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Abstract. This study presents a framework for predicting hemoglobin (Hb) 

levels utilizing Bayesian optimization-assisted machine learning models, 

incorporating both time-domain and frequency-domain features derived from 

photoplethysmography (PPG) signals. Hemoglobin, a crucial protein for oxygen 

and carbon dioxide transport in the blood, has levels that indicate various health 

conditions, including anemia and diseases affecting red blood cell production. 

Traditional methods for measuring Hb levels are invasive, posing potential risks 

and discomfort. To address this, a dataset comprising PPG signals, along with 

demographic data (gender and age), was analyzed to predict Hb levels accurately. 

Our models employ support vector regression (SVR), artificial neural networks 

(ANNs), classification and regression trees (CART), and ensembles of trees (EoT) 

optimized through Bayesian optimization algorithm. The results demonstrated that 

incorporating age and gender as features significantly improved model 

performance, highlighting their importance in Hb level prediction. Among the 

tested models, ANN provided the best results, involving normalized raw signals, 

feature selection, and reduction methods. The model achieved a mean squared error 

(MSE) of 1.508, root mean squared error (RMSE) of 1.228, and R-squared (R²) of 

0.226. This study's findings contribute to the growing body of research on non-

invasive hemoglobin prediction, offering a potential tool for healthcare 

professionals and patients for convenient and risk-free Hb level monitoring. 

 

 

1. Introduction 
 

The iron-rich protein hemoglobin (Hb), found inside red blood cells, is crucial for 

transporting oxygen and carbon dioxide throughout the body. Fundamentally, if Hb 

level is low, tissues cannot obtain necessary oxygen [1]. Hemoglobin levels play a 
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vital role in overall health, and abnormal levels can indicate underlying diseases. 

Especially, low Hb levels are a sign of anemia, a condition where the body doesn't 

have enough healthy red blood cells. Since iron is fundamental to produce 

hemoglobin, insufficient iron may lead to iron-deficiency anemia, which is the most 

prevalent form [2]. The shape of red blood cells is determined genetically. If an 

individual has a sickle cell disease, sickle-shaped red blood cells can block blood 

vessels, causing pain and tissue damage [3, 4]. Another genetic disorder, known as 

Thalassemia, affects the production of hemoglobin, resulting in lower levels than 

normal in the bodies of individuals [5]. It is known that some types of leukaemia can 

also affect the production of red blood cells, leading to anemia [6]. Healthy kidneys 

secrete a hormone known as erythropoietin (EPO), which aids in the stimulation of 

red blood cell creation. When the kidneys are damaged or in chronic kidney disease, 

they may not produce enough EPO and this situation leads to anemia [7].  

    According to the WHO guidelines anemia classification is based on hemoglobin 

levels [8]. Acceptable hemoglobin levels show difference for men and women. In 

mild anemia hemoglobin value is between 11 g/dL and 12.9 g/dL for men and 

between 11 g/dL and 11.9 g/dL for women. In moderate anemia, hemoglobin value 

is between 8 g/dL and 10.9 g/dL for both men and women. In severe anemia 

hemoglobin value is lower than 8 g/dL for both men and women. Therefore, the 

hemoglobin levels play an important role in people’s lives. Especially for patients 

with hemoglobin related diseases, it is vital to measure hemoglobin values. 

    Traditionally, hemoglobin levels are measured through blood tests, which can be 

inconvenient. Invasive methods for measuring hemoglobin concentration (Hb) are 

generally safe, but there are some potential risks involved. Some low risks include 

the pain caused by the needle to draw blood, slight dizziness, light-headedness, and 

bruising at the puncture site. However, there are some serious risks associated with 

invasive Hb measurement, the probability of them occurring is very low. Infection, 

excessive bleeding, and fainting can be given as examples of potential serious risks. 

Machine learning offers inspiring possibilities for non-invasive hemoglobin 

prediction through various techniques. Leveraging the ubiquity of smartphones, 

researchers have developed hemoglobin prediction tools using smartphone cameras 

and built-in light sources. Techniques involve analyzing fingertip images or videos, 

focusing on color variations related to blood oxygenation [9]. 

Photoplethysmography (PPG) is a widely explored technique that uses light to 

measure blood volume changes in tissues. Machine learning algorithms can analyze 

features extracted from the PPG signal, such as pulse rate and amplitude, to predict 

hemoglobin levels [10, 11].  

    In this study, a machine learning framework was proposed including PPG signals. 

Our contribution to literature is two-fold. To the best of our knowledge, the dataset 

published by Abuzairi et al. was utilized in this study for the first time [12]. Second, 
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a Bayesian optimized method was applied in the training phases of machine learning 

algorithms. 

    The organization of the article is as follows: In Section 2, the related works are 

summarized.  In Section 3, materials and methods including the dataset, machine 

learning, feature selection, feature reduction, and optimization algorithms are 

described. In Section 4, the experimental setup, the evaluation metrics, and the 

empirical results are presented. Section 5 concludes the article. 
 

