

SAKARYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ DERGİSİ

SAKARYA UNIVERSITY JOURNAL OF SCIENCE

e-ISSN: 2147-835X

Dergi sayfası: http://dergipark.gov.tr/saufenbilder

Geliş/Received
06-04-2017
Kabul/Accepted
01-06-2017

<u>Doi</u> 10.16984/saufenbilder.304303

Some properties of t-intuitionistic fuzzy H_y-rings

Gökhan Çuvalcıoğlu*

ABSTRACT

This research redefined T-intuitionistic fuzzy H_v -subring of a ring R and obtained some new related properties. Some of their fundamental relation properties were studied. Especially, under idempotent property, it is given that any IFS defined by a subset of H_v is T-IF H_v -subring of a ring if and only if H is a H_v -subring of the ring. Using this property, the main theorem was given as for a T-intuitionistic fuzzy H_v -subring of any ring with continuous t-norm, a factor subring formed using the hyperring is a T-intuitionistic H_v -subring.

Keywords: H_v-rings, fuzzy H_v-group, intuitionistic fuzzy H_v-ideal, t-norm.

T-intuitionistic fuzzy H_v - halkaların bazı özellikleri

ΟZ

Bu çalışmada, bir R halkası için T-intuitionistic fuzzy H_v -althalka kavramı yeniden tanımlandı ve bazı yeni özellikleri elde edildi. Bu yapıların bazı temel özellikleri çalışıldı. Özellikle, idempotent özelliği altında, H_v nin bir alt kümesi ile tanımlı bir intuitionistic fuzzy kümenin T-intuitionistic H_v -althalka olması için gerek yeter koşulun H alt kümesinin bir H_v -althalka olması gerektiği gösterilmiştir. Bu özellik yardımı ile bir halkanın, sürekli t-norm ile tanımlanmış T-intuitionistic fuzzy H_v -alt halkası için, bir hiperhalkanın faktör halkasının yine bir T-intuitionistic fuzzy H_v -halka olduğu çalışmanın ana teoremi olarak verilmiştir.

Anahtar Kelimeler: H, -halkalar, fuzzy H, -grup, intuitionistic fuzzy H, -ideal, t-norm.

1. INTRODUCTION

Zadeh is first researcher who defined the fuzzy set notion of a nonempty set, [10]. After this definition, several author given some generalizations of this structure. Intuitionistic fuzzy sets were defined as two member and nonmember degrees by Atanassov [1]. The hyperstructure theory has been firstly introduced by Marty, [7]. This new field have been worked on modern algebra, also several authors developed it, [9]. Vougiouklis gave the definition of H_{ν} -rings, [9]. H_{ν} -ring is another type algebraic systems which is satisfying the ring

structure axioms. So, it satisfied the properties of the concept of ring theory. The special concept of fuzzy subhypergroup especially the fuzzy H_{ν} -group were studied by Davvaz [3]. Davvaz defined the fuzzy H_{ν} -ideal of an H_{ν} -ring. Davvaz, Dudek were firstly defined the intuitionistic fuzzy H_{ν} -ideal of an H_{ν} -ring, [4]. This research redefined T-intuitionistic fuzzy H_{ν} -subring of a ring R using continuous t-norms. After this definition, we obtained more general consequences than the previous studies. We gave a main theorem which is show

Gökhan Çuvalcıoğlu, Mersin Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bölümü, Mersin - gcuvalcioglu@mersin.edu.tr

^{*} Sorumlu Yazar / Corresponding Author

that the property being $\,H_{\nu}$ -subring of a T-intuitionistic fuzzy subring is also moved on the factor rings.

Definition: [10] Let X be a universal set is nonempty then $\mu: X \to [0,1]$ is called a fuzzy set on X. The complement of the fuzzy set μ is the fuzzy set which is given by $1-\mu(x)$ for all $x \in X$, denoted by μ^c .

Definition: [1] X be set. An intuitionistic fuzzy set (IFS) on a set X is an set as follow,

$$A = \{ \langle x, \mu_A(x), \nu_A(x) \rangle : x \in X \}$$

In here, where $\mu_A(x)$, $(\mu_A: X \rightarrow [0,1])$ is the membership degree of x in A, $\nu_A(x)$, $(\nu_A: X \rightarrow [0,1])$ is the non-membership degree of x and where μ_A and ν_A satisfy the following condition:

$$\mu_{A}(x) + \nu_{A}(x) \le 1$$
, for all $x \in X$.

We will show an IFS as $A = (\mu_A, \nu_A)$ instead of $A = \{\langle x, \mu_A(x), \nu_A(x) \rangle : x \in X\}.$

Definition: [2] Let $\ A=\left(\mu_A,\nu_A\right)$ and $\ B=\left(\mu_B,\nu_B\right)$ be IFSs in X. Then

- 1. $A \subseteq B$ iff $\mu_A(x) \le \mu_B(x)$ and $\nu_A(x) \ge \nu_B(x)$ for all $x \in X$.
- 2. $A^c = \{ \langle x, v_A(x), \mu_A(x) \rangle : x \in X \}$
- 3. $A \cap B = \{\langle x, \mu_{A}(x) \wedge \mu_{B}(x), \nu_{A}(x) \vee \nu_{B}(x) \rangle : x \in X\}$
- 4 $A \cup B = \{ \langle x, \mu_A(x) \lor \mu_B(x), \nu_A(x) \land \nu_B(x) \rangle : x \in X \}$
- 5. $A = B : \Leftrightarrow A \subseteq B \land B \subseteq A$

Definition: [7] Let H be a non-empty set, the H is a hyperstructure with a hyperoperation map $* \colon H \times H \to P^* \big(H \big) \text{, in here } P^* \big(H \big) \text{ is the set of subsets of H}$ which are non-empty. The $* \big(x,y \big)$ is signed by x * y. If x element of H and $A,B \subseteq H$, then we define $A * B = \bigcup_{a \in A, b \in B} a * b \text{, } A * x = A * \big\{ x \big\}, \ x * B = \big\{ x \big\} * B \text{.}$

Definition: [3] A (H,*) hyperstructure is called a hypergroup if we have the following axioms,

1. (H,*) is a semihypergroup, i.e.

$$\forall x, y, z \in H, (x * (y * z)) = ((x * y) * z)$$

2.
$$x * H = H * x = H$$
 for all x in H

Definition: [8] An H_v -ring is a system if with two hyperoperations on R satisfying the following axioms:

