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ABSTRACT

We study locally conformal Kaehler submersions, i.e., almost Hermitian submersions whose total
manifolds are locally conformal Kaehler. We prove that the vertical distribution of a locally
conformal Kaehler submersion is totally geodesic iff the Lee vector field of total manifold is
vertical. We also obtain the O’Neill tensors Ã and T̃ with respect to the Weyl connection of a
locally conformal Kaehler submersion. Then, we proved that the horizontal distribution of such
a submersion is integrable iff Ã ≡ 0. Finally, we get Chen-Ricci inequalities for locally conformal
Kaehler space form submersions and Hopf space form submersions.
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1. Introduction

The most common type of almost Hermitian manifolds is Kaehler manifolds. Therefore, studying locally
conformal Kaehler (birefly, l.c.K.) manifolds is both interesting and logical. The Gray-Hervella class of l.c.K.
manifolds is W4. Classical examples of l.c.K. manifolds are Hopf and Vaisman manifolds (see [4]). Locally
conformal Kaehler manifolds were introduced and studied widely by Vaismann [11].

An almost Hermitian submersion is one of the most prevalent mappings between two almost Hermitian
manifolds [13]. This is a Riemannian submersion [10] which is also an almost complex mapping. The
fundamental property of such a submersion is that its vertical and horizontal distributions are invariant under
the almost complex structure of the total manifold of that submersion. An almost Hermitian submersion can
be called depending on its total manifold. For instance, if its total manifold is a l.c.K. manifold, then it is called
a l.c.K. submersion. Locally conformal Kaehler submersions were studied in the papers [3], [8], [9] and the
book [5].

In the present paper, we give some applications of l.c.K. submersions. The paper is organized as follows.
In the second section, we introduce locally and globally conformal Kaehler manifolds and almost Hermitian
submersions. In the third section, we obtain the O’Neill tensors of l.c.K. submersions. In conclusion, we give the
necessary conditions for a vertical distribution of such a submersion to be totally geodesic. In the fourth section,
we get the O’Neill tensors Ã and T̃ with respect to the Weyl connection of a l.c.K. submersion. Furthermore,
we proved that the horizontal distribution is integrable and totally geodesic if and only if Ã = 0. In the final
section, we study optimal inequalities for l.c.K. space form submersions and Hopf space form submersions.

2. Preliminaries

This section provides information on locally and globally conformal Kaehler manifolds.
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2.1. Locally and globally conformal Kaehler manifolds

Definition 2.1. [4] A Hermitian manifold (N1, g1, J1) of dimension 2m is called locally conformal Kaehler (briefly
l.c.K.) manifold , if N1 has an open cover {Oi}i ∈I and ∀i ∈ I with family of positive differentiable functions
σi : Oi → R such that

g1|i = exp(−σi)g1|Oi

is a Kaehler metric on Oi. If Oi is equal to N1, then (N1, g1, J1) is said to a globally conformal Kaehler (briefly
g.c.K.) manifold.

Now, we will give a well-known theorem for l.c.K. manifolds.

Theorem 2.1. [4] Let E,F be arbitrary vector fields on a Hermitian manifold (N1, g1, J1) and Φ be a 2−form defined by
Φ(E,F ) = g1(E, J1F ) . Then (N1, g1, J1) is a l.c.K. manifold iff there exists a closed 1-form ω1 globally defined on N1

satisfying dΦ = ω1 ∧ Φ.

The 1−form ω1 is called the Lee form of (N1, g1, J1) . If ω1 is also exact, then (N1, g1, J1) is a g.c.K. manifold. A
l.c.K. manifold is reduced to a Kaehler manifold when ω1 = 0 identically.

Suppose that ∇ is the Riemannian connection of (N1, g1, J1) and Di is the Riemannian connection of local
Kaehler metrics g1|i, ∀i ∈ I . Then, a linear connection D [4] on N1 is defined by gluing together the connections
Di as follows:

DXX ′ = ∇XX ′ − 1

2

{
ω1(X)X ′ + ω1(X

′)X − g1(X,X ′)B

}
, (2.1)

where B is the g1−dual vector field of ω1, and is called the Lee vector field of N1. The connection D is called Weyl
connection of the l.c.K. manifold (N1, g1, J1) . It is well-known that the Weyl connection D is torsion-free and
satisfies DJ1 = 0. Thus, using this fact and (2.1), it follows that

(∇XJ1)X
′ =

1

2

{
ω1(J1X

′)X − ω1(X
′)J1X − g1(X, J1X

′)B + g1(X,X ′)J1B

}
. (2.2)

Remark 2.1. We will denote a locally conformal Kaehler manifold (N1, g1, J1) with its Lee form ω1 as
(N1, g1, J1, ω1).

