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One of the primary difficulties in linear algebra, considering its widespread application 

in many different domains, is solving linear system of equations. It is nevertheless 

apparent that there is a need for a quick, effective approach that can handle a variety of 

linear systems. In the realm of large and sparse systems, iterative methods play a crucial 

role in finding solutions. This research paper makes a significant contribution by 

introducing an enhancement to the current methodology Successive and Accelerated 

Over Relaxation methods, referred to as the "Third Refinement of Successive and 

Accelerated Over Relaxation Methods." This new iterative approach demonstrates its 

effectiveness when applied to coefficient matrices exhibiting properties such as 𝑀-

matrix, irreducible diagonal dominance, positive definiteness and symmetry 

characteristics. Significantly, the proposed method substantially reduces the spectral 

radius, resulting in fewer iterations and notably enhancing the convergence rate. 

Numerical experiments were conducted to evaluate its performance compared to existing 

second refinement of Successive and Accelerated Over Relaxation methods. The 

outcomes underscore the "Third Refinement of Successive and Accelerated Over 

Relaxation" methods potentially to boost the efficiency of solving linear systems, thus 

rendering it a valuable asset within the arsenal of numerical methodologies utilized in 

scientific and engineering realms. 

 

1. Introduction 

In Numerical analysis, analyst is mainly focused on solutions to systems of Mathematics that develops, analyzes 

and implements algorithms for provision of numerical solution to mathematical problems, starting with an initial 

approximation (guess) to the solution of the problem. The applications of numerical analysis are evidently seen 

in all aspect of physical sciences and recently, some aspects of life sciences are experiencing the use of numerical 

linear algebra for evaluating data in scientific computation [1,2]. The utilization of two (2) parameters to 

accelerate convergence within the AOR method, rather than relying solely on a single parameter as is common 

in iterative methods, underscores the method's superior effectiveness compared to conventional approaches like 

the Successive Over-relaxation method. His theorem concerning irreducible weak diagonal matrices establishes 

that the AOR method tends to converge within specific parameter ranges, 0 1r  and 0 1w   particularly 

evident when the original matrix demonstrates irreducible weak diagonal dominance. Furthermore, harnessing 

these two parameters equips numerical solvers with a methodology that achieves quicker convergence rates than 

any other comparable method. whenever the original matrix is an irreducible weak diagonally dominant matrix. 

[3-6]. The development of the Accelerated Over-relaxation (AOR) method, pioneered by Hadjidimos, the 

Successive Over-relaxation (SOR) method etc., are also associated with the problem of rate of convergence. This 

has motivated many authors and researchers to examine the solution of system of linear equations by direct and 

indirect methods. These examinations gave birth to new developments and modifications of numerical methods 

by researchers and numerical analysts. In general, a linear system of equation is represented in the form; 

https://dergipark.org.tr/cankujse
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Pk g          (1) 

where 
n nP R ,

ngR  given throughout and nkR is unknown and is used to represent physical problems. 

Iterative (indirect) and direct methods can be applied to generate solutions but however, if the problem is 

generally large, then iterative method is considered, and solutions can be obtained by decomposing P into; 

    P Q S                                                     (2) 

Also, if the coefficient matrix  P  is nonsingular, then it can be expressed in its diagonal section, exclusively 

low triangular part, and exclusively up triangular part as 
P PP D L U    or P I L U    where  

1 1 1, ,P PD D I D L L D U U     .  A consistent division of the square matrix  P into Q S  is necessary 

for iteratively solving equation (1). This division ensures that substituting (2) into (1) yields the subsequent 

expressions:   

1 1

(Q S) k  g

Qk S

k Q

k g

S gk Q 

 

 

 

                                                                                                       (3) 

Putting (3) into iterative format, the stationary first-degree iterative method which can be used to solve form (1), 

can be expressed as; 

                                    
   1 1 1n n

Sk Q k Q g
   

 
   1

         
n n

k Ck d

                                                                                                            (4) 

. 

where 1C SQ  and 1d gQ  [7]. Equation (4) is the generalized iterative format for solving linear problem such 

as (1). In this context, 1C SQ  represents the iteration matrix that will be employed to evaluate spectral radius, 

and 1d gQ  stands as column vector associated with the iterative technique. Thus, this investigation aims to 

establish a linear static iterative approach following a similar structure as described above. Consequently, due to 

frequent demands by scientist for numerical methods that are efficient and possess a high convergence rate, 

mathematicians have in more recent times discover the need to modify these existing methods to suit their 

requirements [7-9]. 