1. $(R,+,\cdot)$ is an H_{ν} -group, for all $a \in R$,

$$a + R = R + a = R$$

$$\forall x, y, z \in H, (x+(y+z)) \cap ((x+(y+z)) \neq \emptyset$$

2. (R,\cdot) is an H_y -semigroup, i.e.,

$$\forall x, y, z \in R, ((x \cdot y) \cdot z) \cap (x \cdot (y \cdot z)) \neq \emptyset$$

3. "." is weak distributive to "+", i.e., for all $x, y, z \in R$,

$$((x+y)\cdot z)\cap (x\cdot z+y\cdot z)\neq\emptyset$$

$$(x \cdot (y+z)) \cap (x \cdot y + x \cdot z) \neq \emptyset$$

Definition: [3] Let H be a set, (H,\cdot) be a hypergroup and let μ be a fuzzy set on H. Then μ called a fuzzy H_{ν} -subgroup of H if the followings are satisfied,

- 1. $\min \{\mu(x), \mu(y)\} \le \inf_{\alpha \in x, y} \{\mu(\alpha)\}\$, for all $x, y \in H$
- 2. for all elements x,a there exists an element y such that $x \in a \cdot y$ and $\min \left\{ \mu \left(a \right), \mu \left(x \right) \right\} \leq \mu \left(y \right)$

Definition: [3] If (H, \cdot) be an H_{ν} -group and let $\mu \in FS(H)$ then μ is said to be a T-fuzzy H_{ν} -subgroup of H with repect to T-norm T if the followings hold:

- 1. $T(\mu(x), \mu(y)) \le \inf_{\alpha \in x \cdot y} \{\mu(\alpha)\}\$, for all $x, y \in H$
- 2. for all elements x,a there exists an element y such that $x \in a \cdot y$ and $T(\mu(a), \mu(x)) \le \mu(y)$.

Definition: [4] If μ a fuzzy subset of R and R be an H_{ν} -ring. If the following axioms hold:

- $$\begin{split} 1. & & \min\left\{\mu\big(x\,\big),\mu\big(y\big)\right\} \leq \inf\left\{\mu\big(b\,\big) \ : \ b \in x+y\right\}, \quad \text{ for } \quad \text{ all } \\ x,y \in R & \end{split}$$
- 2. for all elements x,a there exists an element y such that $x \in a + y$ and $\min \{\mu(a), \mu(x)\} \le \mu(y)$
- 3. for all elements x,a there exists an element b such that $x \in b+a$ and $\min \{\mu(a), \mu(x)\} \le \mu(b)$
- 4. $\mu(y) \le \inf \{ \mu(b) : b \in x \cdot y \}$

$$(\mu(x) \le \inf \{\mu(b) : b \in x \cdot y\})$$
 for all $x, y \in R$

then μ is said to be a left (right) fuzzy H, -ideal of R

Definition: [4] An IFS $A = (\mu_A, \nu_A)$. If we have the following conditions

- 1. $\min \left\{ \mu_A(x), \mu_A(y) \right\} \le \inf \left\{ \mu_A(b) : b \in x + y \right\}, \text{ for all } x, y \in R$
- 2. for all $x, a \in R$ there exists $y, b \in R$ such that $x \in (a+y) \cap (b+a)$ and

$$\min \left\{ \mu_{A}(a), \mu_{A}(x) \right\} \leq \min \left\{ \mu_{A}(y), \mu_{A}(b) \right\}$$

- 3. $\mu_{A}(y) \leq \inf \{\mu_{A}(b) : b \in x \cdot y\}$ (resp., $\mu_{A}(x)$)
- $\leq inf\left\{ \mu_{A}\left(b\right) \; \colon \; b \in x \cdot y \right\}) \; for \; all \; \; x,y \in R$
- 4. $\sup \{ v_A(b) : b \in x + y \} \le \max \{ v_A(x), v_A(y) \}, \text{ for all } x, y \in R$
- 5. for all $x, a \in R$ there exists $y, b \in R$ such that $x \in (a+y) \cap (b+a)$ and

$$\max \{v_A(y), v_A(b)\} \leq \max \{v_A(a), v_A(x)\}$$

6.
$$\sup \{v_{\Delta}(b) : b \in x \cdot y\} \leq v_{\Delta}(y)$$

(resp., $\sup \{ v_A(b) : b \in x \cdot y \} \le v_A(x)$) for all $x, y \in R$ then A is called a left (resp., right) IF H_v -ideal of R.

Definition: [4] The function $T: [0,1] \times [0,1] \rightarrow [0,1]$ if satisfy the followings:

1.
$$T(x,1) = x$$

2. $T(x,y) \le T(x,z)$ if $y \le z$

3. T(x, y) = T(y, x)

$$\begin{split} 4. \quad & T(x,T(y,z)) = T(T(x,y),z) \quad \text{ for } \quad \text{all } \quad x,y,z \in \left[0,1\right] \\ & \text{considering a t-norm } T \text{ on } \left[0,1\right], \text{ set of the elements } \alpha \in \left[0,1\right] \\ & \text{such } \quad \text{that } \quad T(\alpha,\alpha) = \alpha \quad \text{is } \quad \text{denoted } \quad \text{by } \quad \Delta_{_T} \, . \quad \text{i.e.,} \\ & \Delta_{_T} \, := \left\{\alpha \in \left[0,1\right] \ : \ T(\alpha,\alpha) = \alpha\right\} \end{split}$$

Proposition: [4] Every t-norm T has a property $T(\alpha, \beta) \le \min(\alpha, \beta)$ for all $\alpha, \beta \in [0, 1]$

Definition: [4] Let T be a t-norm. if $Im(\mu) \subseteq \Delta_T$ then it is said that the subset μ of R have idempotent property.

Definition: [6] A t-norm T is continuous if we have $T\left(\lim_{n\to\infty}x_{_{n}},\lim_{n\to\infty}y_{_{n}}\right)=\lim_{n\to\infty}T\left(x_{_{n}},y_{_{n}}\right)$ for the $\left\{x_{_{n}}\right\}$, $\left\{y_{_{n}}\right\}$ convergent sequences.