The curvature tensor field of l.c.K space form is given by

4R(X,X ′, Y, Y ′) =c
{
g1(X,Y ′)g1(X

′, Y )− g1(X,Y )g1(X
′, Y ′) + g1(J1X,Y ′)g1(J1X

′, Y )

− g1(J1X,Y )g1(J1X
′, Y ′)− 2g1(J1X,X ′)g1(J1Y, Y

′)
}

+ 3
{
Ω(X,Y ′)g1(X

′, Y )− Ω(X,Y )g1(X
′, Y ′) + g1(X,Y ′)Ω(X ′, Y )

− g1(X,Y )Ω(X ′, Y ′)
}

(2.3)

− Ω̃(X,Y ′)g1(J1X
′, Y ) + Ω̃(X,Y )g1(J1X

′, Y ′)− g1(J1X,Y ′)Ω̃(X ′, Y )

+ g1(J1X,Y )Ω̃(X ′, Y ′)

+ 2
{
Ω̃(X,X ′)g1(J1Y, Y

′) + g1(J1X,X ′)Ω̃(Y, Y ′)
}
,

where

Ω(X,X ′) = −(∇Xω1)X
′ − ω1(X)ω1(X

′) +
1

2
||B||2g1(X,X ′), (2.4)

and

Ω̃(X,X ′) = Ω(J1X,X ′). (2.5)
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2.2. Almost Hermitian Submersions

Suppose that (N1, g1) and (N2, g2) are Riemannian manifolds. A mapping Ψ of N1 onto N2 is called a
Riemannian submersion [6, 10] if the following two conditions hold:

(I) For each p ∈ N1, the rank of derivative map Ψ∗ of Ψ at p is equal to dim(N2).

This is equivalent to say that Ψ∗ at p is surjective; hence for each q ∈ N2, Ψ−1(q) is a dim(N1)− dim(N2)
dimensional closed submanifold of N1 and called a fiber of Ψ. A vector field in the tangent space of N1 at p, is
called vertical (resp. horizontal) if it is tangent (resp. orthogonal) to fiber Ψ−1(Ψ(p)). Vertical (resp. horizontal)
vectors at p are in kerΨ∗p (resp. (kerΨ∗p)

⊥). A vector field Y on N1 which is horizontal and Ψ-related to a
vector field Y ∗ on N2 is called a basic vector field.

(II) ∀Y, Y ′ ∈ Γ(kerΨ∗)
⊥, p ∈ Ψ−1(q), (q ∈ N2), we have

g1|p(Y, Y
′) = g2|Ψ(p)(Ψ∗Y,Ψ∗Y

′) .

This condition says that for each p ∈ Ψ−1(q), the derivative map Ψ∗p restricted to (kerΨ∗)
⊥, is a linear isometry.

We call the manifold (N1, g1) (rep. (N2, g2)) as total (resp. base) manifold of the submersion Ψ.
A vector field E on N1 can be written uniquely as E = Eν + Eℏ, where Eν is the vertical part of E, Eℏ is the

horizontal part of E. Then, the O’Neill’s tensors T and A of type (1, 2) characterizing Riemannian submersions
are defined as follows:

TEF = (∇EνF ℏ)ν + (∇EνF ν)ℏ , (2.6)

AEF = (∇EℏF ℏ)ν + (∇EℏF ν)ℏ, (2.7)

where E,F ∈ Γ(N1) any vector fields and ∇ is the Riemannian connection of the metric g1. One can see that
TE and AE are skew-symmetric operators on the tangent bundle of N1 and reverse the vertical and horizontal
distributions. Moreover, we have

TV V ′ = TV ′V, (2.8)

AY Y
′ = −AY ′Y =

1

2
[Y, Y ′]ν . (2.9)

On the other hand, from (2.1) and (2.2), we obtain

∇V V
′ = TV V ′ + (∇V V

′)ν , (2.10)

∇V Y = TV Y + (∇V Y )ℏ, (2.11)
∇Y V =AY V + (∇Y V )ν , (2.12)

∇Y Y
′ =(∇Y Y

′)ℏ +AY Y
′, (2.13)

where V, V ′ ∈ Γ(kerΨ∗) and Y, Y ′ ∈ Γ(kerΨ∗)
⊥. (2.10) says that the tensor T is the second fundamental form

of the fibers. We refer to the papers [6, 10] and the book [5] for more details on the theory of Riemannian
submersions.