For this research, emphasis shall be laid on the further refinements of the SOR method and AOR method. The 

first and second refinement of each of these methods has proven to improve effectiveness and converges faster 

compared to the standard approach earlier developed; hence, there exist a need for further modification. 

The research in enhancing linear system solving through third refinement of successive and accelerated over-

relaxation methods addresses a crucial gap in current methodologies. Despite existing advancements in iterative 

techniques, there remains a need for further refinement to achieve faster and more accurate solutions, particularly 

for large and sparse linear systems. Motivated by the increasing complexity of real-world problems requiring 

efficient computational solutions, this study aims to build upon prior research by introducing a novel refinement 

to successive and accelerated over-relaxation methods. The novelty of this approach lies in its strategic integration 

of both successive and accelerated over-relaxation techniques, leveraging their respective strengths to enhance 

convergence rates and solution accuracy. By systematically analyzing the performance of the proposed 

refinements, this study contributes to the optimization of iterative methods for linear system solving, offering 

valuable insights for practitioners and researchers in numerical analysis and computational mathematics. 

A series of advancements in numerical approaches for addressing linear systems of equations have been 

developed and refined. These innovations include the creation of an Extended Accelerated Over Relaxation 

(EAOR) method [10], tailored to efficiently handle large and sparse linear systems. Furthermore, a refined version 

of this method, known as the Extended Refined Accelerate Over Relaxation (REAOR), has been introduced to 

enhance linear system solutions [11]. Simultaneously, enhancements have been made to the Classical Iterative 
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Algorithm, resulting in a more effective approach for solving linear equations [12]. Additionally, a Second (2nd) 

Refined Accelerate Over Relaxation Method has been proposed, aiming to optimize the resolution of linear 

systems [13]. The exploration of numerical techniques extends to methods such as the SOR Algorithm, providing 

insights into the numerical solution of linear equations [14]. Moreover, efforts have been directed towards 

refining traditional approaches like the Jacobi Method, with the introduction of a Third Refinement for resolving 

linear systems [15]. Similarly, an Accelerated Iterative Technique has been developed, specifically focusing on 

enhancing the Gauss-Seidel Algorithm for linear system resolution [16]. The scope of advancements 

encompasses addressing complex equations, as evidenced by the introduction of an Accelerated Over-Relaxation 

Partitioning Technique tailored for symmetric tensor equations [17]. Furthermore, advancements include 

refinements in the Accelerated Over Relaxation Method [18] and the introduction of Iterative Methods in 

Numerical Analysis [19]. Throughout these developments, a common theme emerges: a dedication to refining 

numerical methods for more efficient and accurate solutions to linear systems of equations. 

The paper begins with an Introduction section, providing background information on the problem under 

investigation and outlining the research objectives. Following this, the Methodology section introduces the 

numerical methods under study, namely the Third Refine Successive Overrelaxation (TRSOR) Method and the 

Third Refinement of Accelerated Overrelaxation (TRAOR) Method. Detailed derivations of these methods are 

presented, along with a comprehensive convergence analysis and descriptions of computational algorithms 

employed. The subsequent section, Numerical Examples presents practical applications of TRSOR and TRAOR 

methods through various numerical examples. The results are thoroughly analyzed, including comparisons with 

existing methods where relevant, and the implications of the findings are discussed in detail. Lastly, the 

concluding segment provides a comprehensive overview of the key findings of the study, along with a discussion 

of the significance and acknowledges limitations. 

2. Methodology 

2.1. Derivation of Third Refinement Successive Over-relaxation (TRSOR) Technique 

Considering the SOR technique [1]; 

        
1

1 1 1ˆ ˆn n n
k k I wL w g Pk


      

                                      
(6) 

Further refinement of the above method gives a method called Refinement of SOR (RSOR) [4] 

       
1

1 2 ˆn n

w wk L k I L w I wL g



   

                                         
(7) 

Also the below equation is known as Second Refinement of SOR (SRSOR) 

     
1

1 3 2 ˆn n

w w wk L k I L L w I wL g



                  (8) 

Remodeling (6) by replacing 
( 1)nk 

 in (8) to obtain; 

          

  

1 1
1 3 2 3 2

1

ˆ ˆ ˆ

ˆ

n n n

w w w w w wk L k I L L w I wL g I wL w g P L k I L L

w I wL g

 