2. Related Works 
 

There's been a growing focus on using machine learning for non-invasive 

hemoglobin prediction. The study by Dimauro et al. [13] proposed a non-invasive 

method for estimating hemoglobin (Hb) concentration based on digital images of the 

conjunctiva. This innovative approach aimed to assess anemia without requiring a 

blood sample, making it more convenient for patients and healthcare providers. Their 

prototype extracts essential information from colour values in acquired images of the 

conjunctiva. Participants were mainly recruited from Hematology Departments and 

a transfusion center in Italy. Each subject allowed one blood sample for laboratory 

Hb measurement, and simultaneously, images of their conjunctiva were acquired 

using the proposed device. Tests on a mix of 113 anemic and healthy individuals 

demonstrated a strong correlation between the device's estimated Hb value and the 

actual Hb value. A k-nearest neighbor (kNN) classification algorithm was employed 

to assess the anemic condition based on features extracted from the conjunctiva 

images. The study utilized the CIE L*a*b* color space for image analysis, focusing 

on extracting mean values of the a*, b* components, and the G value from the RGB 

components of the conjunctiva images. The methodology included filtering input 

data based on lightness (L) and RGB components to exclude pixels that were too 

dark or too bright, ensuring that only pixels allowing correct pallor evaluation were 

considered. Pearson Correlation Index between conjunctival a* mean values and 

measured Hb was found to be 0.726 for the full dataset indicating a strong 

correlation. The authors concluded that their proposed method and device could 

serve as an effective tool for non-invasive anemia screening and monitoring, with 

the potential for use both in medical settings and by patients at home. 

    Another study presented a method for the non-invasive diagnosis of anemia 

through Hb detection using a spectrophotometric system and a BP-ANN model [14]. 

In their study, the dataset consists of fingertip spectra from 109 volunteers, with 4 

samples identified as outliers and removed, leaving 105 samples for the analysis. 

Samples were divided into calibration (53 samples), correction (26 samples), and 

prediction (26 samples) sets. A spectrophotometric system was developed, 

incorporating a broadband light source, grating spectrograph, and silicon photodiode 
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array for measuring the fingertip spectra. Principal Component Analysis (PCA) was 

employed to reduce the dimensionality of the collected spectra and eliminate 

redundant data. The principal components were then used as inputs to the BP-ANN 

model, with the optimal network structure having 9 input nodes (corresponding to 

the principal components), 11 hidden nodes, and 1 output node. The BP-ANN model 

was trained and validated using the calibration and correction sample sets, 

respectively, and tested with the prediction sample set. The correlation coefficient 

(CC) of the BP-ANN model established by this method was 0.94, indicating a strong 

correlation between the predicted and actual Hb levels. The study successfully 

demonstrated the feasibility of non-invasively predicting hemoglobin levels using a 

combination of PCA and BP-ANN, with satisfactory accuracy and robustness. 

However, the article did not explicitly provide metrics such as Mean Squared Error 

(MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), or the 

coefficient of determination (R²) for the BP-ANN model's predictions, which are 

commonly used to evaluate the performance of regression models. 

    A study, demonstrating the feasibility of measuring hemoglobin levels 

noninvasively using a standard smartphone's built-in RGB camera and white LED 

flash, was presented by Wang et al. [15]. The study involved 32 participants, 

providing a dataset for evaluating the proposed hemoglobin measurement system. 

Hemoglobin levels were compared against measurements, taken by a device known 

for optical hemoglobin measurement, to validate the smartphone-based approach. 

The proposed system extracted features from the PPG signals, focusing on the ratio 

of peak to trough intensities across different wavelengths (color channels), to assess 

blood absorption characteristics indicative of hemoglobin levels. A linear regression 

model that correlates the features extracted from the PPG signals to hemoglobin 

levels was employed in the study. Although the document did not specifically 

mention feature reduction techniques, it highlighted the importance of adjusting 

color channel gain to balance signal contributions from each channel, effectively 

optimizing the feature set for regression analysis. A Pearson correlation of 0.62 with 

the reference device was reported, indicating a moderate positive correlation 

between the smartphone-based measurements and the reference hemoglobin levels. 

Additionally, an RMSE value of 1.27 g/dL demonstrated the typical deviation of the 

smartphone-based hemoglobin estimates from the reference measurements. 

    A comprehensive study on non-invasively predicting hemoglobin levels using 

PPG signals and various machine learning algorithms was contributed by Kavsaoglu 

et al. [16]. The dataset included data from 33 individuals. PPG signals were collected 

for each participant over 10 periods. Additionally, gender, height, weight, and age 

were added as features, which increased the total number of features to 44. Hemocue 

Hb-201TM device was utilized simultaneously with PPG signal collection as a 

reference for Hb levels. In the study Classification and Regression Trees (CART), 
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Least Squares Regression (LSR), Generalized Linear Regression (GLR), 

Multivariate Linear Regression (MVLR), Partial Least Squares Regression (PLSR), 

Generalized Regression Neural Network (GRNN), Multilayer Perceptrons (MLP), 

and Support Vector Regression (SVR) machine learning algorithms were utilized to 

predict Hb levels. 40 characteristic features were derived from the PPG signal, 

including time-domain features from the signal and its first and second derivatives. 

RELIEF based feature selection (RFS) and Correlation-based feature selection 

(CFS) were utilized to reduce feature dimensions to 10 and 11 features, respectively. 

As performance metrics, MAE, MSE, R2, RMSE, Mean Absolute Percentage Error 

(MAPE), and Index of Agreement (IA) were taken into consideration to calculate the 

effectiveness of the algorithms. RFS-assisted SVR provided promising results with 

the lowest MSE of 0.0027. The study demonstrated that machine learning techniques 

could effectively predict hemoglobin levels non-invasively using PPG signals and 

selected characteristic features, offering a viable method for continuous, pain-free 

monitoring of hemoglobin levels. 