Now, suppose that (N1, g1, J1) and (N2, g2, J2) be almost Hermitian manifolds and Ψ is a Riemannian
submersion from N1 to N2. A Riemannian submersion Ψ which satisfies Ψ∗ ◦ J1 = J2 ◦Ψ∗, is called an
almost Hermitian submersion [13]. For an almost Hermitian submersion Ψ, we have J1(kerΨ∗) = kerΨ∗ and
J1(kerΨ

⊥
∗ ) = kerΨ⊥

∗ , i.e., vertical and horizontal distributions are J−invariant.
We recall the following curvature formulas of a Riemannian submersion by

R(U,U ′, V, V ′) = R̂(U,U ′, V, V ′) + g1(TUV ′, TU ′V )− g1(TU ′V ′, TUV ), (2.14)

R(X,X ′, Y, Y ′) = R∗(X,X ′, Y, Y ′)− 2g1(AXX ′,AY Y
′)

+g1(AX′Y,AXY ′)− g1(AXY,AX′Y ′),
(2.15)

R(X,V,X ′, V ′) = g1((∇XT )(V, V ′), X ′) + g1((∇V A)(X,X ′), V ′)
−g1(TV X, TV ′X ′) + g1(AX′V ′,AXV ),

(2.16)

where U, V, U ′, V ′ ∈ Γ(kerΨ∗), X,Y,X ′, Y ′ ∈ Γ(kerΨ∗)
⊥ and R,R

′
, R̂, R∗ the Riemannian curvatures of

Riemannian manifolds N1, N2, the vertical distribution kerΨ∗, the horizontal distribution (kerΨ∗)
⊥,

respectively.
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Moreover, for an orthonormal basis {U1, ..., Uk} of kerΨ∗

H =
1

k

k∑
i=1

TUi
Ui, (2.17)

is called the mean curvature vector field of any fiber of Ψ.

3. Locally conformal Kaehler submersions

We first examine how a l.c.K. structure effects on the O’Neill tensors T and A of an almost Hermitian
submersion Ψ : (N1, g1, J1, ω1) → (N2, g2, J2, ω2). We know that the base manifold (N2, g2, J2, ω2) also carries
a l.c.K. structure from Proposition 3.35 of [5]:

Proposition 3.1. [5] Let Ψ : (N1, g1, J1) → (N2, g2, J2) be an almost Hermitian submersion and let X1, Y1 be basic
vector fields on N1, Ψ-related to X2, Y2 on N2. Then, we have
1) J1X1 is the basic vector field Ψ-related to J2X2;
2) (NJ1(X1, Y1))

ℏ is the basic vector field Ψ-related to (NJ2(X2, Y2))
ℏ;

3) ((∇1
X1

J1)Y1)
ℏ is the basic vector field Ψ-related to ((∇2

X2
J2)Y2)

ℏ,
where NJ1

and NJ2
are Nijenhuis tensors of J1 and J2, respectively.

Lemma 3.1. Let Ψ : (N1, g1, J1, ω1) → (N2, g2, J2, ω2) be a l.c.K. submersion. Then, we have

TUJ1V = J1TUV +
1

2
{g1(U, V )(J1B)ℏ − g1(U, J1V )Bℏ}, (3.1)

TV J1X = J1TV X +
1

2
{ω1(J1X)V − ω1(X)J1V }, (3.2)

AXJ1V = J1AXV +
1

2
{ω1(J1V )X − ω1(V )J1X}, (3.3)

AXJ1Y = J1AXY +
1

2
{g1(X,Y )(J1B)ν − g1(X,J1Y )Bν}, (3.4)

where U, V ∈ Γ(kerΨ∗) and X,Y ∈ Γ(kerΨ∗)
⊥, and B is the Lee vector field of N1.

Proof. For any X,Y ∈ Γ(kerΨ∗)
⊥, we have

∇XJ1Y = J1∇XY + 1
2

{
ω1(J1Y )X − ω1(Y )J1X − g1(X,J1Y )B + g1(X,Y )J1B

}
,

from (2.2). Using (2.11), we obtain

AXJ1Y + (∇XJ1Y )ℏ = J1AXY + J1(∇XY )ℏ

+
1

2

{
ω1(J1Y )X − ω1(Y )J1X − g1(U, J1V )B + g1(X,Y )J1B

}
.

Taking the vertical parts of both sides of the above equation, we get (3.2). By a similar method, we can obtain
the other assertions.

Theorem 3.1. Let Ψ : (N1, g1, J1, ω1) → (N2, g2, J2, ω2) be a l.c.K. submersion. Then, the vertical distribution kerΨ∗ is
totally geodesic iff for any U, V ∈ Γ(kerΨ∗)

TUJ1V =
1

2
{g1(U, J1V )Bℏ − g1(U, V )J1B

ℏ}, (3.5)

is satisfied.

Proof. The vertical distribution kerΨ∗ is totally geodesic iff for any U, V ∈ Γ(kerΨ∗), ∇UV ∈ Γ(kerΨ∗). From
(2.2) and (2.10), we obtain

∇UV =− J1

(
TUJ1V + (∇UJ1V )ν − 1

2

{
ω1(J1V )U

− ω1(V )J1U − g1(U, J1V )(Bν +Bℏ) + g1(U, V )(J1B
ν + J1B

ℏ)
})

.

