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Abstract 

This article presents a comprehensive numerical investigation into the energy levels and absorption coefficients 

within quantum well structures, with a particular focus on the GaAs/AlGaAs system. Various bounded potentials, 

including the Rosen-Morse potential, Wood-Saxon potential, Pöschl-Teller potential, Razavy potential, inversely 

quadratic Hellmann potential, Kratzer-Fues potential, and Morse potential, are explored. Employing the 

Schrödinger equation, with considerations for effective mass and envelope function approximations, a discrete 

formulation is attained through finite differences. Throughout the analysis, the effective mass ratio is upheld as a 

constant value characteristic of GaAs. The study reveals that transition energies and absorption coefficients exhibit 

subtle variations in response to alterations in well parameters, spanning from the lower bounds of the near-infrared 

spectrum to the midpoints of the far-infrared region. By comprehensively studying these phenomena across a 

spectrum of potentials, this research contributes valuable insights into the behavior and characteristics of quantum 

well structures, particularly within the context of the GaAs/AlGaAs system. 
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Çeşitli Bağlı Potansiyeller için Enerji Seviyeleri ve Soğurma Katsayıları: 

Kapsamlı Bir Analiz 
 

Öz 

Bu makale, GaAs/AlGaAs sistemi üzerinde odaklanarak kuantum kuyu yapıları içindeki enerji seviyeleri ve 

soğurma katsayıları üzerine kapsamlı bir sayısal incelemeyi sunmaktadır. Rosen-Morse potansiyeli, Wood-Saxon 

potansiyeli, Pöschl-Teller potansiyeli, Razavy potansiyeli, ters kuadratik Hellmann potansiyeli, Kratzer-Fues 

potansiyeli ve Morse potansiyeli gibi çeşitli bağlı potansiyeller keşfedilmektedir. Etkin kütle ve zarf fonksiyonu 

yaklaşımlarını dikkate alarak, Schrödinger denklemi, sonlu farklar kullanılarak bir ayrık forma dönüştürülür. 

Analiz boyunca, etkin kütle oranı GaAs'ın karakteristik bir sabit değeri olarak tutulmuştur. Çalışma, kuyu 

parametrelerindeki değişikliklere karşı geçiş enerjileri ve emilim katsayılarının ince farklılıklar sergilediğini ortaya 

koymaktadır. Bu, yakın kızılötesi spektrumun alt sınırlarından uzak kızılötesi bölgenin ortalarına kadar uzanır. 

Farklı potansiyeller yelpazesinde bu fiziksel olayları kapsamlı bir şekilde inceleyerek, özellikle GaAs/AlGaAs 

sistemi bağlamında, bu araştırma kuantum kuyu yapılarının davranışı ve özellikleri hakkında değerli görüşler 

sunmaktadır. 

 

Anahtar Kelimeler: Kuantum kuyusu, ara-altı bant soğurumu, GaAs, sonlu farkla yöntemi
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1. Introduction 

The study of quantum well structures has 

been a focal point in solid-state physics and 

materials science, driven by their exceptional 

properties and their pivotal role in modern 

electronic and optoelectronic devices. 

Quantum wells are epitomized by their two-

dimensional confinement of charge carriers, 

resulting in discrete energy levels that give 

rise to unique electronic properties. The 

choice of potential governing the behavior of 

carriers within these quantum wells 

significantly influences the resulting energy 

spectrum and optical properties. In the design 

of semiconductor devices, such as lasers, 

photodetectors, and quantum cascade devices, 

the absorption coefficient is a fundamental 

parameter. It determines how efficiently the 

material can absorb incident photons, which 

is essential for the operation of these devices. 

The absorption coefficient directly influences 

the device's performance, including its 

efficiency and sensitivity. 

 

Quantum wells are important for improving 

mid-infrared and terahertz technologies. 

Research is focused on optimizing 

intersubband transitions in semiconductor 

quantum wells to create lasers that work at 

specific wavelengths. These transitions are 

essential for laser efficiency, and scientists 

are working to improve the processes that 

generate light. Similarly, nonradiative 

processes, like phonon interactions and 

scattering, affect performance, so efforts are 

being made to reduce these issues. Current 

studies aim to improve thermal management, 

efficiency, and power use while expanding 

the range of wavelengths. New materials and 

design innovations are helping quantum 

cascade lasers become more effective for 

applications in sensing, communication, and 

spectroscopy (Atić et al., 2022, 2024; 

Cominotti 2023; Khurgin 2023).  

In this study, we delve into the comprehensive 

analysis of the single GaAs/AlGaAs quantum 

well structures, aiming to explore their energy 

levels and absorption coefficients when 

subjected to a range of bounded potentials. 

We have considered seven distinctive 

potentials, each characterized by different 

parameter values. The potential functions are 

as follows: 1) Rosen-Morse potential, 

2) Wood-Saxon potential, 3) Pöschl-Teller 

potential, 4) Razavy potential, 5) inversely 

quadratic Hellmann potential, 6) Kratzer-

Fues potential and 7) Morse potential. 

Experimental studies use the potentials 

directly or apply them to various quantum 

systems, molecular interactions, and 

resonance phenomena. Although many 

experimental studies might not exclusively 

focus on these potentials, they are often 

applied as effective models in various fields, 

especially in atomic, molecular, nuclear, and 

quantum physics research. Quantum well 

intersubband absorptions are crucial for 

enabling precise control of light-matter 

interactions at specific wavelengths, making 

them essential for advanced optoelectronic 

applications like quantum cascade lasers and 

infrared detectors. (Persichetti et al., 2020). 