    Another study that exploited Artificial Neural Network (ANN) architecture to 

focus on developing a non-invasive method for estimating blood hemoglobin levels 

was presented by Hasan et al. [17]. Their study involved 75 adults, with hemoglobin 

levels ranging from 7.6 to 13.5 g/dL. The data collection was performed by using 

10-second fingertip videos recorded with a smartphone, resulting in 300 frames per 

video. The participants’ ages ranged from 20 to 56 years. For feature extraction, 

RGB pixel intensities were obtained from 100 area blocks in each frame. Then, ANN 

was utilized to build a prediction model for hemoglobin values. A correlation rank 

order of 0.93 between the predicted hemoglobin values by the model and the gold 

standard was noted, signifying a high level of predictive accuracy. Additionally, the 

dataset was divided into 2 categories for classification purposes. Finally, the 

proposed method demonstrated 94% sensitivity and 96% specificity performance.  

    El-Kenawy et al., presented a study on using machine learning techniques for 

estimating Hemoglobin levels and classifying Anemia based on hematological 

parameters [18]. Their dataset consisted of 9004 records, which were split into 

training (75%) and testing (25%) data. The training dataset included 6753 records, 

while the testing dataset had 2251 records. Z-score Normalization was applied for 

standardizing the data. Some parameters like gender and age were omitted due to 

incomplete data. ANN, LR, and Random Forest (RF) regressors were employed to 

estimate Hb levels. The RF model outperformed other regression models in 

estimating Hemoglobin levels with the lowest RMSE (0.0123) and MAE (0.0435). 

For anemia classification, several classifiers were tested. A hybrid classifier 

combining Decision Tree (DT), Naive Bayes (NB), and ANN, optimized through 

weighted average probabilities, obtained the best performance with an RMSE value 

of 0.0838 and a MAE value of 0.0159. The study demonstrated that machine learning 
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techniques, particularly ensemble methods like RF for regression and a hybrid model 

for classification, can effectively estimate Hemoglobin levels and classify anemia 

types. 

    A novel approach for estimating Hb levels non-invasively by using PPG signals 

captured at four different wavelengths was presented by Chen et al. [19]. Their 

dataset consisted of 58 volunteers, aged between 21-27, with an approximately equal 

male-to-female ratio. The signals were collected at a 200 Hz sampling rate for 1 

minute. For the preprocessing stage, a second-order Butterworth bandpass filter was 

implemented to process the raw PPG signal, removing high-frequency noise and 

motion artifacts. 160 morphological and time-domain feature parameters from the 

PPG signal across four channels were extracted. To identify the most relevant 

features, reliefF, Chi-square Score, and Information Gain methods were employed. 

Three machine learning algorithms, Logistic Regression (LR), SVR, and eXtreme 

Gradient Boosting (XGBoost), were utilized to obtain models. The XGBoost model, 

utilizing the top 30 features selected via the Chi-square method, achieved the best 

performance with a R2 value of 0.997, a RMSE value of 0.762, and a MAE value of 

0.325. The utilization of XGBoost, in combination with carefully selected PPG 

signal features, represented a novel contribution to the field of non-invasive 

hemoglobin measurement, showcasing the potential for clinical application. 

    Another approach to non-invasively predict Hb concentrations by using PPG 

signals was contributed by Peng et al. [10]. The research included 249 volunteers, 

with 199 samples allocated to a training set and 50 samples to a test set. An eight-

wavelength PPG signal acquisition system, alongside a reference value of Hb 

concentration from an automatic blood cell analyzer were utilized for data collection. 

56 feature values were extracted from the PPG signals, considering both 

physiological and demographical (age and gender) data. A Recursive Feature 

Elimination (RFE) algorithm was employed to choose the most contributive features 

for Hb prediction. An ensemble model combining several independent Extreme 

Learning Machine (ELM) models was established to enhance prediction stability and 

accuracy. A RMSE value of 1.72 and a PCC value of 0.76, indicating a strong 

correlation between predicted and actual Hb values, were achieved at the end of the 

experiments. Additionally, the proposed model outperformed other regression 

models (LR, SVR, RF, and traditional ELM) in terms of RMSE and PCC. The study 

introduced an ensemble approach to the ELM algorithm for improved prediction 

accuracy and stability, showcasing potential for broader clinical application and 

research into non-invasive biomarker detection. 

    A study, incorporates deep neural semantic segmentation and convolutional neural 

networks (CNNs), was presented by Chen et al. [20]. The study involved images of 

1065 patients undergoing surgery. Hemoglobin levels among these patients ranged 

from 6 to 18 moL/L. The dataset was balanced by using the SMOTE algorithm due 
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to the original imbalance, where most patients had normal Hb levels. Deep neural 

segmentation was utilized to identify the palpebral conjunctiva region from images, 

ensuring the focus on relevant features for Hb prediction. CNNs and an ensemble of 

ELM were employed to predict Hb values. The proposed model obtained an R² value 

of 0.512, indicating a strong predictive capability. The explained variance score 

(EVS) reached 0.535, and MAE was 1.521, demonstrating the accuracy of the 

prediction model. Compared to other methods like decision trees (DT), LR, and 

SVR, the suggested approach demonstrated enhanced performance in terms of R², 

EVS, and MAE. The research demonstrated the potential of using deep learning and 

image analysis for non-invasive hemoglobin level prediction. Additionally, the study 

highlighted the importance of causal knowledge in improving prediction accuracy 

and reducing the impact of pseudo-correlation noise in the images. 