2. ON INTUITIONISTIC FUZZY HYPERSTRUCTURE WITH T-NORM

Definition: Let $(R,+,\cdot)$ be an H_{ν} -ring and $A = (\mu_{A},\nu_{A})$ be an intuitionistic fuzzy subset of R. Then $A = (\mu_{A},\nu_{A})$ is said

to be a T-intuitionistic fuzzy H_{ν} -subring of R with respect to t-norm T if the following axioms hold

$$\begin{split} &1.\,T\big(\mu_{_{A}}\big(x\big),\!\mu_{_{A}}\big(y\big)\big)\!\leq\!inf\big\{\mu_{_{A}}\big(b\big)\,:\,z\!\in\!x\!+\!y\big\}\,,\qquad\text{for}\qquad\text{all}\\ &x,y\!\in\!R \end{split}$$

- 2. $\sup \{ v_{_A}(b) : b \in x + y \} \le 1 T(1 v_{_A}(x), 1 v_{_A}(y))$ for all $x, y \in R$
- 3. for all $x, a \in R$ there exists $y, b \in R$ such that $x \in (a+y) \cap (b+a)$ and

$$T(\mu_{\Delta}(a),\mu_{\Delta}(x)) \leq T(\mu_{\Delta}(y),\mu_{\Delta}(b))$$

- $$\begin{split} 4. & T\big(\mu_{_{A}}\big(x\big),\mu_{_{A}}\big(y\big)\big) \leq \inf\big\{\mu_{_{A}}\big(b\big) \ : \ b \in x \cdot y\big\}, \quad \text{ for } \quad \text{all } \\ x,y \in R \end{split}$$
- $5. \quad \sup \bigl\{ \nu_{_{A}} \bigl(z \bigr) \, : \, z \in x \cdot y \bigr\} \leq 1 T \bigl(1 \nu_{_{A}} \bigl(x \bigr), 1 \nu_{_{A}} \bigl(y \bigr) \bigr), \quad \text{for} \quad \text{all} \quad x,y \in R$
- 6. for all $x, a \in R$ there exists $y, b \in R$ such that $x \in (a+y) \cap (b+a)$ and

$$T\left(1\!-\!\nu_{_{A}}\left(a\right),\!1\!-\!\nu_{_{A}}\left(x\right)\right)\!\leq\!T\left(1\!-\!\nu_{_{A}}\left(y\right),\!1\!-\!\nu_{_{A}}\left(b\right)\right)$$

Proposition: Let T be an t- norm and $A = (\mu_A, \nu_A)$ be an T-intuitionistic fuzzy $H_{_{\rm V}}$ -subring of R. Let μ_A , $1 - \nu_{_A}$ have idempotent property. Then the following sets are $H_{_{\rm V}}$ -subring of R

$$\begin{split} R^{w} &= \left\{ x \in R \ : \ \mu_{_{A}}\left(x\right) \geq \mu_{_{A}}\left(w\right) \right\} \\ L^{w} &= \left\{ x \in R \ : \ \nu_{_{A}}\left(x\right) \leq \nu_{_{A}}\left(w\right) \right\} \end{split}$$

 $\begin{array}{lll} \text{Proof:} & \text{Let} & x,y \in R^{\,\text{\tiny w}} \,. & \text{Then} & \mu_{\scriptscriptstyle A}\left(x\right) \geq \mu_{\scriptscriptstyle A}\left(w\right) & \text{and} \\ & \mu_{\scriptscriptstyle A}\left(y\right) \geq \mu_{\scriptscriptstyle A}\left(w\right) \text{Since} & A = \left(\mu_{\scriptscriptstyle A},\nu_{\scriptscriptstyle A}\right) & \text{be an T-intuitionistic} \end{array}$

fuzzy $H_{_{\nu}}$ -subring of R and $\mu_{_{\Lambda}}$ have idempotent property, it follows that

$$\begin{split} \inf \left\{ \mu_{_{A}}\left(b\right) \; : \; z \in x + y \right\} & \geq T\left(\mu_{_{A}}\left(x\right), \mu_{_{A}}\left(y\right)\right) \\ & \geq T\left(\mu_{_{A}}\left(x\right), \mu_{_{A}}\left(w\right)\right) \\ & \geq T\left(\mu_{_{A}}\left(w\right), \mu_{_{A}}\left(w\right)\right) = \mu_{_{A}}\left(w\right) \end{split}$$

Hence $x + y \subseteq R^w$ implies $x + y \in P^*(R^w)$. Similarly, $x \cdot y \subseteq R^w$ and $x \cdot y \in P^*(R^w)$ exist. Hence $a + R^w \subseteq R^w$ and $R^w + a \subseteq R^w$ for all $a \in R^w$

Now, let $x \in R^w$. Then there exist $y, b \in R$ such that $x \in (a+y) \cap (b+a)$ and

$$T(\mu_{\Delta}(a),\mu_{\Delta}(x)) \leq T(\mu_{\Delta}(y),\mu_{\Delta}(b))$$

Since a, $x \in R^w$, we have

$$\mu_{A}(w) = T(\mu_{A}(w), \mu_{A}(w)) \le T(\mu_{A}(a), \mu_{A}(x))$$

and so

$$\mu_{_{A}}\left(w\right)\!\leq\!T\!\left(\mu_{_{A}}\!\left(y\right)\!,\mu_{_{A}}\!\left(b\right)\right)\!\leq\!min\!\left\{\mu_{_{A}}\!\left(y\right)\!,\mu_{_{A}}\!\left(b\right)\!\right\}$$

which implies $y \in R^w$ and $b \in R^w$.

This proves that $R^w \subseteq a + R^w$ and $R^w \subseteq R^w + a$. Since $\left(R,+,\cdot\right)$ is an $H_{_{\boldsymbol{v}}}$ -group and $R^w \subseteq R$ then for all $x,y,b\in R^w$,

$$((x+y)+b)\cap(x+(y+b))\neq\varnothing$$
$$((x+y)\cdot b)\cap(x\cdot b+y\cdot b)\neq\varnothing$$
$$(x\cdot(y+b))\cap(x\cdot y+x\cdot b)\neq\varnothing$$
$$((x\cdot y)\cdot b)\cap(x\cdot (y\cdot b))\neq\varnothing$$