 

2. Material and Method 

 

We consider a single quantum well structure 

having the potential 𝑈(𝑧). The Hamiltonian 

for the electrons inside the potential 𝑈(𝑧) 

within the effective mass and envelope 

function approximation is 

 

𝐻 = −
ℏ2

2𝑚∗
(

𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
+

𝜕2

𝜕𝑧2
) +  𝑈(𝑧) (1) 
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where 𝑚∗  is the effective mass and ℏ is the 

reduced Planck’s constant. We chose 𝑧 as the 

growth direction. The energy eigenvalues 

𝐸𝑛,𝑘  and eigenfunctions 𝜓𝑛,𝑘  for this 

Hamiltonian are given as 

 

𝐸𝑛,𝑘 = 𝐸𝑛 +
ℏ2

2𝑚∗
|𝒌∥|

2
 (2) 

𝜓𝑛,𝑘(𝒓) = 𝜓𝑛(𝑧) exp(𝑖 𝒌∥ ⋅ 𝒓∥) (3) 

 

where  𝒌∥  and 𝒓∥  are the wave and position 

vectors in the 𝑥 − 𝑦  plane, and 𝐸𝑛  is the 

energy and 𝜓𝑛(𝑧) is the wave function of the 

𝑛 -th sub-band in the 𝑧  growth direction 

(Flügge, 1999). We solve numerically the 

time independent Schrödinger equation 

 

𝐻𝑧𝜓𝑛(𝑧) = −
ℏ2

2𝑚∗

𝜕2

𝜕𝑧2
𝜓𝑛(𝑧) +  𝑈(𝑧)𝜓𝑛(𝑧) = 𝐸𝑛𝜓𝑛(𝑧) (4) 

 

in the growth direction, where 𝐻𝑧  is the 𝑧 

component of the Hamiltonian.  

 

The Schrödinger equation is discretized by 

means of finite differences and the 

eigenvalues and eigenfunctions of the 

resulting matrix equation give the energy 

values and corresponding wave functions 

(Harrison, 2005). We consider 𝑧 in units of 

Ångströms (Å)  and energy in 

millielectronvolts (meV). The effective mass 

is defined as 𝑚∗ = 𝑚𝑚0 , where 𝑚0  is the 

electron mass and 𝑚 = 0.067  is the 

electron’s effective mass ratio for GaAs. 

Replacing (𝑧 → 𝑧10−10) , (𝐸𝑛 → 𝑒10−3𝐸𝑛) 

and (𝑈 → 𝑒10−3𝑈) , the Schrödinger 

equation takes a numerically solvable form. 

 

−
𝑀

𝑚

𝜕2

𝜕𝑧2
𝜓𝑛(𝑧) +  𝑈(𝑧)𝜓𝑛(𝑧) = 𝐸𝑛𝜓𝑛(𝑧) (5) 

 

where 𝑀 = ℏ21023 (2𝑚0𝑒)⁄ . No unit 

conversion is required for the wave function 

because multiplying the wave function by a 

constant does not affect the form of the 

equation.  

The position variable 𝑧 is partitioned into 𝑁 

intervals. The indices will change as 𝑖 =

0, 1, 2, … 𝑁 and the 𝑧𝑖 values can be obtained 

from the given position range. The second 

order derivative will be numerically 

calculated as follows. 

 

𝜕2

𝜕𝑧2
𝜓(𝑧) ≈

1

(Δ𝑧)2
(𝜓𝑖+1 − 2𝜓𝑖 + 𝜓𝑖−1) (6) 

 

where Δ𝑧 is the increment of space and 𝜓𝑖 =

𝜓(𝑧𝑖)  are the unknown variables. By 

substituting this into the Schrödinger equation 

and using 𝑈𝑖 = 𝑈(𝑧𝑖) , we obtain (𝑁 + 1) 

equations with (𝑁 + 1)  unknowns of 𝜓𝑖 , 

where the 𝑖th equation is as below. 

 

−
2𝑀

𝑚(Δ𝑧)2
𝜓𝑖−1 + (

2𝑀

𝑚(Δ𝑧)2
+ 𝑈𝑖) 𝜓𝑖 −

2𝑀

𝑚(Δ𝑧)2
𝜓𝑖+1 = 𝐸𝜓𝑖  (7) 
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We also apply the boundary conditions 

𝜓−1 = 0 for 𝑛 = 0 at the first equation and 

𝜓𝑁+1 = 0  for 𝑛 = 𝑁  at the last one, which 

introduces negligible numerical error since 𝜓 

in a bounded potential approaches zero at 

both boundaries. These (𝑁 + 1)  equations 

can be written as a matrix equation. 

 

[A](𝑁+1)×(𝑁+1)[Ψ](𝑁+1)×1 = 𝐸[Ψ](𝑁+1)×1 (8) 

 

where Ψ  is the diagonal matrix of the 

unknown 𝜓𝑖  values and A  is a tridiagonal 

square matrix with the elements specified 

below. 

 

𝐴𝑖,𝑖 =
2𝑀

𝑚(Δ𝑧)2
+ 𝑈𝑖   and   𝐴𝑖,𝑖±1 = −

2𝑀

𝑚(Δ𝑧)2
 (9) 

 

We numerically solve the eigenvalue 

equation for the symmetric square matrix A 

and obtain the (𝑁 + 1)  number of 

eigenvalues for the energies 𝐸  and the 

corresponding eigenfunctions of 𝜓. However, 

only the energy values that are less than the 

maximum potential value have physical 

significance. From the calculated energies 

and wave functions, we calculate the 

absorption coefficient. The first order linear 

absorption coefficients derived by using the 

density matrix formalism and perturbation 

expansion method is given as 

 

𝛼(1)(𝜔) =
𝜔

𝑛𝑟𝑐𝜀0

|𝜇10|2
𝜎𝑠ℏΓ0

(𝐸10 − ℏ𝜔)2 + (ℏΓ0)2
 (10) 

 

where |𝜇10| = 𝑒|⟨𝜓1|𝑧|𝜓2⟩|  is the dipole 

matrix element and  𝐸10 = 𝐸1 − 𝐸0  is the 

energy difference of the ground and first 

excited states, 𝜎𝑠 is the electron density in the 

well, 𝛤0 is the inverse of the relaxation time, 

𝑛𝑟 = √𝜀𝑟 is the refractive index of the well, 

𝜔 is the frequency of the incident light, 𝜀0 is 

the vacuum permittivity, and 𝑐 is the speed of 

light in vacuum (Ahn and Chuang, 1987; 

Yıldırım and Tomak, 2005). 