    Kwon and Kim proposed a non-invasive method for estimating glycated 

hemoglobin (HbA1c) levels using PPG signals [21]. Their dataset was derived from 

40 volunteers, including their PPG signals and corresponding HbA1c levels, 

measured invasively. Additional data such as body mass index (BMI), finger width 

(FW), and SpO2 levels were collected. For the experiments, a custom-developed 

device that measures PPG signals through both reflective and transmissive methods 

was utilized. 18 features were initially considered, based on physiological 

characteristics, signal-directed characteristics, and physical parameters. 7 key 

features were ultimately selected for their importance in estimating HbA1c levels, 

including zero-crossing rate (ZCR), power spectral density (PSD) variance, and FW. 

For feature selection, RFE and importance analysis were employed to identify the 

most contributive features for HbA1c prediction. The study utilized RF and 

XGBoost ensemble models for the prediction of HbA1c levels based on the extracted 

PPG signal features. XGBoost model showed superior performance with a PCC 

value of 0.957 for the reflection method including FW as a feature. For diabetes 

classification, XGBoost also outperformed RF, Beer–Lambert Model, and Photon-

Diffusion Model. The study demonstrated that XGBoost model can provide a 

promising tool for diabetes management without the need for invasive blood 

samples. 
 

3. Material and Methods 
 

3.1. Dataset. The dataset utilized in this study comprises PPG signals, gender, age, 

and Hb value, designed for research into non-invasive hemoglobin measurement 

using machine learning [12]. The dataset includes 68 participants (56% female, 44% 

male) between the ages of 18 and 65. A total of 816 data points were collected, 

corresponding to 12 data points per participant. Red and infra -red light intensity 

values, measured by the PPG sensor in arbitrary units (a.u.), are represented as 
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numerical data (float). Gender corresponds to the categorical variable indicating 

each participant's sex. Age corresponds to the numerical variable (integer), 

indicating the participant's age in years. Hemoglobin (Hb) corresponds to the target 

variable indicating the concentration of hemoglobin in blood, measured in grams per 

deciliter (g/dL) as a numeric data type (float). Hb values were measured invasively. 

For each participant, raw PPG signals were gathered every 40 milliseconds across a 

span of 10 seconds. These signals were then averaged into 12 sets of red and infra-

red data to create the dataset. The study acknowledges potential biases in PPG signal 

measurements due to vibrations, movements, and subjects’ skin tones, and the 

dataset's generalizability to different populations. The dataset is publicly accessible 

for further research and development in the field of non-invasive hemoglobin 

measurement and is hosted on Mendeley Data. 

3.2. General Framework. The first stage in the study is to prepare the features to 

feed the machine learning algorithms. The raw signals, time-domain features, and 

frequency-domain features are utilized to build different models. Time-domain and 

frequency-domain features are extracted from the raw signals. Additionally, 

normalization is applied to improve the model performance and have interpretable 

results, while feature selection and feature reduction algorithms are applied to 

decrease the dimension of the samples. The second stage is to train the machine 

learning algorithms. In this stage, the aim is to optimize the hyper-parameters for a 

machine learning algorithm. Cross-validation technique is applied on the training 

data to obtain the performance values for the related hyper-parameters then this 

information is utilized by the Bayesian optimization algorithm to fine-tune the 

hyper-parameters. The final stage includes the test phase. After building the models, 

they are tested with the independent test set to obtain the performance results. The 

general framework is given in Figure 1. 

 
Figure 1. The general framework. 
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3.3. Normalization. Many machine learning algorithms perform better or require 

that the input data be normally distributed. Standardizing variables helps meet these 

assumptions or improve the algorithm's performance. Z-score normalization process, 

utilized in this study, involves transforming the original dataset so that the mean of 

the transformed data is 0 and the standard deviation is 1 for each feature. Z-score 

normalization is a valuable preprocessing step that can improve model performance. 

Its formula is given as follows: 

 

𝑧 =  
(𝑥−𝜇)

𝜎
       (1) 

 
where, 𝑥 represents the original value to be normalized, 𝜇 represents the mean of the 

selected feature, and 𝜎 represents standard deviation of the same feature. 

3.4. Feature Extraction. Time-domain and frequency-domain features were 

extracted from the raw signals to compare them and to feed machine learning 

regression algorithms. Time-domain features utilized in the study are mean, root 

mean square (RMS), standard deviation, shape factor, signal-to-noise ratio (SNR), 

signal to noise and distortion ratio (SINAD), peak value, crest factor, clearance factor 

and impulse factor. The set of frequency-domain features include mean frequency, 

median frequency, bandpower, occupied bandwidth power bandwidth, peak 

amplitude, peak location, and power spectral density (PSD) estimate. 

3.5. Feature Selection. In our study, rReliefF feature selection algorithm was 

utilized. It is used primarily to identify relevant features that contribute significantly 

to the prediction of the output variable. Instead of looking for nearest neighbours 

within the same class or different classes, rReliefF for regression searches for k 

nearest neighbours based on the closeness of their response values [22]. The 

algorithm assesses how well a feature can discriminate between instances that are 

near each other in the feature space but have different response values. The process 

has 4 main steps. First, weights of each feature are set to 0. Second, an instance is 

selected randomly from the dataset.  Third, for the selected instance, a set of nearest 

neighbours is found based on the feature space. Finally, for each feature, its weight 

is updated based on how much the feature values for selected instance and its nearest 

neighbours differ, considering the differences in their response values.  The intuition 

is that if small differences in a feature correspond to large differences in the response 

variable for otherwise similar instances, then the feature is important for predicting 

the response. 