Consequently R^w be an $H_{_{\rm V}}$ -subring of R. If $x,y\in L^w$ afterwards $\nu_{_A}\big(x\big)\!\leq\!\nu_{_A}\big(w\big)$ and $\nu_{_A}\big(y\big)\!\leq\!\nu_{_A}\big(w\big).$ Since $A\!=\!\big(\mu_{_A},\nu_{_A}\big)$ be an T-intuitionistic fuzzy $H_{_{\rm V}}$ -subring of R and $1\!-\!\nu_{_A}$ have idempotent property, it follows that

$$\sup \{ v_{A}(b) : b \in x + y \}$$

$$\leq 1 - T(1 - v_{A}(x), 1 - v_{A}(y))$$

$$\leq 1 - T(1 - v_{A}(w), 1 - v_{A}(w))$$

$$= v_{A}(w)$$

Hence $x+y\subseteq L^w$. Similarly, we have $x\cdot y\subseteq L^w$. Hence $a+L^w\subseteq L^w$ and $L^w+a\subseteq L^w$ for all $a\in L^w$. Let $x\in L^w$, then there exist $y,b\in R$ such that $x\in (a+y)\cap (b+a)$ and

$$T(1-v_{A}(a),1-v_{A}(x)) \le T(1-v_{A}(y),1-v_{A}(b))$$

Since a, $x \in L^w$, we have

$$\begin{split} &1\!-\!\nu_{_{A}}\left(w\right) \\ &= T\left(1\!-\!\nu_{_{A}}\left(w\right), 1\!-\!\nu_{_{A}}\left(w\right)\right) \\ &\leq T\left(1\!-\!\nu_{_{A}}\left(w\right), 1\!-\!\nu_{_{A}}\left(x\right)\right) \\ &\leq T\left(1\!-\!\nu_{_{A}}\left(a\right), 1\!-\!\nu_{_{A}}\left(x\right)\right) \\ &\text{and so} \\ &1\!-\!\nu_{_{A}}\left(w\right) \\ &\leq T\left(1\!-\!\nu_{_{A}}\left(y\right), 1\!-\!\nu_{_{A}}\left(b\right)\right) \\ &\leq \min\left\{1\!-\!\nu_{_{A}}\left(y\right), 1\!-\!\nu_{_{A}}\left(b\right)\right\} \end{split}$$

That signifies $y\in L^w$ and this proves that $L^w\subseteq a+L^w$ and $L^w\subseteq L^w+a$. Since $\left(R,+,\cdot\right)$ is an H_v -group and $L^w\subseteq R$ then for all $x,y,b\in L^w$,

$$\begin{aligned} & \left((\mathbf{x} + \mathbf{y}) + \mathbf{b} \right) \cap \left(\mathbf{x} + (\mathbf{y} + \mathbf{b}) \right) \neq \varnothing \\ & \left((\mathbf{x} + \mathbf{y}) \cdot \mathbf{b} \right) \cap \left(\mathbf{x} \cdot \mathbf{b} + \mathbf{y} \cdot \mathbf{b} \right) \neq \varnothing \\ & \left(\mathbf{x} \cdot (\mathbf{y} + \mathbf{b}) \right) \cap \left(\mathbf{x} \cdot \mathbf{y} + \mathbf{x} \cdot \mathbf{b} \right) \neq \varnothing \\ & \left((\mathbf{x} \cdot \mathbf{y}) \cdot \mathbf{b} \right) \cap \left(\mathbf{x} \cdot (\mathbf{y} \cdot \mathbf{b}) \right) \neq \varnothing \end{aligned}$$

Consequently L^w be an H_w-subring of R.

Proposition: Let H be a nonempty subset of a H_{ν} -ring R and let μ , ν are fuzzy sets in R defined by

$$\begin{split} \mu\big(x\big) = & \begin{cases} \alpha_{_0} &, \quad x \in H \\ \alpha_{_1} &, \text{ otherwise} \end{cases}, \ \nu\big(x\big) = \begin{cases} \beta_{_0} &, \quad x \in H \\ \beta_{_1} &, \text{ otherwise} \end{cases} \end{split}$$
 where $0 \le \alpha_{_1} < \alpha_{_0}$, $0 \le \beta_{_0} < \beta_{_1}$ and $\alpha_{_i} + \beta_{_i} \le 1$ for $i = 0, 1$. Let μ , $1 - \nu$ have idempotent property. Then $A = \big(\mu, \nu\big)$ be an T-intuitionistic fuzzy $H_{_{\nu}}$ -subring of $R \iff H$ is a $H_{_{\nu}}$ -subring of R .

Proof: Suppose that $A = (\mu, \nu)$ be an T-intuitionistic fuzzy H_{μ} -subring of R. Let $x, y \in H$. Then

$$\begin{split} &\inf\{\mu(b)\colon b\in x+y\}\geq T\big(\mu(x),\mu(y)\big)=T\big(\alpha_{_0},\alpha_{_0}\big)=\alpha_{_{0,}}\\ &\operatorname{It\ follows\ that\ } x+y\subseteq H.\ \text{Similarly,\ we\ have\ } x\cdot y\subseteq H.\\ &\operatorname{Hence\ } a+H\subseteq H\ \text{ and }\ H+a\subseteq H\ , \text{ for all\ } a\in H.\ \text{ Let\ } x\in H\\ &\operatorname{Then\ } \text{there\ } \text{exist\ } y,b\in R\ \text{ such\ that\ } x\in \big(a+y\big)\cap \big(b+a\big)\ \text{ and }\\ &T\big(\mu(a),\mu(x)\big)\leq T\big(\mu(y),\mu(b)\big)\ \text{Since\ } a\ ,x\in H\ , \text{ we\ have}\\ &a_{_0}=T\big(\mu(a),\mu(x)\big)\leq T\big(\mu(y),\mu(b)\big)\leq \min\{\mu(y),\mu(b)\}\\ &\text{which\ implies\ } y\in H\ \text{ and\ } b\in H.\ \text{ This\ proves\ } H\subseteq a+H\ \text{ and\ } H\subseteq H+a\ .\ \text{Since\ } \big(R,+,\cdot\big)\ \text{ is\ } a\ H_{_v}\text{-group\ and\ } H\subseteq R\ \text{ then\ for\ all\ } x,y,b\in H, \end{split}$$

$$\begin{aligned} & \big(\big(x + y \big) + b \big) \cap \big(x + \big(y + b \big) \big) \neq \varnothing \\ & \big(\big(x + y \big) \cdot b \big) \cap \big(x \cdot b + y \cdot b \big) \neq \varnothing \\ & \big(x \cdot \big(y + b \big) \big) \cap \big(x \cdot y + x \cdot b \big) \neq \varnothing \\ & \big(\big(x \cdot y \big) \cdot b \big) \cap \big(x \cdot \big(y \cdot b \big) \big) \neq \varnothing \end{aligned}$$

