non-parametric procedure. Also it may
be used when the information flow is qualitative.

For the multinomial CUSUM procedure there is no known closed form expression for the
average run length. The problem is generally assumed to be hopelessly intractable [20]. By
providing a closed form expression for the ARL, the paper shows that this commonly held
belief may have exceptions after all. Moreover, the paper provides a somewhat simple
method of derivation based on a multivariate version of the well-known Markov chain
approch, due to Brook and Evans [4].

The results show that the success of the approach used in this paper is dependent upon
how close the various trigger constants are to each other. We show that when the trigger
constants get farther apart the derivation becomes more complicated. We were unable to
find an algorithm that can describe the ARL as the trigger constants start to differ by
large amounts. A description of this dependence remains as an open problem.

The univariate CUSUM procedure is known to have rather large variance [1]. Another
open problem is the derivation of the variance of the multinomial CUSUM and to find
its relationship with its component univaraite CUSUMs that it is based on. Also, it
would be interesting to know how the variance of the multinomial CUSUM depends on
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the dimension of the multinomial process. These are some of the areas where a thorough
and large scale simulation study could shed some light on. Of course the continuous time
analogs of results proved in this paper is another open question.
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