3.6. Feature Reduction. In our study, Principal Component Analysis (PCA) 

algorithm was utilized for dimensionality reduction. PCA works by identifying the 
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axes (principal components) that maximize the variance in a dataset [23]. These 

principal components are orthogonal to each other, which guarantees that they 

capture distinct aspects or patterns within the data. The first principal component 

captures the most variance, the second captures the second most, and so on, allowing 

for dimensionality reduction by selecting a subset of components to retain while 

minimizing information loss. The principal components serve as novel features that 

can be used in a regression model. These features represent linear combinations of 

the initial variables and are chosen since they explain the maximum amount of 

variance in the data. 

3.7. Machine Learning Regression Algorithms.  

3.7.1. Support Vector Machines (SVM).  Support Vector Regression (SVR) extends 

the concept of SVM from classification to regression problems. It incorporates the 

core principles of SVMs to handle regression, providing a unique approach to predict 

continuous outcomes. Unlike traditional regression methods that aim to minimize 

the error between the predicted and actual outcomes, SVR focuses on ensuring that 

errors do not exceed a certain threshold [24]. This is achieved by fitting the best line 

or hyperplane within a predefined margin of tolerance, effectively capturing as many 

data points as possible while ignoring errors that are within the acceptable range. 

This guarantees that the model does not excessively react to minor fluctuations in 

the training data, leading to more stable and generalizable predictions.  
    In regression tasks, SVR is employed by choosing a type of kernel (linear, 

polynomial, or radial basis function) to transform the original data into a higher-

dimensional space where a linear regression surface seems likely to fit better. The 

SVR model then focuses on minimizing the error for only those data points that fall 

outside the epsilon margin, ignoring errors within the margin. This approach allows 

the SVR to balance the intricacy of the model and the extent to which deviations 

exceeding epsilon are acceptable. 
 

3.7.2. Artificial Neural Networks (ANNs). ANNs are a foundational element of 

machine learning and artificial intelligence, drawing inspiration from the human 

brain's architecture and operations. When applied to regression tasks, they're often 

referred to as neural network regressors. An ANN consists of interconnected 

processing units or nodes, called neurons. There are simply 3 different layers in an 

ANN. The input layer takes the features, the neurons in the hidden layers operate on 

the features, and the output layer produces the predicted value [25]. Every link 

between neurons has a corresponding weight, which is adjusted during the learning 

process. In a regression context, ANNs are designed to predict continuous outcomes 

based on input features, as opposed to classifying inputs into categories. The aim of 
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an ANN regressor is to learn a mapping from inputs to a continuous output, 

minimizing the disparity between forecasted and real values across a training dataset. 

This involves adjusting the weights of the connections in the network to minimize a 

loss function, a measure of prediction error, through a process known as 

backpropagation. 

    The model's complexity and capacity can be adjusted by varying the number of 

hidden layers and neurons within them, allowing ANNs to model complex, nonlinear 

relationships that might be difficult for other regression techniques to capture. 

However, they require careful tuning of hyperparameters and feature scaling, 

especially as model complexity increases. 
 

3.7.3. Classification and Regression Trees (CART). Classification and Regression 

Trees (CART) is a decision tree learning technique that can be used for both 

classification and regression predictive modelling problems. The method involves 

splitting data into subsets based on the value of input features, leading to a tree-like 

model of decisions and their possible consequences [26]. The main goal of CART is 

to develop a model capable of predicting the value of a target variable by deriving 

straightforward decision rules from the features present in the data.  

    In regression tasks, CART involves building a decision tree to model the 

relationship between the features of data and a continuous target variable. The data 

is split at nodes based on feature values, aiming to minimize the variance of the target 

variable within each node. The process continues until a stopping criterion is met, 

like a maximum depth of the tree or a minimum number of samples in a node. The 

outcome is a model where each leaf node represents a prediction value based on the 

input features. 
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3.7.4. Ensembles of Trees (EoT). Ensembles of trees are advanced machine learning 

techniques that combine multiple decision trees to create a more powerful model. 

These models are used for both classification and regression tasks. The core idea 

behind ensemble methods is to leverage the collective power of multiple models to 

achieve better accuracy and performance than any single model could on its own. 

Ensemble methods involve the integration of multiple decision trees to form a 

stronger predictor. Bootstrap Aggregating (Bagging) and Least Squares Boosting 

(LSBoost) can be given as examples for the most common ensemble methods 

[27,28]. LSBoost is a gradient boosting method that uses least squares loss to 

improve models' predictions iteratively. Bagging involves training multiple models 

in parallel, each on a random subset of the data (with replacement), and then 

aggregating their predictions. This approach is effective in reducing variance and 

overfitting. In EoT, a higher number of decision trees (learners) can increase the 

accuracy but may also lead to increased computational complexity and the risk of 

overfitting. The minimum leaf size in trees refers to the smallest number of 

observations that must be present in the leaf (terminal node) of a tree. Setting a higher 

minimum leaf size can help prevent overfitting by ensuring that the trees are not too 

deep or overly complex, which might make them sensitive to noise in the training 

data. By aggregating the predictions of multiple trees, ensembles can capture more 

complex patterns in the data, reduce the risk of overfitting, and handle variance 

better. 