                






     
1

1 4 2 3 ˆ (9)
n n

w w w wk L k I L L L w I wL g



       

       

Equation (9) is called Third refinement of SOR (TRSOR) method, where 

   
4

1
4 ˆ ˆ1wL I wL w I wU

     
   

 

   
3

1
3 ˆ ˆ1wL I wL w I wU

     
   
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   
2

1
2 ˆ ˆ1wL I wL w I wU

     
   

 

   
1

ˆ ˆ1wL I wL w I wU
     
   

 

2.2. Derivation of Third Refinement Accelerated Over-relaxation (TRAOR) Technique 

The classical Accelerated Over Relaxation (AOR) technique governed by  

     
1

1

w,
ˆn n

rk M k w I rL g



  

                                                                             
(10) 

Then it results to its refinement by the relation equation (11) [3]; 

      11 1( 1) ˆn nnk k w I rL g Pk
                                                                   (11) 

Which can be expressed as  

     
1

2

w, w,
ˆn n

r rk M k I M k I rL g


   
                                                

(12) 

Remodeling (10) gives 

         
1

1 3 2

w, w, w,
ˆn n n n

r r rk M k I M k M k w I rL g


      
 

                              (13) 

Equation (13) becomes Second Refinement of AOR (SRAOR) [6], substitute (13) in equation (11) to obtain; 

            
       

1 11 3 2

w, w, w,

1
3 2

w, w, w,

ˆˆ

ˆ

n n n n

r r r

n n n

r r r

k M k I M k M k I rL g w I rL g A

M k I M k M k w I rL g


 



        
 

          

(14) 

Further mathematical algebraic simplification gives; 

            
1

1 4 2 3

w, w, w, w,
ˆn n n n n

r r r rk M k I M k M k M k w I rL g


       
         

(15) 

Equation (15) is called Third Refinement of AOR (TRAOR) method, where 

     
4

1
4

w,
ˆ ˆ ˆ1rM I rL w I w r L wU

       
   

 

     
3

1
3

w,
ˆ ˆ ˆ1rM I rL w I w r L wU

       
   

 

     
2

1
2

w,
ˆ ˆ ˆ1rM I rL w I w r L wU

       
   

 

     
1

w,
ˆ ˆ ˆ1rM I rL w I w r L wU

       
   

 

 

2.3. Convergence Analysis 

2.3.1. Convergence of TRSOR 

Theorem 1: If P is irreducible matrix with limited diagonal control, then Successive Refinement of SOR 

technique achieves convergence regardless of the starting estimate selected. 

Proof: Utilizing the concept introduced in [20], the proof is examined in the following manner: 

Let k
  represents the actual solution and assume  

1nk 
 to represent the  1

th
n   estimate concerning the true 

solution to  with respect to pk g  by the method of refinement format then we have  

1 1 1ˆ ˆ|| k || || k (I L) (g ) ||n nk w w Pk k           
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1 1ˆ ˆ|| k || || g || || w(I ) ||n k Pk wL       

If we observe 
1|| k || 0n k    and ˆ|| (g ) || 0Pk   then 

1|| (k || 0n k    

Hence, the Successive Refinement of SOR (RSOR) method converges to the solution of the linear system. 

Theorem 2: if P is irreducible matrix with limited diagonal control, then 
4|| C || || C || 1    

Verification: Contemplate 

     ||
4|| || L ||rC     

                =
4 2 2|| L || || L || . || L ||r r r    

                
4|| C || 1   

Theorem 3: If P is i irreducible matrix with limited diagonal control t, then || || || ||C C   

Verification: According to proposition (theorem) 3, it is observed that 
4

2 2

2

|| || || ||

|| || . || ||

|| || || ||

C C

C C

C C

 

 

 





 

 

Theorem 4: The Third Refinement Successive Over Relaxation (TRSOR) technique converges quicker 

compared to the improvement of Successive Over Relaxation (RSOR) technique when refinement of SOR 

technique achieves convergence. 