 

We consider the GaAs/AlxGa1−𝑥As quantum 

well structures, where 0 ≤ 𝑥 ≤ 1  is the Al 

concentration. The band gap of  AlxGa1−𝑥As 

increases with the concentration 𝑥  so the 

shape of the potential will change with 𝑥 =

𝑥(𝑧). The concentration dependence of the 

well potential is given as 𝑈(𝑥) = 0.67Δ𝐸𝑔 =

835.49𝑥 (meV), where Δ𝐸𝑔 is the band gap 

energy difference between AlxGa1−𝑥As  and 

GaAs, and the conduction band offset is 67% 

(Harrison, 2005). Even though the maximum 

well potential cannot be more than 

835.46 meV , this is ignored in some 

potentials. The Al concentration over well 

distance will change as 𝑥(𝑧) = 𝑈(𝑧) 835.49⁄  

for a given 𝑈(𝑧) potential. In all calculations, 

the effective mass ratio is taken as the 

constant value of 𝑚∗ = 0.067  for all 

concentrations and the increment of space is 

taken as Δ𝑧 = 1. All numerical calculations 

are performed by using the SciPy Stack (van 

der Walt et al., 2011). 
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3. Results and Discussions 

 

3.1 Rosen-Morse Potential  

 

This potential is frequently applied in 

molecular and chemical physics to model the 

vibrational spectra of diatomic molecules, 

especially near equilibrium bond lengths. Its 

shape can capture the subtle behavior of 

electron movement within a molecular bond, 

making it useful for spectroscopy and the 

study of molecular interactions. It was 

introduced by Rosen and Morse to explore 

vibrational energies in polyatomic molecules 

(Rosen and Morse, 1932). The Rosen–Morse 

confinement profile has garnered significant 

attention for its diverse applications across 

various physics disciplines. Subsequently, 

numerous analytical techniques have been 

developed to study the Rosen–Morse 

confinement profile, reflecting its importance 

and versatility in theoretical investigations 

(Khordad and Mirhosseini, 2014; Salman 

Durmuslar et al., 2022; Haghighatzadeh and 

Attarzadeh, 2023). The hyperbolic Rosen-

Morse potential is given as 

 

𝑈(𝑧) = 𝑈0 tanh2 (
𝑧

𝜂
) (11) 

 

where 𝑈0  and 𝜂  are constants (Ungan and 

Bahar, 2019, 2020). The potential minimum 

is zero at 𝑧 = 0  and 𝑈0  is the barrier 

potential. The well width and depth are scaled 

with 𝜂  and 𝑈0 , respectively. The potential 

energy profile and the squared wave functions 

of the ground and first excited states are 

shown in  

Figure 1(c) for 𝜂 = 20 Å, 𝜂 = 25 Å and 𝜂 =

30 Å . The barrier potential is 

𝑈0 =  835.49 meV for AlAs. The 𝑧  range is 

taken as [−250 Å, 250 Å] in the calculations. 

Energy values of the bounded states are given 

in  

Table 1. As the parameter 𝜂  increases, the 

potential energy profile becomes wider and 

therefore the quantum well admits more 

energy levels as shown in Table 1. 

Accordingly, the energy values of the two 

lowest subbands get closer; the transition 

energy between them drops from 419.4 meV 

to 337.4 meV. 

 

Figure 1 The potential energy profile (blue) 

and the squared wave functions of the ground 

(orange) and first excited (green) states of the 

Rosen-Morse potential for 

U0 =  835.49 meV  and (a) η = 20 Å , (b) 

η = 25 Å and (c) η = 30 Å 

 

Table 1. Energy values of the Rosen-Morse potential for 𝑈_0 =  835.49 meV and for 𝜂 =

20 "Å" , 𝜂 =  25 "Å"  and 𝜂 = 30 "Å"  

𝒏 𝑬𝒏 (𝐦𝐞𝐕) for 𝜼 = 𝟐𝟎 Å 𝑬𝒏 (𝐦𝐞𝐕) for 𝜼 = 𝟐𝟓 Å 𝑬𝒏 (𝐦𝐞𝐕) for 𝜼 = 𝟑𝟎 Å 

 0 280.75 233.90 200.29 

1 700.15 610.73 537.69 

2 - 805.72 748.79 

3 - - 834.88 
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3.2 Wood-Saxon Potential 

 

This potential is known for its application in 

nuclear physics, where it models the 

distribution of nuclear forces within an atomic 

nucleus. It is particularly valuable for 

studying nuclear shell structures, and it can be 

applied in nuclear energy and radioactive 

decay research, where precise models of 

nucleon behavior are essential. It was 

introduced by Woods and Saxon to 

investigate the elastic scattering of protons by 

heavy nuclei (Woods and Saxon, 1954). The 

Woods–Saxon potential has proven to be a 

viable choice for nuclear shell models, 

drawing significant attention in the field of 

nuclear physics. It is widely employed for its 

effectiveness in representing the distribution 

of nuclear densities, making it a valuable tool 

for studying various aspects of nuclear 

structure and interactions (Xie, 2009).  