In this equation, if horizontal terms vanish, we get (3.5).
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As a result of this theorem, we can give the following corollary.

Corollary 3.1. A fiber of a l.c.K. submersion Ψ : (N1, g1, J1, ω1) → (N2, g2, J2, ω2) is totally geodesic iff the Lee vector
field B is vertical.

Vilms [12] showed that a Riemannian submersion is a totally geodesic map iff both O’Neill tensors T and A
are zero, identically. But, we know that the fibers of a Riemannian submersion are totally geodesic iff T is zero,
identically. Thus, using these facts and Theorem (3.1), we obtain that :

Corollary 3.2. A l.c.K. submersion Ψ : (N1, g1, J1, ω1) → (N2, g2, J2, ω2) cannot be a totally geodesic map.

4. O’Neill’s tensors with respect to Weyl connection

For a l.c.K. submersion Ψ : (N1, g1, J1, ω1) → (N2, g2, J2, ω2), if we take the Weyl connection D instead of ∇ in
(2.6) and (2.7), we define two tensors of types (1, 2). Let us denote these tensors by T̃ and Ã, respectively.

Lemma 4.1. Let Ψ : (N1, g1, J1, ω1) → (N2, g2, J2, ω2) be a l.c.K. submersion. For any U, V ∈ Γ(kerΨ∗) and X,Y ∈
Γ(kerΨ∗)

⊥, we have

T̃UV = TUV +
1

2
g1(U, V )Bℏ, (4.1)

T̃V X = TV X − 1

2
ω1(X)V, (4.2)

ÃXV = TXV − 1

2
ω1(V )X, (4.3)

ÃXY =AXY +
1

2
g1(X,Y )Bν . (4.4)

Proof. Using (2.1), and (2.10) ∼ (2.13), we get all assertions.

First, we summarize the properties of T̃ .

Lemma 4.2. Let Ψ : (N1, g1, J1, ω1) → (N2, g2, J2, ω2) be a l.c.K. submersion. For any U, V ∈ Γ(kerΨ∗), we have
(a) T̃V (.), reverse the vertical and horizontal distribution,
(b) T̃ is symmetric i.e., T̃UV = T̃V U .

Proof. Using (4.1), (4.2) and the properties of T̃ , we get (a). (b) follows from (2.10) and (4.1).

In view of Lemma 4.2, we have that:

Corollary 4.1. Let Ψ : (N1, g1, J1, ω1) → (N2, g2, J2, ω2) be a l.c.K. submersion. Then, T̃ acts as a second fundamental
form of Ψ.

Now, we present the properties of Ã.

Lemma 4.3. Let Ψ : (N1, g1, J1, ω1) → (N2, g2, J2, ω2) be a l.c.K. submersion. For any X,Y ∈ Γ(kerΨ∗)
⊥, we have

(a) ÃX(.), reverse the vertical and horizontal distribution,
(b) Ã is neither symmetric nor skew-symmetric for horizontal vector fields, i.e., ÃXY ̸= ÃY X ,
(c) ÃXY = 1

2{g1(X,Y )Bν − 1
2g1(X, J1Y )J1B

ν},
(d) ÃXY = 1

2 ||X||2Bν ,
(e) ÃXJ1X = 1

2 ||X||2J1Bν ,
(f) ÃXJ1Y = J1ÃXY , i.e., (ÃXY ) = 0.

Proof. (a) comes from (4.3) and (4.4). By (4.4) and the skew-symmetricness of A, we see that (b) is true. From
Proposition 4.3 of [8], we have AXY = − 1

2g1(X, J1Y )J1B
ν for X,Y ∈ Γ(kerΨ∗)

⊥. Using this fact in (4.4), we
immediately get (c). (d), (e) and (f) are simple consequences of (c).

From Proposition 3.34 of [5], we know that the mean curvature vector field of the fibers of a l.c.K. submersion
is − 1

2B
ℏ. Hence, if the fibers are totally umbilical with respect to T , we have TUV = − 1

2g1(U, V )Bℏ, for
U, V ∈ Γ(kerΨ∗). Thus, by (4.1), we get the following result:
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Theorem 4.1. The fibers of a l.c.K. submersion Ψ : (N1, g1, J1, ω1) → (N2, g2, J2, ω2) are totally umbilical with respect
to T iff they are totally geodesic with respect to T̃ .

Theorem 4.2. The horizontal distribution of a l.c.K. submersion Ψ : (N1, g1, J1, ω1) → (N2, g2, J2, ω2) is integrable and
totally geodesic iff Ã ≡ 0. Namely, A ≡ 0 ⇔ Ã ≡ 0.

Proof. If the horizontal distribution is integrable and totally geodesic, then, we have A ≡ 0 and the Lee vector
field B is horizontal from Proposition 4.3 [8]. Thus, by (4.4), we get Ã ≡ 0. Conversely, if Ã ≡ 0, we deduce that
B is horizontal form Lemma 4.2 - (d). Again, by Proposition 4.3 [8], we conclude that A ≡ 0.