Proof  

Let k  is the solution of Pk g  obtained by Third Refinement Successive Over Relaxation (TRSOR) technique 

and k
 be the solution obtained by Pk g  from  

1 4 2 3 1ˆ(1 ) w(1 L) gn n

w w w wk L k r L L L w        

We have 

4

k Ck d

k L k d





 

 
 

Considering  
1 4

4 4

4 4

4

4

1 4

4

4

(k ) d

(k ) (L d)

(k )

(k )

|| || || L (k ) ||

|| L || || (k ) ||

|| L || || (k ) ||

n

n

w w

n

w w

n

w

n

w

n n

w

n

w

n

w

k k L k d k

L k k L k

L k k k

L k k k

L k

k k k

k

k





 

 





 

 



 



 

   

    

    

   

 

  

 

 

 

Hence the theorem (3) and (4) shows that Third Refinement of Successive Over Relaxation (TSOR) method 

converges faster than Refinement of Successive Over Relaxation (SOR) method. 

2.3.2. Convergence of TRAOR 

Theorem 5: If P is irreducible matrix with weak diagonal dominance, then the accelerated Refinement of RAOR 

method converges for any arbitrary choice of the initial approximation.  
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Proof: 

Let k
 be the real solution and let 

1nk 
 be the  1

th
n   approximation to the solution of pk g  by the method 

of refinement format then we have  

1 1 1

,w
ˆ ˆˆ|| k || || k (I M )(I L) (g ) ||n n

rk r w Pk k            

1 1

,w
ˆ ˆˆ|| k || || g || || (I )(I ) ||n

rk Pk r M wL        

We know 
1|| k || 0n k    and ˆˆ|| (g ) || 0Pk   then 

1|| (k || 0n k    

Hence, the Accelerated Refinement of AOR (ARAOR) method converges to the solution of the linear system. 

Theorem 6: if P is irreducible matrix with weak diagonal dominance, then 
4|| C || || C || 1    

Proof 

Consider  
4

,w

2 2

,w ,w

4 4

,w

|| || || M ||

|| M || . || M ||

|| M || || C || 1

r

r r

r

C  

 

 









 

Theorem 7: If P is irreducible matrix with weak diagonal dominant, then || || || ||C C   

Proof  

By theorem 7 we have  
4

2 2

2

|| || || ||

|| || . || ||

|| || || ||

C C

C C

C C

 

 

 





 

 

Theorem 8: The Third Refinement of Accelerated Over Relaxation (TRAOR) method converges faster than the 

Refinement of Accelerated Over Relaxation (AOR) method when refinement of AOR method convergent. 

Proof  

Let k  is the solution of ˆ ˆPk g  obtained by RTAOR method and k
 be the solution obtained by ˆPk g  from  

1 4 2

,w ,w ,w
ˆ ˆ(1 M )(1 )(1 L)gn n

r r rk M k r M w       

We have 

4

,wr

k Ck d

k M k d





 

 
 

Considering  
1 4

,w

4 4

,w ,w

4 4

,w ,w

4

,w

4

,w

1 4

,w

4

,w

4

,w

(k ) d M

(k ) (M d)

M ( )

( )

|| || || ( ) ||

|| || || ( ) ||

|| || || ( ) ||

n

r

n

r r

n

r r

n

r

n

r

n n

r

n

r

n

r

k k M k d k

M k k k

M k k k

k k k k

M k k

k k M k k

M k k

M k k



 

 





 

 



 



 

   

    

    

   

 

  

 

 

 

Hence the theorem (7) and (8) shows that RTAOR method converges faster than RAOR method. 
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2.4. Computational Algorithm 

2.4.1. Algorithm of TRSOR 

1. Key in matrix P , opt for an initial estimate 
 0

k . 

2. Select an appropriate step size for with the range (0 2)w w   

3. Derive L , U  and 𝐷 from matrix P  and 
1D P

 

4. Compute 
   

1
1 4 2 3 ˆn

w w w wk L I L L L w I wL g



         and obtain  

   
4

1
4 ˆ ˆ1wL I wL w I wU

     
   

 

   
3

1
3 ˆ ˆ1wL I wL w I wU

     
   

 

   
2

1
2 ˆ ˆ1wL I wL w I wU

     
   

 

   
1

ˆ ˆ1wL I wL w I wU
     
   

 

5. Compute  
1

2 3 ˆ
w w wR I L L L w I wL g



        

6. Compute 4

wS L  

7. Using maple compute 

 :   . (k[ ]);

   0   

    k[   1] :  (  . (k[ ]))  R;

 ;

K S i

for i from to N do

i S i

end do



  
 

8. Obtain the desired result after the tolerance 

2.4.2. Algorithm of TRAOR 

1. Enter matrix P , select an initial guess  0
k . 

2. Select an appropriate step size for with the range (0 1)r r   

3. Obtain L , U  and 𝐷 from matrix P  and 
1D P

 