The Wood-Saxon potential is given as 

𝑈(𝑧) =
𝑈0

1 + exp[(𝑍0 − 𝑧)/𝛾]
+

𝑈0

1 + exp[(𝑍0 + 𝑧)/𝛾]
 

(12 

) 

 

where 𝑈0 is the barrier potential and 𝑍0 is a 

constant changing well width (Restrepo et al., 

2015; Ungan et al., 2019). The slope of the 

barriers increases with 𝛾 > 0. When 𝛾 → 0, 

the well shape approaches to the finite square 

well potential. The potential energy profile 

and the squared wave functions of the ground 

and first excited states are shown in Figure 2 

for 𝛾 = 0.1 Å, 𝛾 = 10 Å and 𝛾 = 20 Å. The 

barrier potential is 𝑈0 =  835.49 meV  for 

AlAs and 𝑍0 = 50 Å. The 𝑧 range is taken as 

[−250 Å, 250 Å] in the calculations. Energy 

values of the bounded states are given in  

Table 2. The parameter 𝛾 makes the Wood-

Saxon potential energy profile wider and 

shallower as it becomes larger as shown in 

Figure 2. However, the bottom part ceases to 

be flat and the potential energy profile 

becomes narrower toward it. That yields 

initially an enhanced transition energy, from 

122.5 meV to 174 meV as shown in Table 2. 

However, as discussed above, the widening 

profile with the parameter 𝛾  lowers the 

transition energy to 164.97 meV. 

 

Figure 2 The potential energy profile (blue) 

and the squared wave functions of the ground 

(orange) and first excited (green) states of the 

Wood-Saxon potential for 

𝑈0 =  835.49 𝑚𝑒𝑉 , 𝑍0 = 50 Å  and (a) 𝛾 =

0.1 Å, (b) 𝛾 = 10 Å and (c) 𝛾 = 20 Å 

 

Table 2. Energy values of the Wood-Saxon potential for 𝑈_0 =  835.49 meV, 𝑍_0 = 50 "Å"  

and for 𝛾 =  0.1 "Å" , 𝛾 = 10 "Å"  and 𝛾 = 20 “Å"  

𝒏 𝑬𝒏 (𝐦𝐞𝐕) for 𝜸 = 𝟎. 𝟏 Å 𝑬𝒏 (𝐦𝐞𝐕) for 𝜸 = 𝟏𝟎 Å 𝑬𝒏 (𝐦𝐞𝐕) for 𝜸 = 𝟐𝟎 Å 

0 41.27 86.85 210.68 
1 163.78 260.85 375.65 

2 362.66 463.24 529.84 

3 624.06 660.34 663.46 

4 - 808.06 766.37 

5 - - 827.21 
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3.3 Pöschl-Teller Potential 

 

This potential is used in quantum mechanics 

and optical physics, especially for problems 

with solvable quantum systems and in 

describing solitons in nonlinear optics. Its 

solvability makes it ideal for teaching 

purposes and for analytically modeling 

quantum wells in solid-state physics. It was 

originally proposed by Pöschl and Teller, and 

its initial purpose was to model the vibrational 

behavior of diatomic molecules in the realm 

of quantum mechanics (Pöschl and Teller, 

1933). Over time, it has found extensive 

application in the examination of both linear 

and nonlinear optical properties of quantum 

wells (Yıldırım and Tomak, 2005, 2006; 

Aytekin et al. , 2012). Numerous researchers 

have utilized the trigonometric Pöschl-Teller 

potential as a valuable tool in their studies 

within the realm of quantum optics and 

optical properties of various physical systems 

(Hamzavi and Rajabi, 2011; Falaye, 2012).  

The Pöschl-Teller potential is given as 

 

𝑈(𝑧) =
ℏ2𝛽2

2𝑚∗
[
𝑘(𝑘 − 1)

sin2(𝛽𝑧)
+

𝜂(𝜂 − 1)

cos2(𝛽𝑧)
] (13) 

 

where ℏ is the reduced Planck’s constant, 𝑚∗ 

is the effective mass, 𝑘 > 1  and 𝜂 > 1  are 

constants, 𝛽 = 𝜋 (2𝐿)⁄  and 𝐿  is well width. 

The potential energy profile and the squared 

wave functions of the ground and first excited 

states are shown in Figure 3 for 𝜂 = 2  and 

𝑘 = 1.2, for 𝜂 = 2 and 𝑘 = 2, and for 𝜂 = 2 

and 𝑘 = 3 . When 𝜂 = 𝑘  the potential 

becomes symmetric. The potential function 

has vertical asymptotes at 𝑧 = 0 and 𝑧 = 𝐿 so 

it is an infinite potential. Energy values of the 

first 4 bounded states are given in Table 3. 

The bottom part of the Pöschl-Teller potential 

energy profile is shifted upward and becomes 

narrower as the parameter 𝑘  increases from 

1.2 to 3 as shown in Figure 3. That makes the 

transition energy between the lowest two 

level larger; it increases from 235.48 meV to 

336.53 meV. A consequence of the change in 

the parameter 𝑘 is that the symmetry of the 

potential energy profile can be distorted. As 

shown in Figure 3, while the value 𝑘 = 1.2 

gives a profile whose minimum is shifted to 

the left, the value 𝑘 = 3  gives another one 

whose minimum is shifted to the right. But 

when the parameter is set to 2, a symmetric 

profile is obtained. 