5. Chen-Ricci Inequality

Chen [1] established an inequality between Ricci curvature and the squared mean curvature for any
submanifold in a space form. The aforementioned inequality is now referred to as the Chen-Ricci inequality
and has been inhanced by several authors (see references [1] and [2]). In this section, we shall give Chen-Ricci
inequality for the fibers of an almost Hermitian submersion whose total manifold is a l.c.K. space form.

Let Ψ : (N2m
1 (c), g1, J1, ω1) → (N2, g2, J2, ω2) be a locally conformal Kaehler space form submersion. We

consider kerΨ∗ = span{U1, ..., U2n} such that J1U2i−1 = U2i for 1 ≤ i ≤ n and (kerΨ∗)
⊥ = span{U2n+1, ..., U2m}

.
Then, we can give the following theorems.

Theorem 5.1. Let Ψ : (N2m
1 (c), g1, J1, ω1) → (N2, g2, J2, ω2) be a locally conformal Kaehler space form submersion. For

any U, V ∈ Γ(kerΨ∗), we have

R̂ic(U, V ) =
c

2
(n+ 1)g1(U, V ) +

3

4

[
(1− 2n)(∇Uω1)V + (3− 2n)ω1(U)ω1(V )

+ ω1(J1U)ω1(J1V ) + (2n− 2)||B||2g1(U, V )− ||Bν ||2g1(U, V ) + (∇J1Uω1)J1V

+

2n∑
i=1

g1(U,Ui)(∇Uiω1)V − g1(U, V )(∇Uiω1)Ui − g1(J1U,Ui)(∇J1Uiω1)V
]

(5.1)

+
1

4

2n∑
i=1

g1(J1U, V )(∇J1Ui
ω1)Ui +

2n∑
i=1

g1(TUi
V, TUUi)− 2ng1(TUV,H),

where

R̂ic(U, V ) =

2n∑
i=1

R̂(U,Ui, Ui, V ).
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Proof. Let U, V ∈ Γ(kerΨ∗). Then from (2.3), we have

2n∑
i=1

R(U,Ui, Ui, V ) =

2n∑
i=1

[ c
4

{
g1(U, V )g1(Ui, Ui)− g1(U,Ui)g1(Ui, V )

+ g1(J1U, V )g1(J1Ui, Ui)− g1(J1U,Ui)g1(J1Ui, V )

− 2g1(J1U,Ui)g1(J1Ui, V )
}

+
3

4

{
Ω(U, V )g1(Ui, Ui)− Ω(U,Ui)g1(Ui, V )

}
+ g1(U, V )Ω(Ui, Ui)− g1(U,Ui)Ω(Ui, V )

+
1

4

{
− Ω̃(U, V )g1(J1Ui, Ui) + Ω̃(U,Ui)g1(J1Ui, V )

− g1(J1U, V )Ω̃(Ui, Ui) + g1(J1U,Ui)Ω̃(Ui, V )
}

+
1

2

{
Ω̃(U,Ui)g1(J1Ui, V ) + Ω̃(Ui, V )g1(J1U,Ui)

}]
=

c

4

{
2n

(
g1(U, V )− g1(U, V ) + 3g1(U, V )

)}
+

2n∑
i=1

[3
4

{
2n

[
− (∇Uω1)V − ω1(U)ω1(V ) +

1

2
||B||2g1(U, V )

]
− g1(Ui, V )

[
− (∇Ui

ω1)Ui − ω1(U)ω1(Ui) +
1

2
||B||2g1(U,Ui)

]
+ g1(U, V )

[
− (∇Uiω1)Ui − ω1(Ui)ω1(Ui) +

1

2
||B||2g1(Ui, Ui)

]
− g1(Ui, U)

[
− (∇Uiω1)V − ω1(Ui)ω1(V ) +

1

2
||B||2g1(Ui, V )

]}
+

1

4

{
g1(J1Ui, V )

[
− (∇J1Uω1)Ui − ω1(Ui)ω1(J1U) +

1

2
||B||2g1(J1U,Ui)

]
− g1(J1U, V )

[
− (∇J1Ui

ω1)Ui − ω1(J1Ui)ω1(Ui) +
1

2
||B||2g1(J1Ui, Ui)

]
+ g1(J1U,Ui)

[
− (∇J1Ui

ω1)V − ω1(J1Ui)ω1(V ) +
1

2
||B||2g1(J1Ui, V )

]}
+

1

2

{
g1(J1Ui, V )

[
− (∇J1Uω1)Ui − ω1(Ui)ω1(J1U) +

1

2
||B||2g1(J1U,Ui)

]
+ g1(J1U,Ui)