4. Compute
            

1
1 4 2 3

w, w, w, w,
ˆn n n n n

r r r rk M k I M k M k M k w I rL g


       
   and obtain  

     
4

1
4

w,
ˆ ˆ ˆ1rM I rL w I w r L wU

       
   

 

     
3

1
3

w,
ˆ ˆ ˆ1rM I rL w I w r L wU

       
   

 

     
2

1
2

w,
ˆ ˆ ˆ1rM I rL w I w r L wU

       
   

 

     
1

w,
ˆ ˆ ˆ1rM I rL w I w r L wU

       
   

 

5. Compute 
        

1
2 3

w, w, w,
ˆn n n

r r rR I M k M k M k w I rL g


     
   

6. Compute 
4

w,rS M  
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7. Using maple compute  

 :   . (k[ ]);

   0   

    k[   1] :  (  . (k[ ]))  R;

 ;

K S i

for i from to N do

i S i

end do



  

 

8. Obtain the desired result after the tolerance. 

 

3. Numerical Examples 

Example 1: Consider the system of linear equation of irreducible diagonal dominance matrix with weak 

diagonal dominance, Pk g  

         

7.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 0.0

1.0 7.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0

0.0 1.0 7.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0

1.0 0.0 1.0 7.0 1.0 0.0 1.0 0.0 1.0 0.0

0.0 1.0 0.0 1.0 7.0 1.0 0.0 1.0 0.0 1.0

1.0 0.0 1.0 0.0 1.0 7.0 1.0 0.

   

    

    

   

    

   

1

2

3

4

5

6

7

8

9

10

0 1.0 0.0

0.0 1.0 0.0 1.0 0.0 1.0 7.0 1.0 0.0 1.0

1.0 0.0 1.0 0.0 1.0 0.0 1.0 7.0 1.0 0.0

0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 7.0 1.0

0.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 7.0

k

k

k

k

k

k

k

k

k

k

 
 
 
 
 
 
 
 

 
     
 
     
 

    
 
     

7.00

3.00

2.00

2.00

2.00

2.00

2.00

2.00

2.00

2.00

   
   
   
   
   
   
   
    
   
   
   
   
   
   

  
  

 

 

Example 2: Consider the system of linear equation of irreducible matrix with limited diagonal control analyzed 

through Pk g  

 

1 1 1 1
1 0 0 0 0 0

7 7 7 7

1 1 1 1 1
1 0 0 0 0

7 7 7 7 7

1 1 1 1 1
0 1 0 0 0

7 7 7 7 7

1 1 1 1 1
0 1 0 0 0

7 7 7 7 7

1 1 1 1 1
0 0 1 0 0

7 7 7 7 7

1 1 1 1 1
0 0 1 0 0

7 7 7 7 7

1 1 1 1 1
0 0 0 1 0

7 7 7 7 7

1 1 1 1 1
0 0 0 1 0

7 7 7 7 7

1 1 1 1 1
0 0 0 0 1

7 7 7 7 7

1 1 1 1
0 0 0 0 0 1

7 7 7 7

   


    

    

    

    

    

    

    

    

   



1

2

3

4

5

6

7

8

9

10

11.90

9.32

8.09

9.32

8.09

8.32

8.09

8.32

8.09

8.32

k

k

k

k

k

k

k

k

k

k





 
 
 
    
    
    
    
    
    
    
     
    
    
    
    
    
    

   
   

 
 
 
 
 


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Example 3: Consider the system of linear equation of irreducible matrix with weak diagonal dominance [17], 

Pk g  

5.0 1.0 0.0 0.0 1.0 0.0 0.0 1.0

1.0 5.0 1.0 0.0 0.0 0.0 1.0 1.0

0.0 1.0 5.0 1.0 0.0 1.0 1.0 0.0

1.0 0.0 1.0 5.0 1.0 0.0 0.0 1.0

1.0 1.0 0.0 0.0 5.0 1.0 0.0 1.0

0.0 0.0 1.0 1.0 0.0 5.0 1.0 1.0

1.0 0.0 0.0 0.0 1.0 0.0 5.0 1.0

1.0 0.0 1

  

   

  

  

   

  

  

 

1

2

3

4

5

6

7

8

2.0

1.0

4.0

13.0

4.0

2.0

9.0

.0 0.0 1.0 0.0 1.0 5.0 12.0

k

k

k

k

k

k

k

k

    
    

    
    
    
    
    
    
    
    
    

         

 

Example 4: Consider the system of linear equation of irreducible diagonal dominance matrix with weak diagonal 

dominance as considered by [18].
 