3.8. Bayesian Optimization. Bayesian optimization is a strategy used for optimizing 

objective functions that are expensive to evaluate [29]. It's particularly useful when 

dealing with black-box functions where the underlying mathematical form is 

unknown and derivatives are not available, making traditional optimization methods 

unsuitable. Bayesian optimization is widely used in machine learning and 

hyperparameter tuning where simulations or experiments are costly and time-

consuming. Surrogate Model and Acquisition Function are crucial components in 

Bayesian optimization. They work together to efficiently find the minimum or 

maximum of an expensive function. Bayesian optimization builds a probabilistic 

model of the objective function, called the surrogate model, to approximate the true 

function. This model is used to make predictions about the function's behaviour and 

estimate the uncertainty of those predictions. Gaussian Processes (GP) are the most 

used surrogate models in Bayesian optimization owing to their capability to model 

the uncertainty of predictions. The acquisition function is used to decide where to 

sample next. It determines the trade-off between exploration (sampling where the 

model is uncertain) and exploitation (sampling where the model predicts high 

values). The acquisition function is chosen to be easily maximized unlike the original 

objective function. While Bayesian optimization can be used for regression, it does 

not directly target minimizing MSE or RMSE during the optimization process. 
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Instead, it focuses on finding the model parameters that have the highest posterior 

probability given the data and any prior beliefs. In other words, Bayesian 

optimization is a specific technique used to optimize expensive functions where the 

goal is to minimize or maximize the function's output. Here, the acquisition function 

within Bayesian optimization considers the uncertainty of the surrogate model to 

choose the next data point that will be most informative for finding the minimum or 

maximum.  

    One popular acquisition function is the Expected Improvement (EI), which 

measures the expected amount of improvement over the current best observation at 

a given point. The EI for a point 𝑥 can be computed as follows while assuming 

minimization: 

 

𝐸𝐼(𝑥) = (𝜇(𝑥) − 𝑓(𝑥+) − 𝜉)Φ(𝑍) + 𝜎(𝑥)𝜙(𝑍)                                             (2) 

  𝑍 = {
𝜇(𝑥)−𝑓(𝑥+)−𝜉

𝜎(𝑥)
, 𝜎(𝑥) > 0

0, 𝜎(𝑥) ≤ 0
 

 

where, 𝜇(𝑥) is the mean prediction of the surrogate model at 𝑥, 𝑓(𝑥+) is the value 

of the best sample observed so far, 𝜉 is a small positive number to encourage 

exploration, 𝜎(𝑥) is the standard deviation of the prediction at 𝑥, Φ and 𝜙 represent 

the cumulative distribution function and probability density function of the standard 

normal distribution, respectively. The term 𝑍 is used to calculate the expected 

improvement. If the predictive uncertainty at 𝑥 (𝜎(𝑥)) is zero, implying no 

uncertainty in the model's prediction at 𝑥, 𝑍 is set to 0 since the formula aims to 

prevent division by zero. 𝑍 plays a crucial role in quantifying how much 

improvement a new sample is expected to provide over the current best observation, 

adjusted for the level of uncertainty in the prediction at that point. This 

standardization allows the EI formula to balance exploration and exploitation by 

taking into account both the average prediction and the uncertainty of the prediction. 

    When evaluating the objective function is time-consuming, it's beneficial to 

incorporate the evaluation time into the acquisition function. The Expected 

Improvement Per Second Plus (EIPS) is a variant of the EI that accounts for the 

evaluation time, aiming to maximize the efficiency of the optimization process in 

terms of the improvement gained per unit of time. The EIPS acquisition function can 

be formulated as: 

 

𝐸𝐼𝑃𝑆(𝑥) =
𝐸𝐼(𝑥)

𝑡(𝑥)
         (3) 

 

where, 𝐸(𝑥) is the expected improvement at point 𝑥 and 𝑡(𝑥) is the expected 
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evaluation time for point 𝑥. This formulation encourages selecting points that are not 

only expected to yield high improvement but also are quicker to evaluate, thus 

optimizing the efficiency of the Bayesian optimization process [30]. 

 
4. Results 

 
4.1. Experimental Setup. The dataset utilized in this study was split into training 

and independent test sets. The training set comprised 70% of the data (48 samples), 

while the independent test set included the remaining 30% (20 samples).  

    Given the relatively small size of our dataset, Leave-One-Out (LOO) cross-

validation is a suitable choice for optimizing the hyperparameters of our machine 

learning algorithms during the training phase. In LOO strategy, each sample is used 

once as a validation case, while the remaining part of the training set is used to obtain 

a model. This process is repeated for every sample in the training set. Finally, by 

averaging the performances of all validation samples, hyper-parameters of a machine 

learning algorithm are determined. With the integration of Bayesian optimization 

algorithm, hyper-parameters are optimized, leading to improved model performance. 

    5 setups were prepared utilizing the same machine learning algorithms but with 

different features, in order to compare the performances in terms of evaluation 

metrics.  

    For each machine learning algorithm, the hyper-parameters were fine-tuned by 

utilizing Bayesian optimization. These hyper-parameters were box constraint (cost), 

epsilon, and kernel function (linear, Gaussian, quadratic, and cubic) regarding SVR 

model;  number of hidden layers, size of each layer, activation function (sigmoid, 

rectified layer unit), and regularization strength for ANN model; minimum leaf size 

for CART model; ensemble method (LSBoost or Bag), number of learners, learning 

rate, minimum leaf size, and number of features to sample for EoT model.    

4.2. Evaluation Metrics. Mean Absolute Error (MAE) quantifies the average size 

of the mistakes in a series of forecasts, disregarding their sign. It calculates the 

average of the absolute differences between the forecasted and the actual values. 