[
− (∇J1Ui

ω1)V − ω1(J1Ui)ω1(V ) +
1

2
||B||2g1(J1Ui, V )

]}
=

c

4
(2n+ 2)g1(U, V ) +

3

4

{
2n(−(∇Uω1)V − ω1(U)ω1(V ) +

1

2
||B||2g1(U, V ))

+

2n∑
i=1

[ (
∇Uω1)V + ω1(U)ω1(V )− 1

2
||B||2g1(U, V )

− g1(U, V )(∇Ui
ω1)Ui − ||B||2g1(U, V ) + n||B||2g1(U, V )

+ g1(U,Ui)(∇Ui
ω1)V + ω1(U)ω1(V )− 1

2
||B||2g1(U, V )

]}
+

1

4

{
(∇J1Uω1)J1V + ω1(J1U)ω1(J1V )− 1

2
||B||2g1(U, V )

+

2n∑
i=1

[
g1(J1U, V )(∇J1Ui

ω1)Ui + g1(J1U,Ui)(∇J1Ui
ω1)V + ω1(U)ω1(V )

− 1

2
||B||2g1(U, V )

]}
+

1

2

{
(∇J1Uω1)J1V + ω1(J1U)ω1(J1V )− 1

2
||B||2g1(U, V )

+

2n∑
i=1

[
− g1(J1U,Ui)(∇J1Ui

ω1)V + ω1(U)ω1(V )− 1

2
||B||2g1(U, V )

]}
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=
c

2
(n+ 1)g1(U, V ) +

3

4

[
(1− 2n)(∇Uω1)V + (1− 2n)ω1(U)ω1(V )

+ (n− 1

2
)||B||2g1(U, V )

]
+

2n∑
i=1

[3
4

{
− g1(U, V )(∇Uiω1)Ui − ||Bv||2g1(U, V )

+ n||B||2g1(U, V ) + g1(U,Ui)(∇Uiω1)V + ω1(U)ω1(V )− 1

2
||B||2g1(U, V )

}
+

1

4

{
(∇J1Uω1)J1V + ω1(J1U)ω1(J1V )− 1

2
||B||2g1(U, V ) + g1(J1U, V )(∇J1Uiω1)Ui

− g1(J1U,Ui)(∇J1Uiω1)V + ω1(U)ω1(V )− 1

2
||B||2g1(U, V )

}
+

2

4

{
(∇J1Uω1)J1V + ω1(J1U)ω1(J1V )− 1

2
||B||2g1(U, V )

− g(J1U,Ui)(∇J1Ui
ω1)V + ω1(U)ω1(V )− 1

2
||B||2g1(U, V )

}]
=

c

2
(n+ 1)g1(U, V ) +

3

4

[
(1− 2n)(∇Uω1)V + (1− 2n)ω1(U)ω1(V )

+ (n− 1

2
)||B||2g1(U, V )

]
+

2n∑
i=1

[3
4

{
− g1(U, V )(∇Uiω1)Ui − ||Bν ||2g1(U, V )

+ n||B||2g1(U, V ) + g1(U,Ui)(∇Uiω1)V + ω1(U)ω1(V )− 1

2
||B||2g1(U, V )

}
+

3

4

{
(∇J1Uω1)J1V + ω1(J1U)ω1(J1V )− 1

2
||B||2g1(U, V )− g1(J1U,Ui)(∇J1Uiω1)V

+ ω1(U)ω1(V )− 1

2
||B||2g1(U, V )

}
+

1

4
g1(J1U, V )(∇J1Uiω1)Ui

]
=

c

2
(n+ 1)g1(U, V ) +

3

4

[
(1− 2n)(∇Uω1)V + (3− 2n)ω1(U)ω1(V )

+ ω1(J1U)ω1(J1V ) + (2n− 2)||B||2g1(U, V )− ||Bν ||2g1(U, V ) + (∇J1Uω1)J1V

+

2n∑
i=1

g1(U,Ui)(∇Ui
ω1)V − g1(U, V )(∇Ui

ω1)Ui − g1(J1U,Ui)(∇J1Ui
ω1)V

]
+

1

4

2n∑
i=1

g1(J1U, V )(∇J1Ui
ω1)Ui.

Thus we get,

Ric(U, V ) =
c

2
(n+ 1)g1(U, V ) +

3

4

[
(1− 2n)(∇Uω1)V + (3− 2n)ω1(U)ω1(V )

+ ω1(J1U)ω1(J1V ) + (2n− 2)||B||2g1(U, V )− ||Bν ||2g1(U, V ) + (∇J1Uω1)J1V

+

2n∑
i=1

[
g1(U,Ui)(∇Ui

ω1)V − g1(U, V )(∇Ui
ω1)Ui − g1(J1U,Ui)(∇J1Ui

ω1)V
]

+
1

4

2n∑
i=1

g1(J1U, V )(∇J1Ui
ω1)Ui

From (2.14), we obtain (5.1).