Therefore H is a H_v -subring of R. Conversely suppose that H is a H_v -subring of R. Let $x, y \in R$. If $x \in R \setminus H$ or $y \in R \setminus H$, then $\mu(x) = \alpha_1$ or $\mu(y) = \alpha_1$ and so

$$\begin{split} &\inf\left\{\mu\big(b\big):\ b\in x+y\right\}\\ &\geq &\min\left\{\mu\big(x\big),\mu\big(y\big)\right\}=\alpha_{_1}\\ &\geq &T\big(\mu\big(x\big),\mu\big(y\big)\big) \end{split}$$

Assume that $x \in H$ and $y \in H$. Then $x + y \subseteq H$ and hence

$$\inf \{ \mu(b) : b \in x + y \}$$

$$\geq \min \{ \mu(x), \mu(y) \} = \alpha_0$$

$$\geq T(\mu(x), \mu(y))$$

Let $x,y\in R$. If $x\in R\setminus H$ or $y\in R\setminus H$, then $\nu(x)=\beta_1$ or $\nu(y)=\beta_1$ and so

```
\begin{split} \sup & \left\{ \nu \big( b \big) : \ b \in x + y \right\} \leq \beta_1 \\ &= \max \left\{ \nu \big( x \big), \nu \big( y \big) \right\} \\ &= 1 - \min \left\{ 1 - \nu \big( x \big), 1 - \nu \big( y \big) \right\} \\ &\leq 1 - T \big( 1 - \nu \big( x \big), 1 - \nu \big( y \big) \big) \end{split} Assume that x \in H and y \in H. Then x + y \subseteq H and hence
```

$$\begin{split} \sup \left\{ & \nu \big(b \big) \, : \, b \in x + y \right\} \\ & \leq \beta_0 = \max \left\{ \nu \big(x \big), \nu \big(y \big) \right\} \\ & = 1 - \min \left\{ 1 - \nu \big(x \big), 1 - \nu \big(y \big) \right\} \\ & \leq 1 - T \big(1 - \nu \big(x \big), 1 - \nu \big(y \big) \big) \end{split}$$

Let $x,y \in R$. If $x \in R \setminus H$ or $y \in R \setminus H$, then $\mu(x) = \alpha_1$ or $\mu(y) = \alpha_1$ and so

$$\begin{split} &\inf\left\{\mu\big(b\big):\ b\in x\cdot y\right\}\\ &\geq \min\left\{\mu\big(x\big),\mu\big(y\big)\right\} = \alpha_{_{1}}\\ &\geq T\big(\mu\big(x\big),\mu\big(y\big)\big) \end{split}$$

Assume that $x \in H$ and $y \in H$. Then $x + y \subseteq H$ and hence $\inf \left\{ \mu \Big(b \Big) : \ b \in x \cdot y \right\}$

$$\lim \{\mu(\mathbf{y}) : \mathbf{y} \in \mathbf{X}, \mathbf{y}\}$$

$$\geq \min \{\mu(\mathbf{x}), \mu(\mathbf{y})\} = \alpha_0$$

$$\geq T(\mu(\mathbf{x}), \mu(\mathbf{y}))$$

Let $x,y \in R$. If $x \in R \setminus H$ or $y \in R \setminus H$, then $v(x) = \beta_1$ or $v(y) = \beta_1$ and so

$$\begin{split} &\sup \left\{ \nu \left(b \right) \,:\, b \in x \cdot y \right\} \\ &\leq \beta_1 = \max \left\{ \nu \left(x \right), \nu \left(y \right) \right\} \\ &= 1 - \min \left\{ 1 - \nu \left(x \right), 1 - \nu \left(y \right) \right\} \\ &\leq 1 - T \left(1 - \nu \left(x \right), 1 - \nu \left(y \right) \right) \end{split}$$

Assume that $x \in H$ and $y \in H$. Then $x + y \subseteq H$ and hence

$$\begin{split} \sup & \left\{ \nu \big(b \big) \, : \, b \in x \cdot y \right\} \\ & \leq \beta_0 = \max \left\{ \nu \big(x \big), \nu \big(y \big) \right\} \\ & = 1 - \min \left\{ 1 - \nu \big(x \big), 1 - \nu \big(y \big) \right\} \\ & \leq 1 - T \big(1 - \nu \big(x \big), 1 - \nu \big(y \big) \big) \end{split}$$

Let $x, a \in R$ Since R $H_{_{v}}$ -ring then there exists $y, b \in R$ such that $x \in (a+y) \cap (b+a)$. If $x \in R \setminus H$ or $a \in R \setminus H$, then $\mu(x) = \alpha_{_{1}}$ or $\mu(a) = \alpha_{_{1}}$ and hence $\mu(x) \leq \mu(y)$, $\mu(a) \leq \mu(b)$. And so

$$T(\mu(a),\mu(x)) \le T(\mu(y),\mu(b))$$

Assume that $x \in H$ and $a \in H$. Since H is a H_v -subring of R, there exists $y,z \in H$, in that $x \in (a+y) \cap (b+a)$. Then

$$\mu(x) = \mu(y) = \mu(a) = \mu(b) = \alpha_0$$
 and so

$$T(\mu(a),\mu(x)) \le T(\mu(y),\mu(b))$$

Similarly, we have for all $x, a \in R$ there exists $y, b \in R$ such that $x \in (a+y) \cap (b+a)$ and

$$T(1-v(a),1-v(x)) \le T(1-v(y),1-v(b))$$

Consequently $A = (\mu, \nu)$ be an T-intuitionistic fuzzy H_{ν} -subring of R.

Definition: [5] Let $(R,+,\cdot)$ be an $H_{_{\rm V}}$ -ring. The relation γ_R^* is the smallest equivalence relation on R such that the quotient R/γ_R^* , the set of all equivalence classes is a ring. γ_R^* is called

the fundamental relation on R and R/ γ_R^* is called the fundamental ring.

If Ω denotes the set of all finite polynomials of elements of R, over $\mathbb N$ (the set of all natural numbers), then a relation γ_R can be defined on R whose transitive closure is the fundamental relation γ_R^* .