 

 

Table 3. Energy values of the Pöschl-Teller potential for 𝐿 = 100 Å, 𝜂 = 2 and 𝑘 = 1.2 𝑘 =

2 and 𝑘 = 3 

𝒏 𝑬𝒏 (𝐦𝐞𝐕) for 𝒌 = 𝟏. 𝟐 𝑬𝒏 (𝐦𝐞𝐕) for 𝒌 = 𝟐 𝑬𝒏 (𝐦𝐞𝐕) for 𝒌 = 𝟑 

0 143.61 224.47 350.74 

1 379.09 504.92 687.27 

2 726.42 897.25 1135.61 

3 1185.27 1401.11 1695.38 
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Figure 3 The potential energy profile (blue) 

and the squared wave functions of the ground 

(orange) and first excited (green) states of the 

Pöschl-Teller potential for 𝐿 = 100 Å, 𝜂 = 2 

and (a) 𝑘 = 1.2, (b) 𝑘 = 2 and (c) 𝑘 = 3 

 

3.4 Razavy Potential 

 

This potential is suitable for modeling double-

well potentials and quantum tunneling effects, 

which have applications in semiconductor 

technology and chemical reaction dynamics. 

It is often used in quantum field theory and 

nonlinear dynamics. It is especially useful for 

examining symmetry-breaking effects in field 

theory. This potential was proposed by 

Razavy as a bistable potential (Razavy, 1980). 

This potential has found widespread 

application in molecular physics as an 

approximate model for characterizing the 

movement of a particle subjected to the 

influence of two force centers (Finkel et al. 

1999; Sous, 2007).  

 

The Razavy potential is given as 

 

𝑈(𝑧) = 𝑈0 [𝐴 cosh (
𝑧

𝐷
) − 𝑀]

2

 (14) 

 

where 𝑈0 , 𝐴 , 𝐷  and 𝑀  are constants 

(Kasapoglu et al., 2021; Sayrac et al. 2022). 

When 𝐴 > 𝑀 , it is a single well with the 

minimum at 𝑧 = 0 . When 𝐴 < 𝑀 , it is a 

double well with minimums at 𝑧± =

±𝐷 arccosh(𝑀 𝐴⁄ )  and the local maximum 

at 𝑧 = 0. It is an infinite potential but it is not 

bounded. The potential energy profile and the 

squared wave functions of the ground and 

first excited states are shown in Figure 4 for 

𝐴 = 2 and 𝑀 = 1, for 𝐴 = 2 and 𝑀 = 2, and 

for 𝐴 = 2  and 𝑀 = 3  values. The other 

constants are taken as 𝑈0 = 300 meV  and 

𝐷 = 50 Å . Energy values of the first 4 

bounded states are given in Table 4. 

According to Figure 4, the parameter 𝑀 gives 

us wider and deeper potential energy profiles 

for Razavy potential as it increases and 

eventually splits the potential energy profile 

into two parts, and so the parameter creates a 

potential energy profile of a double quantum 

well. The corresponding transition energies of 

the single wells for the lowest two subbands 

decrease from 267.16 to 153.87 meV, and the 

double well has the energies of 𝐸10 =

15.95 meV and 𝐸21 = 203.48 meV. 

 

Table 4. Energy values of the Razavy potential for 𝑈_0 = 300 meV, 𝐷 = 50 Å, 𝐴 = 2 and 

𝑀 = 1, 𝑀 = 2 and 𝑀 = 3 

𝒏 𝑬𝒏 (𝐦𝐞𝐕) for 𝑴 = 𝟏 𝑬𝒏 (𝐦𝐞𝐕) for 𝑴 = 𝟐 𝑬𝒏 (𝐦𝐞𝐕) for 𝑴 = 𝟑 

0 425.79 58.94 158.80 

1 692.95 212.82 174.76 

2 988.75 421.92 378.24 

3 1309.14 665.87 520.79 

 



Energy Levels and Absorption Coefficients…  Zərbaliyev et al. / RTEU-JSE 6(1) 14-31 2025 

 

22 
 

 
Figure 4 The potential energy profile (blue) 

and the squared wave functions of the ground 

(orange), first excited (green) and second 

excited (red) states of the Razavy potential for 

𝑈0 = 300 meV , 𝐷 = 50 Å , 𝐴 = 2  and (a) 

𝑀 = 1, (b) 𝑀 = 2 and (c) 𝑀 = 3 

 

3.5 Inversely Quadratic Hellmann 

Potential 

 

This potential is used to approximate 

Coulombic interactions and long-range 

intermolecular forces in applied atomic and 

molecular physics. It can aid in studying 

ionized gases and plasmas, where particles 

experience varying degrees of electric 

interaction, as well as in modeling Rydberg 

states in highly excited atoms. It finds 

application in certain physical models aimed 

at describing particle interactions (Hellmann, 

1936). The unique form of this potential 

enables its application in describing the 

complex dynamics involved in the interaction 

between particles in various physical systems 

(Máthé et al., 2021; Duan et al, 2022; 

Ghanbari, 2023; Njoku et al, 2023).  

 

The inversely quadratic Hellmann potential is 

given as 

 

𝑈(𝑧) = 𝑈0 [−
𝜂

𝑧
+

𝜂2

𝑧2
exp (−

𝑧

𝜂
)] (15) 

 

where 𝑈0 and 𝜂 are constants (Turkoglu et al. 

2021). The potential minimum can be 

numerically calculated as 𝑈𝑚𝑖𝑛 ≈ −0.635𝑈0 

at 𝑧𝑚𝑖𝑛 ≈ 1.06𝜂 . The well width and depth 

are scaled with 𝜂  and 𝑈0 , respectively. The 

potential energy profile and the squared wave 

functions of the ground and first excited states 

are shown in Figure 5 for 𝑈0 = 300 meV and 

for 𝜂 = 50 Å , 𝜂 = 100 Å  and 𝜂 = 200 Å . 

The 𝑧  values is taken until 104 Å  in the 

calculations because of the horizontal 

asymptote at 𝑈 = 0 . Energy values of the 

bounded states are given in Table 5. As the 

parameter 𝜂  increases, the potential energy 

profile expands. Consequently, the energy 

values of the lowest two subbands approach 

each other; the transition energy between 

them decreases from 58.25 meV to 27.72 

meV. 