Corollary 5.1. Let Ψ : (N2m
1 (c), g1, J1, ω1) → (N2, g2, J2, ω2) be a locally conformal Kaehler space form submersion.

For any unit vector field U ∈ Γ(kerΨ∗), we have

R̂ic(U) ≥ (n+ 1)
c

2
+

3

4

{
(3− 2n)(ω1(U))2 + (2n− 2)||B||2 + (ω1(J1U))2 − ||Bν ||2

+(1− 2n)(∇Uω1)U + (∇J1Uω1)J1U +

2n∑
i=1

(
g1(Ui, U)(∇Uiω1)U − (∇Uiω1)Ui

−g1(J1U,Ui)(∇J1Ui
ω)U

)}
− 2ng1(TUU,H),

(5.2)
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where

R̂ic(U) =

2n∑
i=1

R̂(U,Ui, Ui, U). (5.3)

The equality case of (5.2) holds when each fiber is totally geodesic.

Proof. If we take U = V unit vector field in the equation (5.1), then we have

R̂ic(U) = (n+ 1)
c

2
+

3

4

{
(3− 2n)(ω1(U))2 + (2n− 2)||B||2 + (ω1(J1U))2 − ||Bν ||2

+ (1− 2n)(∇Uω1)U + (∇J1Uω1)J1U +

2n∑
i=1

(
g1(Ui, U)(∇Uiω1)U − (∇Uiω1)Ui

− g1(J1U,Ui)(∇J1Ui
ω1)U

)}
− 2ng1(TUU,H) +

2n∑
i=1

||TUUi||2

Thus, from the above equation we get the inequality (5.2). The equality occurs iff T ≡ 0, in which case each
fiber is totally geodesic.

Corollary 5.2. Let Ψ : (N2m
1 (c), g1, J1, ω1) → (N2, g2, J2, ω2) be a Hopf space form submersion. For any unit vector

field U ∈ Γ(kerΨ∗), we have

R̂ic(U) ≥ (n+ 1)
c

2
+

3

4

{
(3− 2n)(ω1(U))2 + (2n− 2)||B||2 + (ω1(J1U))2 (5.4)

− ||Bv||2} − 2ng1(TUU,H). (5.5)

Proof. Since (N2m
1 (c), g1, J1, ω1) is a Hopf space form, then we get ∇ω1 = 0. Hence, we obtain (5.4) from

(5.2).

Corollary 5.3. Let Ψ : (N2m
1 (c), g1, J1, ω1) → (N2, g2, J2, ω2) be a locally conformal Kaehler space form submersion.

Then, we have

τ̂ ≥ cn(n+ 1) +
3

4

[
4n(n− 1)||B||2 + 4(1− n)||Bν ||2

+

2n∑
j=1

(
(1− 2n)(∇J1Uj

ω1)Uj + (∇J1Uj
ω1)J1Uj

)
−

2n∑
i,j=1

g1(J1Uj , Ui)(∇J1Uiω1)J1Uj

]
− 4n2||H||2.

(5.6)
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Proof. If we take U = V = Uj in (5.1), we obtain

τ̂ =

2n∑
j=1

R̂ic(Uj , Uj) =

2n∑
j=1

[
c

2
(n+ 1)g1(Uj , Uj) +

3

4

[
(1− 2n)(∇Uj

ω1)Uj + (3− 2n)ω1(Uj)ω1(Uj)

+ ω1(J1Uj)ω1(J1Uj) + (2n− 2)||B||2g1(Uj , Uj)− ||Bν ||2g1(Uj , Uj) + (∇J1Ujω1)J1Uj

+

2n∑
i=1

[
g1(Uj , Ui)(∇Ui

ω1)Uj − g1(Uj , Uj)(∇Ui
ω1)Ui − g1(J1Uj , Ui)(∇J1Ui

ω1)Uj

]
+

2n∑
i=1

g1(J1Uj , Uj)(∇J1Ui
ω1)Ui

]
+

2n∑
i,j=1

||TUi
Uj ||2 − 4r2||H||2

= cn(n+ 1) +
3

4

[ 2n∑
j=1

(1− 2n)(∇Ujω1)Uj + (3− 2n)||Bν ||2 + ||Bν ||2

+ 2n(2n− 2)||B||2 − 2n||Bν ||2 +
2n∑
j=1

(∇J1Uj
ω1)J1Uj

+

2n∑
i=1

(
2n(∇Ui

ω1)Ui − 2n(∇Ui
ω1)Ui −

2n∑
j=1

g1(J1Uj , Ui)(∇J1Uj
ω1)J1Uj

)]

+

2n∑
i,j=1

||TUiUi||2 − 4r||H||2

= cn(n+ 1) +
3

4

[
4(1− n)||Bν ||2 + 4n(n− 1)||B||2

+

2n∑
j=1

(
(1− 2n)(∇Uj

ω1)Uj + (∇J1Uj
ω1)J1Uj

)
−

2n∑
i,j=1

g1(J1Uj , Ui)(∇J1Uj
ω1)Uj

]

+

2n∑
i,j=1

||TUiUi||2 − 4r2||H||2

So we obtain the inequality (5.6) from the above equation.