Pk g  

 

          

8 1 0 1 0 0 0 1 0 1 0 0

1 8 1 0 1 0 1 0 1 0 1 0

0 1 8 0 0 1 0 1 0 0 0 1

1 0 0 8 1 0 1 0 0 0 1 0

0 1 0 1 8 1 0 1 0 1 0 1

0 0 1 0 1 8 0 0 1 0 1 0

0 1 0 1 0 0 8 1 0 1 0 0

1 0 1 0 1 0 1 8 1 0 1 0

0 1 0 0 0 1 0 1 8 0 0 1

1 0 0 0 1 0 1 0 0 8 1 0

0 1 0 1 0 1 0 1 0 1 8 1

0 0 1 0 1 0 0 0 1 0 1 8

  
 
   
  
 
  
   
 

 
  


  


 

  


  
   

1

2

3

4

5

6

7

8

9

10

11

12

9

9

21

18

9

13

23

33

13

18

7

19

k

k

k

k

k

k

k

k

k

k

k

k

   
   

   
   
   
   
   
   
   

   
   
   
   


   
   
   
   

   
  

 

 

The numerical applications (problem 1, 2, 3 and problem 4) were performed using Maple 2023 software, with 

the outcomes depicted in the subsequent tables 

Table 1: Spectral Radii of SRSOR and TRSOR for Example 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

w Existing Method 

 SRSOR  

Proposed Method 

 TRSOR  

0.2 0.8248211990 0.7735346145 

0.3 0.7368601407 0.6655490781 

0.4 0.6491147923 0.5620332486 

0.5 0.5620442796 0.4638320019 

0.6 0.4762257416 0.3718922736 

0.7 0.3923879455 0.2872681930 

0.8 0.3114576831 0.2111213065 

0.9 0.2346261799 0.1447111382 

1.0 

 

1.1 

0.1634493312 

 

0.07132445823 

0.08936707228 

 

0.02957907864 



Audu et al.  CUJSE 21(01): 018-032 (2024) 

 

27 

 

Table 2: SRAOR vs. TRAOR Spectral Radii for Example 1 

 

 

 

 

 

 

 

Table 3: Convergence Summary Result for Example 1 

Iterational 

Approaches 
Iterations 

Computational 

Time 

(seconds) 

Convergence  

Rate 

SRAOR              10 1.534 3.000000000 

TRAOR               7            0.935 4.000000000 

SRSOR              17            2.206 1.146761518 

TRSOR              11            1.783 1.529015358 

    

 

 

 

Table 4: SRSOR vs. TRSOR Spectral Radii for Example 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R w Existing Method

 SRAOR  

Proposed Method

 TRAOR  

0.10 0.20 0.8186652779 0.7658466695 

0.20 0.30 0.7275048028 0.6543063770 

0.30 0.40 0.6365155358 05475351578 

0.40 0.50 0.5461999305 0.4464801829 

0.50 0.60 0.4571977830 0.3522130862 

0.60 0.70 0.3703286835 0.2659396758 

0.70 0.80 0.2866525676 0.1890055026 

0.80 0.90 0.2075602145 0.1228925288 

0.90 

1.00 

1.00 

1.10 

0.1349180507 

0.0010000000 

0.06919797899 

0.00010000000 

W Existing Method 

 SRSOR  

Proposed Method 

 TRSOR  

0.20 0.819304825 0.7666444908 

0.30 0.7288723568 0.6559468327 

0.40 0.6389006199 0.5502724198 

0.50 0.5498986546 0.4505159896 

0.60 0.4625033028 0.3576732420 

0.70 0.3775153634 0.2728430153 

0.80 0.2959495588 0.1972227132 

0.90 0.2191063124 0.1320909873 

1.00 

1.10 

0.1486809386 

0.08694597348 

0.7876629038 

0.03851819840 
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Table 5: Spectral Radii of SRAOR and TRAOR for Example 2 

 

 

 

 

 

 

 

 

 

 

Table 6: Convergence Summary Outcome for Example 2 

Iterational 

Approaches 
Iterations 

Computational 

Time 

(seconds) 