 

Table 5. Energy values of the inversely quadratic Hellmann potential for 𝑈0 = 300 meV and 

𝜂 = 50 Å, 𝜂 = 100 Å and 𝜂 = 200 Å 

𝒏 𝑬𝒏 (𝐦𝐞𝐕) for 𝜼 = 𝟓𝟎 Å 𝑬𝒏 (𝐦𝐞𝐕) for 𝜼 = 𝟏𝟎𝟎 Å 𝑬𝒏 (𝐦𝐞𝐕) for 𝜼 = 𝟐𝟎𝟎 Å 

0 -131.38 -158.33 -173.73 

1 -73.13 -113.99 -146.01 

2 -45.67 -84.95 -123.87 

3 -31.05 -65.30 -106.02 
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Figure 5 The potential energy profile (blue) 

and the squared wave functions of the ground 

(orange) and first excited (green) states of the 

inversely quadratic Hellmann potential for 

𝑈0 = 300 meV  and (a) 𝜂 = 50 Å , (b) 

𝜂 =  100 Å and (c) 𝜂 = 200 Å 

 

3.6 Kratzer-Fues Potential 

 

This potential is particularly useful in 

molecular spectroscopy for analyzing 

vibrational-rotational spectra of diatomic 

molecules. It finds applications in studying 

bonding properties and bond dissociation 

energies, making it essential for chemical 

reaction dynamics and understanding 

molecular stability. It is derived by Kratzer 

and Fues as a combination of a Coulomb 

potential and an inverse-square potential 

(Kratzer, 1920; Fues, 1926). The specific 

shape of this potential well holds significant 

importance for accurately determining 

vibrational and rotational energy eigenvalues 

(Bayrak et al., 2006; Khordad, 2013; Dehyar 

et al., 2016).  

 

The Kratzer-Fues potential is given as 

 

𝑈(𝑧) = −𝑈0 (
2𝑟0

𝑧
−

𝑟0
2

𝑧2
) (16) 

 

where 𝑈0 and 𝑟0 are constants (Ungan et al., 

2019). The potential minimum is 𝑈𝑚𝑖𝑛 =

−𝑈0 at 𝑧𝑚𝑖𝑛 = 𝑟0. The well width and depth 

are scaled with 𝑟0 and 𝑈0, respectively. The 

potential energy profile and the squared wave 

functions of the ground and first excited states 

are shown in Figure 6 for 𝑈0 = 300 meV and 

for 𝑟0 = 50 Å , for 𝑟0 = 100 Å  and for 𝑟0 =

200 Å. The 𝑧 values is taken until 104 Å in 

the calculations because of the horizontal 

asymptote at 𝑈 = 0 . Energy values of the 

bounded states are given in Table 6. As the 

parameter 𝑟0  increases, the potential energy 

profile expands. Consequently, the energy 

values of the lowest two subbands approach 

each other; the transition energy between 

them decreases from 79.72 meV to 33.84 

meV. 

 

Table 6. Energy values of the Kratzer-Fues potential for 𝑈0 = 300 meV and for 𝑟0 = 50 Å, 

𝑟0 =  100 Å and 𝑟0 = 200 Å 

𝒏 𝑬𝒏 (𝐦𝐞𝐕) for 𝒓𝟎 = 𝟓𝟎 Å 𝑬𝒏 (𝐦𝐞𝐕) for 𝒓𝟎 = 𝟏𝟎𝟎 Å 𝑬𝒏 (𝐦𝐞𝐕) for 𝒓𝟎 = 𝟐𝟎𝟎 Å 

0 -227.99 -261.44 -280.05 

1 -148.27 -205.29 -246.21 

2 -104.08 -165.46 -218.15 

3 -77.06 -136.19 -194.63 
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Figure 6 The potential energy profile (blue) 

and the squared wave functions of the ground 

(orange) and first excited (green) states of the 

Kratzer-Fues potential for 𝑈0 = 300 meV 

and for (a) 𝑟0 = 50 Å , (b) 𝑟0 =  100 Å  and 

(c) 𝑟0 = 200 Å 

 

3.7 Morse Potential 

 

The Morse potential is widely used in 

molecular physics to model the bonding and 

vibration of diatomic molecules. It is crucial 

in calculating spectroscopic constants, 

studying chemical bonds, and even in 

designing materials with tailored properties, 

as it provides insights into bond strength and 

energy dissociation. Morse initially 

introduced this potential as a valuable model 

for diatomic molecules, offering a more 

accurate depiction of the potential energy 

compared to the quantum harmonic oscillator 

(Morse, 1929). This potential proves 

valuable, as anharmonic potentials are 

frequently essential for mathematically 

modeling various physical phenomena (Nieto 

and Simmons, 1979; Duru, 1983; Costa Filho 

et al., 2013).  

 

The Morse potential is given as 

 

𝑈(𝑧) = 𝑈0 [exp (−
2𝑧

𝜂
)

− 2 exp (−
𝑧

𝜂
)] 

(17) 

 

where 𝑈0  and 𝜂  are constants (Sakiroglu et 

al., 2016; Ungan et al., 2021). The potential 

minimum is 𝑈𝑚𝑖𝑛 = −𝑈0  at 𝑧𝑚𝑖𝑛 = 0 . The 

well width and depth are scaled with 𝜂 and 

𝑈0, respectively. The potential energy profile 

and the squared wave functions of the ground 

and first excited states are shown in Figure 7 

for 𝑈0 = 300 meV  and for 𝜂 = 50 Å , 𝜂 =

100 Å and 𝜂 = 200 Å. The 𝑧 values is taken 

until 104 Å in the calculations because of the 

horizontal asymptote at 𝑈 = 0. Energy values 

of the bounded states are given in Table 7. As 

the parameter 𝜂  increases, the potential 

energy profile expands. Consequently, the 

energy values of the lowest two subbands 

approach each other; the transition energy 

between them decreases from 119.71 meV to 

38.45 meV. 