The relation γ_R is as follow; For x,y in R, we write $x\gamma_R y$ if and only if $\{x,y\}\subseteq \Lambda$ for some $\Lambda\in\Omega$. Suppose $\gamma_R^*(a)$ is the equivalence class containing $a\in R$. Then both the sum \oplus and the product \odot on R/γ_R^* are defined as follows:

$$\begin{array}{l} \gamma_{\scriptscriptstyle R}^{*}\left(a\right) \oplus \gamma_{\scriptscriptstyle R}^{*}\left(b\right) = \gamma_{\scriptscriptstyle R}^{*}\left(c\right) \;, \quad \text{for all } c \in \gamma_{\scriptscriptstyle R}^{*}\left(a\right) + \gamma_{\scriptscriptstyle R}^{*}\left(b\right) \\ \gamma_{\scriptscriptstyle R}^{*}\left(a\right) \odot \gamma_{\scriptscriptstyle R}^{*}\left(b\right) = \gamma_{\scriptscriptstyle R}^{*}\left(d\right) \;, \quad \text{for all } d \in \gamma_{\scriptscriptstyle R}^{*}\left(a\right) \cdot \gamma_{\scriptscriptstyle R}^{*}\left(b\right) \end{array}$$

Here we also denote $\,\omega_{_{R}}\,$ the zero element of $\,R\,/\,\gamma_{_{R}}^{*}\,$

Definition: [4] Let $(R,+,\cdot)$ be an H_{ν} -ring and $A = (\mu_{A},\nu_{A})$ be an left intuitionistic fuzzy H_{ν} -ideal of R. The IFS $A/\gamma_{R}^{*} = (\mu_{\gamma_{R}^{*}},\nu_{\gamma_{R}^{*}})$ is defined as following:

$$\mu_{\mathbf{y}_{\mathbf{p}}^*}: R / \gamma_{\mathbf{R}}^* \rightarrow [0,1]$$

$$\mu_{\gamma_{R}^{*}}\left(\gamma_{R}^{*}\left(x\right)\right) = \begin{cases} sup\left\{\mu_{A}\left(a\right) \; : \; a \in \gamma_{R}^{*}\left(x\right)\right\} \; , \gamma_{R}^{*}\left(x\right) \neq w_{R} \\ \\ 1 \; \qquad \qquad , \gamma_{R}^{*}\left(x\right) = \; w_{R} \end{cases}$$

and

$$v_{\nu_{R}^{*}}: R / \gamma_{R}^{*} \rightarrow [0,1]$$

$$\nu_{\gamma_{R}^{*}}\left(\gamma_{R}^{*}\left(x\right)\right) = \begin{cases} \inf\left\{\nu_{A}\left(a\right) : a \in \gamma_{R}^{*}\left(x\right)\right\}, \gamma_{R}^{*}\left(x\right) \neq w_{R} \\ 0, \gamma_{R}^{*}\left(x\right) = w_{R} \end{cases}$$

Theorem: Let T be a t-norm, continuous and $A = (\mu_A, \nu_A)$ be an T-intuitionistic fuzzy H_{ν} -subring of R. Considering R/γ_R^* as a hyperring, then $A/\gamma_R^* = (\mu_{\gamma_R^*}, \nu_{\gamma_R^*})$ is a T-intuitionistic H_{ν} -subring of R/γ_R^* .

Proof: We choose $\gamma_R^*(x)$, $\gamma_R^*(y) \in R / \gamma_R^*$. Then we can write:

$$\begin{split} &T\left(\mu_{\gamma_{R}^{*}}\left(\gamma_{R}^{*}\left(x\right)\right),\mu_{\gamma_{R}^{*}}\left(\gamma_{R}^{*}\left(y\right)\right)\right)\\ &=T\left[\sup\left\{\mu_{A}\left(a\right)\right\}\;,\;\sup\left\{\mu_{A}\left(b\right)\right\},\\ &=\sup_{b\in\gamma_{R}^{*}(y),a\in\gamma_{R}^{*}(x)}\left\{T\left(\mu_{A}\left(a\right),\mu_{A}\left(b\right)\right)\right\}\\ &\leq\sup_{b\in\gamma_{R}^{*}(y),a\in\gamma_{R}^{*}(x)}\left\{\inf\left\{\mu_{A}\left(z\right)\;:\;z\in a+b\right\}\right\}\\ &\leq\sup_{b\in\gamma_{R}^{*}(y),a\in\gamma_{R}^{*}(x)}\left\{\sup\left\{\mu_{A}\left(z\right)\;:\;z\in a+b\right\}\right\}\\ &\leq\sup_{b\in\gamma_{R}^{*}(y),a\in\gamma_{R}^{*}(x)}\left\{\sup\left\{\mu_{A}\left(z\right)\;:\;z\in a+b\right\}\right\}\\ &\leq\sup_{b\in\gamma_{R}^{*}(y),a\in\gamma_{R}^{*}(x)}\left\{\sup\left\{\mu_{A}\left(z\right)\;:\;z\in\gamma_{R}^{*}\left(a+b\right)\right\}\right\}\\ &=\sup_{b\in\gamma_{R}^{*}(y),a\in\gamma_{R}^{*}(x)}\left\{\mu_{\gamma_{R}^{*}}\left(\gamma_{R}^{*}\left(a+b\right)\right)\right\}\\ &=\sup_{b\in\gamma_{R}^{*}(y),a\in\gamma_{R}^{*}(x)}\left\{\mu_{\gamma_{R}^{*}}\left(\gamma_{R}^{*}\left(a+b\right)\right)\right\}\\ &=\mu_{\gamma_{D}^{*}}\left(\gamma_{R}^{*}\left(a+b\right)\right)=\mu_{\gamma_{D}^{*}}\left(\gamma_{R}^{*}\left(a\right)\oplus\gamma_{R}^{*}\left(b\right)\right) \end{split}$$

Thus the first condition of Definition is provided. If we choose $\gamma_R^*(x)$, $\gamma_R^*(y) \in R / \gamma_R^*$. Then we can write:

$$\begin{split} &T\Big(1-\nu_{\gamma_{R}^{*}}\big(\gamma_{R}^{*}\left(x\right)\big),1-\nu_{\gamma_{R}^{*}}\big(\gamma_{R}^{*}\left(y\right)\big)\Big)\\ &=T\Bigg(1-\inf\left\{\nu_{A}\left(a\right)\right\},1-\inf\left\{\nu_{A}\left(b\right)\right\}\Big)\\ &=T\Bigg(\sup\left\{1-\nu_{A}\left(a\right)\right\},\sup\left\{1-\nu_{A}\left(b\right)\right\}\Big)\\ &=\sup_{b\in\gamma_{R}^{*}(y),a\in\gamma_{R}^{*}(x)}\left\{T\left(1-\nu_{A}\left(a\right),1-\nu_{A}\left(b\right)\right)\right\}\\ &\leq\sup_{b\in\gamma_{R}^{*}(y),a\in\gamma_{R}^{*}(x)}\left\{1-\sup\left\{\nu_{A}\left(z\right):z\in a+b\right\}\right\}\\ &\leq\sup_{b\in\gamma_{R}^{*}(y),a\in\gamma_{R}^{*}(x)}\left\{1-\inf\left\{\nu_{A}\left(z\right):z\in a+b\right\}\right\}\\ &\leq\sup_{b\in\gamma_{R}^{*}(y),a\in\gamma_{R}^{*}(x)}\left\{1-\inf\left\{\nu_{A}\left(z\right):z\in\gamma_{R}^{*}\left(a+b\right)\right\}\right\}\\ &=\sup_{b\in\gamma_{R}^{*}(y),a\in\gamma_{R}^{*}(x)}\left\{1-\nu_{\gamma_{R}^{*}}\left(\gamma_{R}^{*}\left(a+b\right)\right)\right\}\\ &=1-\nu_{\gamma_{R}^{*}}\left(\gamma_{R}^{*}\left(a+b\right)\right)\\ &=1-\nu_{\gamma_{R}^{*}}\left(\gamma_{R}^{*}\left(a\right)\oplus\gamma_{R}^{*}\left(b\right)\right) \end{split}$$

From above, Definition is verified. Now suppose $\gamma_R^*\left(x\right)$ and $\gamma_R^*\left(a\right) \ \text{ are two arbitrary elements of } \ R \, / \, \gamma_R^*. \ \text{ Since } A = \left(\mu_A, \nu_A\right) \ \text{ be an T-intuitionistic fuzzy } \ H_\nu \ \text{-subring of } R \text{:}$ From above, for all $\ r \in \gamma_R^*\left(a\right), \ s \in \gamma_R^*\left(x\right) \ \text{ there exists } \ y_{r,s}, \ z_{r,s} \in R \ \text{ such that } \ r \in \left(s + y_{r,s}\right) \cap \left(z_{r,s} + s\right)$ and

$$T(\mu_A(r),\mu_A(s)) \le T(\mu_A(y_{r,s}),\mu_A(z_{r,s}))$$

From $r \in (s + y_{r,s}) \cap (z_{r,s} + s)$ it follows that

$$\begin{split} & \gamma_{_{R}}^{*}\left(s\right) \oplus \gamma_{_{R}}^{*}\left(y_{_{r,s}}\right) = \gamma_{_{R}}^{*}\left(r\right) \text{ , } \gamma_{_{R}}^{*}\left(z_{_{r,s}}\right) \oplus \gamma_{_{R}}^{*}\left(s\right) = \gamma_{_{R}}^{*}\left(r\right) \end{split}$$
 which implies

$$\gamma_{R}^{*}\left(x\right) \oplus \gamma_{R}^{*}\left(y_{r,s}\right) = \gamma_{R}^{*}\left(a\right), \ \gamma_{R}^{*}\left(z_{r,s}\right) \oplus \gamma_{R}^{*}\left(x\right) = \gamma_{R}^{*}\left(a\right)$$

Now if $r_l \in \gamma_R^*(a)$ and $s_l \in \gamma_R^*(x)$, then there exists there exists y_{r_l,s_l} , $z_{r_l,s_l} \in R$ such that

$$\gamma_{R}^{*}\left(s_{1}\right) \oplus \gamma_{R}^{*}\left(y_{r_{1},s_{1}}\right) = \gamma_{R}^{*}\left(r_{1}\right)$$

and since $\gamma_R^*(r_1) = \gamma_R^*(r)$ we get

$$\gamma_{R}^{*}\left(s_{_{1}}\right)\oplus\gamma_{R}^{*}\left(y_{_{\eta,s_{_{1}}}}\right)=\gamma_{R}^{*}\left(s\right)\oplus\gamma_{R}^{*}\left(y_{_{r,s}}\right)\text{ and therefore}$$

$$\gamma_{R}^{*}\left(y_{r,s}\right)\!=\!\gamma_{R}^{*}\left(y_{r_{l},s_{l}}\right)\!.$$
 Similarly, we have

$$\gamma_R^* (z_{r,s}) = \gamma_R^* (z_{r,s})$$
. So all the $y_{r,s}$, $z_{r,s}$ satisfying

 $T(\mu_A(r), \mu_A(s)) \le T(\mu_A(y_{r,s}), \mu_A(z_{r,s}))$ have the same equivalence class. Now we have:

$$\begin{split} &T\left(\mu_{\mathring{\gamma}_{R}}\left(\mathring{\gamma}_{R}^{*}\left(x\right)\right),\mu_{\mathring{\gamma}_{R}}\left(\mathring{\gamma}_{R}^{*}\left(a\right)\right)\right) \\ &=T\left(\sup\left\{\mu_{A}\left(r\right)\right\},\sup\left\{\mu_{A}\left(s\right)\right\}\right. \\ &=\sup_{r\in\mathring{\gamma}_{R}^{*}\left(a\right),s\in\mathring{\gamma}_{R}^{*}\left(x\right)}\left\{T\left(\mu_{A}\left(r\right),\mu_{A}\left(s\right)\right)\right\} \\ &\leq\sup_{r\in\mathring{\gamma}_{R}^{*}\left(a\right),s\in\mathring{\gamma}_{R}^{*}\left(x\right)}\left\{T\left(\mu_{A}\left(y_{r,s}\right),\mu_{A}\left(Z_{r,s}\right)\right)\right\} \\ &=T\left(\sup\left\{\mu_{A}\left(y_{r,s}\right)\right\},\sup\left\{\mu_{A}\left(Z_{r,s}\right)\right\}\right. \\ &=T\left(\sup\left\{\mu_{A}\left(y_{r,s}\right)\right\},\sup\left\{\mu_{A}\left(Z_{r,s}\right)\right\}\right. \end{split}$$