Convergence  

Rate 

SRAOR           20 1.563 1.229825055 

TRAOR           11 0.795 1.639766739 

SRSOR           32 2.533 1.060750526 

TRSOR                                  27 1.703 1.414334034 

 

Table 7: Spectral Radii of SRSOR and TRSOR for Example 3 

             

 

 

 

 

 

 

 

 

 

 

 

r w Existing Method

 SRAOR  

Proposed Method

 TRAOR  

0.1 0.2 0.8129455196 0.7587206817 

0.2 0.3 0.7192270676 0.6443987627 

0.3 0.4 0.6259407953 0.5354402438 

0.4 0.5 0.5336453017 0.4328495000 

0.5 0.6 0.4430485409 0.3377549693 

0.6 0.7 0.3550538836 0.2514156781 

0.7 0.8 0.2708261105 0.1752214931 

0.8 0.9 0.1918908784 0.1106808386 

0.9 

1.0 

1.0 

1.1 

0.1202964126 

0.0589080905 

0.05938410771 

0.02292098414 

w Existing Method 

 SRSOR  

Proposed Method 

 TRSOR  

0.2 0.8072962516 0.7676420671 

0.3 0.7117884597 0.6571924881 

0.4 0.6174788469 0.5515906177 

0.5 0.5249791833 0.4517308433 

0.6 0.4350421866 0.35861629932 

0.7 0.3485994450 0.2453403168 

0.8 0.2668134036 0.1717685003 

0.9 0.1911515211 0.1101125984 

1.0 

 

1.1 

0.1234986926 

 

0.06634634169 

0.06150113726 

 

0.02685896715 
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Table 8: Spectral Radii of SRAOR and TRAOR for Example 3 

 

 

 

 

 

 

 

 

 

 

 

 

Table 9: Convergence Summary Result for Example 3 

Iterative 

Approaches 
Iterations 

Computational 

Time 

(Seconds) 

Convergence  

Rate 

SRAOR 48                2.085 1.387620464 

TRAOR 26                1.538 1.850160619 

SRSOR 60                2.946 1.178183019 

TRSOR                   49                2.193 1.570910692 

 

Table 10: Spectral Radii of SRSOR and TRSOR for Example 4 

        

               

 

 

 

 

 

 

 

 

              

r w Existing Method

 SRAOR  

Proposed Method

 TRAOR  

0.1 0.2 0.8006618980 0.7434735952 

0.2 0.3 0.7017857461 0.6236477944 

0.3 0.4 0.6041288789 0.5107081582 

0.4 0.5 0.5083654000 0.4057276876 

0.5 0.6 0.4153354581 0.3098836618 

0.6 0.7 0.3260945782 0.2244526673 

0.7 0.8 0.2419842642 0.1507935738 

0.8 0.9 0.1647388795 0.09030839909 

0.9 

1.0 

1.0 

1.1 

0.09666217010 

0.04096184747 

0.04436175524 

0.01412015231 

w Existing Method 

 SRSOR  

Proposed Method 

 TRSOR  

0.2 0.7741859128 0.7108757281 

0.3 0.6450597945 0.5816180606 

0.4 0.5618774393 0.4636484290 

0.5 0.4626042074 0.3577772908 

0.6 0.3691197529 0.2647827664 

0.7 0.2825094927 0.1853719679 

0.8 0.2040426492 0.1201234891 

0.9 0.1352141216 0.06940052165 

1.0 

1.1 

0.07780478502 

0.03398394145 

0.03321557253 

0.01100774421 
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Table 11: Spectral Radii of SRAOR and TRAOR for Example 4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 12: Convergence Summary Result for Example 4 

Iterative 

Approaches 
Iterations 

Computational Time 

(Seconds) 

Convergence  

Rate 

SRAOR                  27 1.096 1.780235398 

TRAOR                  18 0.653 3.373647197 

SRSOR                  31 1.502 1.468726253 

TRSOR                  29               1.149 1.958301671 

 