 

Table 7. Energy values of the Morse potential for 𝑈_0 = 300 meV and for 𝜂 = 50 "Å" , 𝜂 =

100 "Å"  and 𝜂 = 200 Å 

𝒏 𝑬𝒏 (𝐦𝐞𝐕) for 𝜼 = 𝟓𝟎 Å 𝑬𝒏 (𝐦𝐞𝐕) for 𝜼 = 𝟏𝟎𝟎 Å 𝑬𝒏 (𝐦𝐞𝐕) for 𝜼 = 𝟐𝟎𝟎 Å 

0 -223.09 -260.12 -279.70 

1 -103.38 -188.89 -241.25 

2 -29.15 -129.04 -205.63 

3 -0.40 -80.55 -172.86 
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Figure 7. The potential energy profile (blue) 

and the squared wave functions of the ground 

(orange) and first excited (green) states of the 

Morse potential for 𝑈0 = 300 𝑚𝑒𝑉  and for 

(a) 𝜂 = 50 Å , (b) 𝜂 = 100 Å  and (c) 𝜂 =

200 Å 

 

3.8 Absorption Coefficients 

 

The absorption coefficients of these quantum 

potentials are crucial because each potential 

models specific molecular, atomic, or nuclear 

interactions, making them ideal for 

applications requiring precise energy 

interaction data. Their unique characteristics 

enable tailored molecular and material design 

in fields like optics and photodetectors, 

enhance the accuracy of spectroscopic 

analysis, and support quantum and nanoscale 

devices by fine-tuning energy absorption 

properties. Additionally, they aid efficient 

energy transfer for thermal management and 

improve medical imaging and phototherapy 

by ensuring controlled interactions with 

radiation. This specificity makes these 

coefficients invaluable for designing 

advanced technologies across various fields. 

For the calculations of the absorption 

coefficients, we used 𝜎𝑠 = 3 × 1022 m−3 , 

ℏΓ0 = 60 meV  and 𝑛𝑟 = 3.2 . Figure 8 

illustrates the linear optical absorption 

coefficients concerning optical transitions 

between the ground and the first-excited 

states, plotted against the incident photon 

energy. The maxima in the absorption spectra 

for the Rosen-Morse and the Pöschl-Teller 

potentials stay nearly constant when the 

related parameters of the potentials are 

subjected to change. However, the maxima in 

the absorption spectra for the rest of the 

potential functions either decrease or increase 

following the changes in the parameters. 

Regarding the transition energy, it can be said 

that the potential energy profiles with the 

current parameters yield values ranging from 

the lower limit of near-infrared region, for 

example 423.67 meV in the case of the 

Rosen-Morse potential, to the middle of the 

far-infrared region, for example 62.08 meV in 

the case of the Razavy potential, as shown in 

Table 8.  In terms of wavelength, the 

calculated values give us a range between 

102.44 and 15.01 THz. Generally speaking, 

the last three potential profiles, namely the 

Hellmann, Kratzer-Fues and Morse, yield 

transition energies near the lower limit of the 

mid-infrared range, while the Rose-Morse 

potential profile give values close to the upper 

limit. On the other hand, the remaining 

profiles provide transition energy values 

around the middle part of the mid-infrared 

region. For the double well of the Razavy 

potentail, the absorptions at the transition 

energies 𝐸10 = 𝐸1 − 𝐸0  and 𝐸21 = 𝐸2 − 𝐸1 

are calculated, as seen in Figure 8. 
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Figure 8. The linear absorption coefficients of  (a) the Rosen-Morse potential for 𝜂 = 20 Å 

(blue), 𝜂 = 25 Å (orange) and 𝜂 = 30 Å (green), (b) the Wood-Saxon potential for 𝛾 = 0.1 Å 

(blue), for 𝛾 = 10 Å (orange) and for 𝛾 = 20 Å (green), (c) the Pöschl-Teller potential for 𝑘 =

1.2 (blue), 𝑘 = 2 (orange) and 𝑘 = 3 (green), (d) the Razavy potential for 𝑀 = 1 (blue), 𝑀 =

2 (orange) and 𝑀 = 3 (green), and (e) the inversely quadratic Hellmann potential 𝜂 = 50 Å 

(blue), 𝜂 = 100 Å  (orange) and 𝜂 = 200 Å  (green), (f) the Kratzer-Fues potential for 𝑟0 =

50 Å (blue), 𝑟0 = 100 Å (orange) and 𝑟0 = 200 Å (green), and (g) the Morse potential for 𝜂 =

50 Å (blue), 𝜂 = 100 Å (orange) and 𝜂 = 200 Å (green) 
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Table 8. Absorption coefficients and transition energies 