Below is the formula for MAE: 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑖 − �̂�𝑖|𝑛

𝑖=1       (4) 

 

where 𝑛, 𝑦𝑖, and �̂�𝑖 represent the number of observations, the actual value of the 

observation, and the predicted value, respectively. The lower the MAE, the better, 

with 0 being the ideal score. 



 

K. AÇICI 
 

 

190 

    Mean Squared Error (MSE) evaluates the average of the squared discrepancies, 

differences between the predicted values and the true values. The formula for MSE 

is provided below: 

 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦𝑖 − �̂�𝑖)2𝑛

𝑖=1       (5) 

 

where, 𝑛, 𝑦𝑖, and �̂�𝑖 represent the same meanings in Equation (4). It penalizes larger 

errors more severely than smaller ones, due to the squaring of each term. A smaller 

MSE signifies a closer match to the actual data, where a score of 0 represents an 

ideal fit. 

    Root Mean Squared Error (RMSE) calculates the square root of the mean of the 

squared deviations between the predicted values and the actual observations. It 

provides an indication of the dispersion of these residuals, essentially showing the 

degree to which the data clusters around the best fit line. Below is the formula for 

RMSE: 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖 − �̂�𝑖)2𝑛

𝑖=1      (6) 

 

where, 𝑛, 𝑦𝑖, and �̂�𝑖 represent the same meanings in Equation (5), but the whole 

formula is under a square root. RMSE is the square root of MSE, bringing the error 

metric back to the same units as the target variable. It similarly penalizes larger errors 

more than smaller ones. smaller RMSE value suggests a more accurate model, with 

0 being the ideal score. RMSE is sensitive to outliers. 

    R-squared (R2) quantifies the fraction of variance in the dependent variable that 

can be explained by the independent variables. The formula for R2 is as follows: 

 

𝑅2 = 1 −
𝑆𝑆𝑟𝑒𝑠

𝑆𝑆𝑡𝑜𝑡
= 1 −

∑ (𝑦𝑖−�̂�𝑖)2𝑛
𝑖=1

∑ (𝑦𝑖−�̅�𝑖)2𝑛
𝑖=1

    (7) 

 

where, 𝑛, 𝑦𝑖, and �̂�𝑖 represent the same meanings in Equation (4), �̅� represents the 

mean of the actual values. 𝑆𝑆𝑟𝑒𝑠 is the sum of squares of residuals, which measures 

the variability of the prediction errors. 𝑆𝑆𝑡𝑜𝑡 is the total sum of squares, which 

measures the total variability of the observed data around the mean. The nearer R2 

approaches 1, the greater the proportion of variance in the dependent variable 

explained by the model, signifying a stronger model fit. An elevated R2 value does 

not automatically mean the model is the most effective or accurate in its predictions. 

In models where the predictions are worse than merely estimating the average of the 

observed values, R2 can be negative. 
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4.3. Empirical Results. The results of the first, second, third, fourth, and fifth setups 

are given in Table 1, Table 2, Table 3, Table 4, and Table 5, respectively. 

Table 1. Regression results for raw signals, age and gender. 

 Raw signals + Age + Gender (26 features) 

 Validation Test 

Model MAE MSE RMSE R2 MAE MSE RMSE R2 

SVR 1.419 3.152 1.775 0.157 1.016 1.783 1.335 0.085 

ANN 1.232 2.111 1.453 0.435 1.579 4.1 2.024 -1.01 

CART 1.099 2.052 1.432 0.451 1.254 2.96 1.721 -0.518 

EoT 0.913 1.732 1.316 0.537 1.17 2.529 1.591 -0.297 

 RReliefF (19 features) 

SVR 1.434 2.939 1.714 0.214 1.044 1.859 1.363 0.046 

ANN 1.075 1.729 1.315 0.537 1.677 4.523 2.126 -1.32 

CART 1.12 2.099 1.448 0.439 1.331 2.972 1.724 -0.525 

EoT 1.147 2.712 1.646 0.275 1.422 3.769 1.941 -0.933 

 PCA (95% variance, 2 components) 

SVR 1.506 3.320 1.822 0.112 1.247 2.443 1.563 -0.253 

ANN 1.532 3.562 1.887 0.047 1.101 2.149 1.466 -0.102 

CART 1.52 3.693 1.921 0.012 1.293 3.035 1.742 -0.557 

EoT 1.63 3.804 1.95 -0.017 1.225 2.799 1.673 -0.436 

 RReliefF + PCA 

SVR 1.504 3.314 1.82 0.113 1.24 2.403 1.55 -0.233 

ANN 1.638 4.052 2.013 -0.083 1.131 2.026 1.423 -0.039 

CART 1.576 3.58 1.892 0.042 1.307 2.526 1.589 -0.296 

EoT 1.576 3.739 1.933 4.4e-

16 

1.219 2.289 1.513 -0.174 

 
According to the Table 1, the best performance values were obtained as 1.016, 

1.783, 1.335, and 0.085 in terms of MAE, MSE, RMSE, and R2, respectively for the 

independent test set by utilizing raw signals, age, and gender information as features 

and SVR as regressor.  
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Table 2. Regression results for normalized raw signals, age and gender. 