$$\begin{split} & \leq T \left(\sup \left\{ \mu_{\lambda} \left(y \right) \right\}, \ \sup \left\{ \mu_{\lambda} \left(z \right) \right\} \right) \\ & = T \left(\mu_{\gamma_{k}} \left(\gamma_{k}^{*} \left(y_{r,s} \right) \right), \ \mu_{\gamma_{k}} \left(\gamma_{k}^{*} \left(z_{r,s} \right) \right) \right) \\ & \text{and Definition is satisfied. Similary, we have} \\ & T \left(1 - v_{\gamma_{k}^{*}} \left(\gamma_{k}^{*} \left(a \right) \right), 1 - v_{\gamma_{k}^{*}} \left(\gamma_{k}^{*} \left(z_{r,s} \right) \right) \right) \\ & = T \left(1 - \inf_{\substack{i = i \\ i \neq k}} \left\{ v_{\lambda} \left(r \right) \right\}, 1 - \inf_{\substack{i = i \\ i \neq k}} \left\{ v_{\lambda} \left(s \right) \right\} \right) \\ & = T \left(\sup_{\substack{i = i \\ i \neq k}} \left\{ 1 - v_{\lambda} \left(r \right), \sup_{\substack{i = i \\ i \neq k}} \left\{ 1 - v_{\lambda} \left(s \right) \right\} \right) \\ & = \sup_{\substack{i = i \\ i \neq k}} \left\{ T \left(1 - v_{\lambda} \left(v_{r,s} \right), 1 - v_{\lambda} \left(z_{r,s} \right) \right) \right\} \\ & \leq \sup_{\substack{i = i \\ i \neq k}} \left\{ T \left(1 - v_{\lambda} \left(v_{r,s} \right), \sup_{\substack{i = i \\ i \neq k}} \left\{ 1 - v_{\lambda} \left(z_{r,s} \right) \right\} \right\} \\ & = T \left(1 - \inf_{\substack{i = i \\ i \neq k}} \left\{ v_{\lambda} \left(v_{i,s} \right), \lim_{\substack{i = i \\ i \neq k}} \left\{ v_{\lambda} \left(z_{r,s} \right) \right\} \right\} \right) \\ & = T \left(1 - \inf_{\substack{i = i \\ i \neq k}} \left\{ v_{\lambda} \left(v_{i,s} \right), \lim_{\substack{i = i \\ i \neq k}} \left\{ v_{\lambda} \left(z_{r,s} \right) \right\} \right) \right) \\ & = T \left(1 - \inf_{\substack{i = i \\ i \neq k}} \left\{ v_{\lambda} \left(v_{i,s} \right), \lim_{\substack{i = i \\ i \neq k}} \left\{ v_{\lambda} \left(z_{r,s} \right) \right\} \right\} \right) \\ & = T \left(1 - \inf_{\substack{i = i \\ i \neq k}} \left\{ v_{\lambda} \left(v_{i,s} \right), \lim_{\substack{i = i \\ i \neq k}} \left\{ v_{\lambda} \left(z_{r,s} \right) \right\} \right\} \right) \\ & = T \left(1 - v_{\gamma_{k}^{*}} \left(\gamma_{k}^{*} \left(v_{\lambda} \right), \lim_{\substack{i = i \\ i \neq k}}} \left\{ v_{\lambda} \left(z_{r,s} \right) \right\} \right) \\ & = T \left(1 - v_{\gamma_{k}^{*}} \left(\gamma_{k}^{*} \left(v_{\lambda} \right), \lim_{\substack{i = i \\ i \neq k}}} \left\{ v_{\lambda} \left(z_{r,s} \right) \right\} \right) \\ & = T \left(1 - v_{\gamma_{k}^{*}} \left(\gamma_{k}^{*} \left(v_{\lambda} \right), \lim_{\substack{i = i \\ i \neq k}}} \left\{ v_{\lambda} \left(z_{r,s} \right) \right\} \right) \\ & = T \left(1 - v_{\gamma_{k}^{*}} \left(\gamma_{k}^{*} \left(v_{\lambda} \right), \lim_{\substack{i = i \\ i \neq k}}} \left\{ v_{\lambda} \left(z_{r,s} \right) \right\} \right) \\ & = T \left(1 - v_{\gamma_{k}^{*}} \left(\gamma_{k}^{*} \left(v_{\lambda} \right), \lim_{\substack{i = i \\ i \neq k}}} \left\{ v_{\lambda} \left(z_{r,s} \right) \right\} \right) \\ & = T \left(1 - v_{\gamma_{k}^{*}} \left(\gamma_{k}^{*} \left(v_{\lambda} \right), \lim_{\substack{i = i \\ i \neq k}}} \left\{ v_{\lambda} \left(z_{r,s} \right) \right\} \right) \\ & = T \left(1 - v_{\gamma_{k}^{*}} \left(\gamma_{k}^{*} \left(v_{\lambda} \right) \right) \right) \\ & = T \left(1 - v_{\gamma_{k}^{*}} \left(\gamma_{k}^{*} \left(v_{\lambda} \right), \lim_{\substack{i = i \\ i \neq k}}} \left\{ v_{\lambda}^{*} \left(v_{\lambda}^{*} \left(v_{\lambda}^{*} \left(v_{\lambda}^{*} \right) \right) \right\} \right) \\ & = \sup_{\substack{i = i \\ i \neq k}} \left\{$$

Therefore Definition is satisfied.

3. CONCLUSION

Through the above discussion, we had some properties of T-intuitionistic fuzzy H_v -subring on any ring. The special statement of intuitionistic fuzzy H_v -subrings are intuitionistic fuzzy H_v -ideals. It can be defined T-intuitionistic fuzzy H_v -ideals of a ring and can be studied such type properties.

REFERENCES

- [1] Atanassov K.T., Intuitionistic Fuzzy Sets, VII ITKR's Session, Sofia, June 1983
- [2] Atanassov K.T., Intuitionistic Fuzzy Sets, Fuzzy Sets and Systems, no. 20, p.p.87-96, 1986.
- [3] Davvaz B., Fuzzy H_{ν} groups, Fuzzy Sets and System, no. 101, p.p. 191-195, 1999.
- [4] Davvaz B., Fuzzy H_v -submodules, Fuzzy Sets and System, no. 117, p.p. 477-484, 2001.
- [5] Davvaz B., T-fuzzy H_v-subrings of an H_v-ring, The Journal of Fuzzy Mathematics, no. 11, p.p. 215-224, 2003
- [6] Klement E.P., Mesiar R., and Pap E., Triangular Norms, Kluwer Academic Publishers. Dordrecht. 2000.
- [7] Marty F., Sur une generalization de la notion de groupe, congres Math. Skandinaves, Stockholm, p.p. 45-49, 1934.
- [8] Vougiouklis T., On H_v-ring and H_v-representations, Discrete Math, no. 10, p.p. 615-620, 1999
- [9] Vougiouklis T.,The Fundamental relation in hyperrings.The general hyperfield,in Algebraic Hyperstructures and Applications, WorldSci. Pulb.,Teaneck, NJ, p.p. 203-211, 1990.
- [10] Zadeh L.A., Fuzzy Sets, Information and Control, no. 8, p. 338-353, 1965.