Rosen-Morse potential for 𝑼𝟎 = 𝟖𝟑𝟓. 𝟒𝟗 𝐦𝐞𝐕 

𝜂 = 20 Å  ℏ𝜔 = 423.67  (meV) = 102.44  (THz)  𝛼(1)(ℏ𝜔) = 7.55 × 103m−1  

𝜂 = 25 Å  ℏ𝜔 = 381.58  (meV) = 92.27 (THz)  𝛼(1)(ℏ𝜔) = 7.90 × 103m−1  

𝜂 = 30 Å  ℏ𝜔 = 342.70  (meV) = 82.86  (THz)  𝛼(1)(ℏ𝜔) = 8.04 × 103m−1  

Wood-Saxon potential for 𝑼𝟎 = 𝟖𝟑𝟓. 𝟒𝟗 𝐦𝐞𝐕 and 𝒁𝟎 = 𝟓𝟎 Å 

𝛾 = 0.1 Å  ℏ𝜔 = 136.41 (meV) = 32.98 (THz)  𝛼(1)(ℏ𝜔) = 8.32 × 103m−1  

𝛾 = 10 Å  ℏ𝜔 = 184.06 (meV) = 44.51 (THz)  𝛼(1)(ℏ𝜔) = 8.35 × 103m−1  

𝛾 = 20 Å  ℏ𝜔 = 175.54 (meV) = 42.45 (THz)  𝛼(1)(ℏ𝜔) = 8.40 × 103m−1  

Pöschl-Teller potential for 𝑳 = 𝟏𝟎𝟎 Å and 𝜼 = 𝟐 

𝑘 = 1.2  ℏ𝜔 = 243.00 (meV) = 58.76 (THz)  𝛼(1)(ℏ𝜔) = 8.02 × 103m−1  

𝑘 = 2  ℏ𝜔 = 286.80 (meV) = 69.35 (THz)  𝛼(1)(ℏ𝜔) = 8.10 × 103m−1  

𝑘 = 3  ℏ𝜔 = 341.84 (meV) = 82.66 (THz)  𝛼(1)(ℏ𝜔) = 8.07 × 103m−1  

Razavy potential for 𝑼𝟎 = 𝟑𝟎𝟎 𝐦𝐞𝐕, 𝑫 = 𝟓𝟎 Å and 𝑨 = 𝟐 

𝑀 = 1  ℏ𝜔 = 273.81 (meV) = 66.21 (THz)  𝛼(1)(ℏ𝜔) = 8.23 × 103m−1  

𝑀 = 2  ℏ𝜔 = 165.16 (meV) = 39.94 (THz)  𝛼(1)(ℏ𝜔) = 8.34 × 103m−1  

𝑀 = 3  ℏ𝜔 = 62.08 (meV) = 15.01 (THz)  𝛼(1)(ℏ𝜔) = 8.88 × 103m−1  

𝑀 = 3  ℏ𝜔 = 212.14 (meV) = 55.00 (THz)  𝛼(1)(ℏ𝜔) = 10.47 × 103m−1  

The inversely quadratic Hellmann potential for 𝑼𝟎 = 𝟑𝟎𝟎 𝐦𝐞𝐕 

𝜂 = 50 Å  ℏ𝜔 = 83.63 (meV) = 20.22 (THz)  𝛼(1)(ℏ𝜔) = 5.79 × 103m−1  

𝜂 = 100 Å  ℏ𝜔 = 74.61 (meV) = 18.04 (THz)  𝛼(1)(ℏ𝜔) = 8.18 × 103m−1  

𝜂 = 200 Å  ℏ𝜔 = 66.09 (meV) = 15.98 (THz)  𝛼(1)(ℏ𝜔) = 11.87 × 103m−1  

Kratzer-Fues potential for 𝑼𝟎 = 𝟑𝟎𝟎 𝐦𝐞𝐕 

𝑟0 = 50 Å  ℏ𝜔 = 99.78 (meV) = 24.13 (THz)  𝛼(1)(ℏ𝜔) = 5.93 × 103m−1  

𝑟0 = 100 Å  ℏ𝜔 = 82.18 (meV) = 19.87 (THz)  𝛼(1)(ℏ𝜔) = 7.86 × 103m−1  

𝑟0 = 200 Å  ℏ𝜔 = 68.88 (meV) = 16.66 (THz)  𝛼(1)(ℏ𝜔) = 10.87 × 103m−1  

Morse potential for 𝑼𝟎 = 𝟑𝟎𝟎 𝐦𝐞𝐕 

𝜂 = 50 Å  ℏ𝜔 = 133.91 (meV) = 32.38 (THz)  𝛼(1)(ℏ𝜔) = 6.99 × 103m−1  

𝜂 = 100 Å  ℏ𝜔 = 93.13 (meV) = 22.52 (THz)  𝛼(1)(ℏ𝜔) = 8.65 × 103m−1  

𝜂 = 200 Å  ℏ𝜔 = 71.27 (meV) = 17.23 (THz)  𝛼(1)(ℏ𝜔) = 11.19 × 103m−1  

 

4. Conclusion 

 

In this work, we have studied the 

GaAs/AlGaAs quantum well for several 

bounded potentials, and the intersubband 

absorption coefficients of the transition 

energies are presented for different well 

parameters. The potential functions are 

Rosen-Morse, Wood-Saxon, Pöschl-Teller, 

Razavy, inversely quadratic Hellmann, 
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Kratzer-Fues and Morse potentials. The 

transition energies of absorption coefficients 

vary according to well parameters, from the 

lower limit of near-infrared to the middle of 

the far-infrared region.  

 

The findings of this study provide a 

foundation for optimizing the characteristics 

of GaAs/AlGaAs  quantum well structures, 

aiding in their application across a wide range 

of technologies, including semiconductor 

lasers, photodetectors, and quantum cascade 

devices. Each potential has distinct uses, but 

collectively, they contribute to fields such as 

quantum mechanics, molecular chemistry, 

condensed matter physics, and 

nanotechnology. The detailed analysis of how 

each potential impacts transition energies and 

absorption characteristics enables a refined 

approach to tuning quantum wells for specific 

optical and electronic responses, which is 

essential for advancing infrared sensing and 

telecommunications applications. We believe 

that the results of the present study will be 

helpful to researchers in designing possible 

quantum optoelectronic devices, providing a 

roadmap for selecting and customizing 

potential models to achieve the desired 

operational parameters in real-world 

applications. 
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