3.2. Discussion of Results  

Spectral Radii Outcome: Tables 1, 2, 4, 5, 7, 8, 10, and 11 collectively demonstrate the spectral radii of various 

iterative methods across different examples (1-4). The consistent observation across these tables is All methods 

exhibit spectral radii below 1, indicating their convergence properties. This implies that regardless of the specific 

example or method employed, all iterative approaches are convergent. However, the key factor influencing the 

speed of convergence lies in the proximity of their spectral radii to zero. As emphasized by the established fact, 

as the spectral radius approaches zero, the convergence speed increases. Notably, it's noticed that the spectral 

radii for the derived TRAOR and TRSOR methods are smaller compared to spectral radii of the existing SRSOR 

and SRAOR. This is attributed to the fact that their spectral radii are closer to zero, suggesting a potentially faster 

convergence rate. Therefore, while these tables affirm the convergent nature of the methods, they also underscore 

the importance of spectral radius proximity to zero in determining the speed of convergence. Tables 1, 2, 4, 5, 7, 

8, 10, and 11 serve as valuable references for understanding the convergence behavior of iterative methods across 

different scenarios, aiding in the selection of the most efficient approach based on spectral radius proximity to 

zero. 

Convergence Outcome (Tables 3, 6, 9 and 12): The tables provide a comprehensive comparison of iterative 

methods across multiple examples, focusing on their convergence characteristics and computational efficiency. 

Across Examples 1, 2, 3, and 4, it's evident that iterative approaches with lower iteration counts generally achieve 

faster convergence to a solution. This is reflected in shorter computational times required for convergence. For 

r w Existing Method

 SRAOR  

Proposed Method

 TRAOR  

0.1 0.2 0.7673877686 0.7025649780 

0.2 0.3 0.6559695871 0.5699607370 

0.3 0.4 0.5487872193 0.4493023099 

0.4 0.5 0.4467258764 0.3414979854 

0.5 0.6 0.3508227329 0.2474288309 

0.6 0.7 0.2623011440 0.1679062696 

0.7 0.8 0.1826178354 0.1826178354 

0.8 0.9 0.1135333246 0.1135333246 

0.9 

1.0 

1.0 

1.1 

0.05723259634 

0.01658687617 

0.02205589052 

0.00423012112 
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instance, in Example 1, TRAOR's seven iterations led to faster convergence compared to SRAOR's ten iterations, 

despite similar computational times. This trend persists across Examples 2, 3, and 4, indicating the consistency 

of the observation. Such insights are crucial for informed decision-making in selecting the most suitable iterative 

method based on specific convergence requirements and computational constraints. 

The Findings: The findings reveal that all examined iterative approaches exhibit spectral radii less than 1, 

indicating their convergence across the examples studied. The speed of convergence varies based on the 

proximity of the spectral radii to zero, with methods having spectral radii closer to zero converging faster. 

Particularly, TRAOR and TRSOR demonstrate smaller spectral radii compared to existing methods like SRSOR 

and SRAOR, suggesting potentially faster convergence rates. The numerical results show how better and efficient 

the newly proposed methods are in terms of the significant reduction in the number of iterations. These findings 

underscore the significance of spectral radius proximity to zero in determining convergence speed and highlight 

the importance of considering this factor when selecting an iterative method for problem-solving. 

4. Conclusion 

In this research, the main contribution lies in the development and implementation of two novel methods, namely 

TRSOR and TRAOR, which significantly enhance the accuracy and efficiency of solving linear systems. These 

methods are derived through the refinement of existing SRSOR and SRAOR techniques. The key findings 

demonstrate the superior effectiveness and reliability of TRSOR and TRAOR in addressing linear system 

problems, even in scenarios involving Irreducible diagonal dominance in coefficient matrices. Moreover, the 

rigorous establishment of convergence for TRAOR through several theorems adds robustness to the newly 

proposed method. Validation of the findings is achieved through comparisons with examples considered by other 

researchers, reinforcing the credibility of the results.  Numerical investigations conducted indicate that TRSOR 

and TRAOR yield solutions closer to exact values and exhibit reduced spectral radii, as evidenced in Table 12. 

These observations translate to enhanced convergence and efficiency when compared to SRSOR and SRAOR, 

respectively. Particularly noteworthy is the faster convergence rate of TRAOR compared to its Successive Over 

relaxation counterpart. As a recommendation stemming from the study's outcomes, TRAOR is identified as the 

preferred method over TRSOR for solving large and sparse linear systems. Thus, the research findings underscore 

that these newly developed methods offer a notable enhancement in accuracy for approximating solutions to 

linear system problems, representing a significant advancement in the field. It is worthy to note that this paper 

has contributed immensely to further bridge the gap in convergence rate and minimization of spectral radius, 

thereby making computation of problems involving linear systems faster and more accurate. 
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