Corollary 5.4. Let Ψ : (N2m
1 (c), g1, J1, ω1) → (N2, g2, J2, ω2) be a Hopf space form submersion. Then we get

τ̂ ≥ cn(n+ 1) +
3

4

[
4n(n− 1)||B||2 + 4(1− n)||Bν ||2 − 4r2||H||2

]
. (5.7)

Theorem 5.2. Let Ψ : (N2m
1 (c), g1, J1, ω1) → (N2, g2, J2, ω2) be a locally conformal Kaehler space form submersion. For

any X,Y ∈ Γ(kerΨ∗)
⊥, we have

Ric∗(X,Y ) =
c

2
(m− n+ 1)g1(X,Y ) +

3

4

{
(1− 2(m− n))(∇Xω1)Y + (3− 2(m− n))ω1(X)ω1(Y )

+ (2(m− n)− 2)||B||2g1(X,Y )− ||Bh||2g1(X,Y ) + ω1(J1X)ω1(J1Y ) + (∇ JXω1)J1Y

+

2m∑
i=2n+1

[
g1(X,Ui)(∇Ui

ω1)Y − g1(X,Y )(∇Ui
ω1)Ui − g1(J1X,Ui)(∇J1Ui

ω1)Y
]}

+
1

4

2m∑
i=2n+1

g1(J1X,Y )(∇J1Ui
ω1)Ui + 3g(AXUi, AUi

Y ), (5.8)

where

Ric∗(X,Y ) =

2m∑
i=2n+1

R∗(X,Ui, Ui, Y ). (5.9)
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Proof. If we take F = G = Ui , E = X and Z = Y in the equation (2.3) and using (2.15), then we obtain the
equation (5.8).

Corollary 5.5. Let Ψ : (N2m
1 (c), g1, J1, ω1) → (N2, g2, J2, ω2) be a locally conformal Kaehler space form submersion.

For any unit vector field X ∈ Γ(kerΨ∗)
⊥, we obtain

Ric∗(X) ≤ c

2
(m− n+ 1) +

3

4

{
(1− 2k)(∇Xω1)X + (3− 2(m− n))(ω1(X))2

+ (2(m− n)− 2)||B||2 − ||Bh||2 + (ω1(J1X))2 + (∇J1Xω1)J1X

+

2m∑
i=2n+1

[
g1(X,Ui)(∇Ui

ω1)X − (∇Ui
ω1)Ui − g1(J1X,Ui)(∇J1Ui

ω1)X
]}

, (5.10)

where

Ric∗(X) =

2m∑
i=2n+1

Ric∗(X,Ui, Ui, X). (5.11)

Proof. If we take X = Y in the equation (5.8), then we get this inequatlity directly.

Corollary 5.6. Let Ψ : (N2m
1 (c), g1, J1, ω1) → (N2, g2, J2, ω2) be a Hopf space form submersion. Then, we have

Ric∗(X) ≤ c

2
(m− n+ 1) +

3

4

{
(3− 2(m− n))(ω1(X))2 + (2(m− n)− 2)||B||2

− ||Bh||2 + (ω1(J1X))2
}

for any unit vector field X ∈ Γ(kerΨ∗)
⊥.

Corollary 5.7. Let Ψ : (N2m
1 (c), g1, J1, ω1) → (N2, g2, J2, ω2) be a locally conformal Kaehler space form submersion.

Then, we have

τ∗ ≤ c(m− n)(m− n+ 1) +
3

4

{
4(m− n)(m− n− 1)||B||2

+ 4(1− (m− n))||Bh||2 +
2m∑

i=2n+1

[
(1− 2(m− n)(∇Uj

ω1)Uj (5.12)

+ (∇J1Ujω1)J1Uj

]}
− 1

4

2m∑
i,j=2n+1

g1(J1Uj , Ui)(∇J1Uiω1)Uj .

Proof. If we take X = Y = Uj in the equation (5.8) and using the equation (2.15), then we get the inequality
(5.12).

Corollary 5.8. Let Ψ : (N2m
1 (c), g1, J1, ω1) → (N2, g2, J2, ω2) be a Hopf space form submersion. Then, we obtain

τ∗ ≤ c(m− n)(m− n+ 1) +
3

4

{
4(m− n)(m− n− 1)||B||2

+ 4(1− (m− n))||Bh||2
}
.
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ADDRESS: Marmara University, Dept. of Mathematics, 34722, İstanbul-Türkiye.
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