 Normalized features (26 features) 

 Validation Test 

Model MAE MSE RMSE R2 MAE MSE RMSE R2 

SVR 1.143 2.213 1.487 0.408 1.432 3.325 1.823 -0.705 

ANN 1.015 1.508 1.228 0.597 1.718 4.338 2.082 -1.225 

CART 1.099 2.052 1.432 0.451 1.254 2.96 1.72 -0.518 

EoT 1.22 2.585 1.608 0.308 1.083 2.314 1.521 -0.187 

 RReliefF (19 features) 

SVR 1.132 1.991 1.411 0.467 0.943 1.764 1.328 0.095 

ANN 1.092 2.016 1.42 0.461 1.136 1.806 1.344 0.073 

CART 1.054 1.937 1.392 0.482 1.254 2.96 1.72 -0.518 

EoT 1.054 2.095 1.447 0.439 1.277 2.76 1.661 -0.416 

 PCA (95% variance, 3 components) 

SVR 0.903 1.218 1.103 0.674 1.706 4.605 2.146 -1.362 

ANN 1.091 2.234 1.494 0.403 1.000 1.556 1.247 0.202 

CART 1.122 2.063 1.436 0.448 1.116 2.178 1.475 -0.117 

EoT 1.227 2.292 1.514 0.387 1.022 2.038 1.427 -0.045 

 RReliefF + PCA 

SVR 0.96 1.4 1.184 0.625 2.845 11.999 3.464 -5.155 

ANN 1.042 2.152 1.467 0.424 0.981 1.508 1.228 0.226 

CART 1.226 2.257 1.502 0.396 1.097 2.036 1.426 -0.044 

EoT 1.255 2.508 1.583 0.329 1.072 2.163 1.471 -0.11 

 
According to the Table 2, the best MAE value was obtained as 0.943 by utilizing 

SVR and feature selection. In terms of MSE, RMSE, and R2, the best performance 

values were achieved as 1.508, 1.228, and 0.226, respectively for the independent 

test set by utilizing normalized features, ANN as regressor, and with the inclusion of 

the feature selection and reduction methods.  
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Table 3. Regression results for normalized raw signals and w/o age and gender. 

 Normalized features (24 features) 

 Validation Test 

Model MAE MSE RMSE R2 MAE MSE RMSE R2 

SVR 1.463 3.34 1.827 0.107 1.004 1.951 1.396 -0.001 

ANN 1.295 2.572 1.603 0.312 1.267 2.416 1.554 -0.239 

CART 1.576 3.548 1.883 0.051 1.181 2.416 1.555 -0.239 

EoT 1.677 3.817 1.953 -0.021 1.184 2.598 1.612 -0.333 

 RReliefF (16 features) 

SVR 1.498 3.279 1.811 0.123 1.193 2.392 1.546 -0.227 

ANN 1.397 3.277 1.81 0.124 1.171 2.179 1.476 -0.117 

CART 1.575 3.547 1.883 0.051 1.181 2.416 1.554 -0.239 

EoT 1.645 3.957 1.989 -0.058 1.225 2.482 1.575 -0.273 

 PCA (95% variance,  2 components) 

SVR 1.501 3.304 1.817 0.116 1.236 2.397 1.548 -0.23 

ANN 1.602 3.821 1.954 -0.021 1.256 2.45 1.565 -0.256 

CART 1.576 3.739 1.933 0 1.258 2.39 1.546 -0.226 

EoT 1.59 3.687 1.92 0.013 1.182 2.233 1.494 -0.146 

 RReliefF + PCA 

SVR 1.523 3.31 1.819 0.115 1.23 2.401 1.549 -0.232 

ANN 1.563 3.768 1.941 -0.007 1.16 2.076 1.442 -0.066 

CART 1.602 3.547 1.883 0.051 1.361 3.143 1.772 -0.612 

EoT 1.638 3.907 1.976 -0.044 1.259 2.451 1.565 -0.257 

 
According to the Table 3, the best performance values were obtained as 1.004, 

1.951, 1.396, and -0.001 in terms of MAE, MSE, RMSE, and R2, respectively, by 

utilizing SVR and the normalized features without the gender and the age 

information for the independent test set. 
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Table 4. Regression results for normalized time-domain features. 

 Normalized time-domain features (10 features) 

 Validation Test 

Model MAE MSE RMSE R2 MAE MSE RMSE R2 

SVR 1.434 2.819 1.679 0.246 1.183 2.671 1.634 -0.371 

ANN 1.51 3.151 1.775 0.157 1.238 2.595 1.611 -0.331 

CART 1.519 3.233 1.798 0.135 1.199 2.608 1.615 -0.338 

EoT 1.612 3.662 1.913 0.02 1.232 3.354 1.831 -0.721 

 RReliefF (4 features) 

SVR 1.539 3.415 1.848 0.086 1.111 2.089 1.445 -0.071 

ANN 1.532 3.279 1.811 0.123 1.09 2.124 1.457 -0.089 

CART 1.587 3.492 1.868 0.066 1.199 2.608 1.615 -0.338 

EoT 1.59 3.526 1.877 0.056 1.267 3.288 1.813 -0.686 

 PCA (95% variance,  1 component) 

SVR 1.549 3.68 1.918 0.015 1.159 2.077 1.441 -0.065 

ANN 1.521 3.671 1.916 0.018 1.056 1.968 1.402 -0.009 

CART 1.51 3.616 1.901 0.032 1.269 2.258 1.502 -0.158 

EoT 1.561 3.924 1.981 -0.049 1.145 1.726 1.313 0.114 

 RReliefF + PCA (2 components) 

SVR 1.358 3.116 1.765 0.166 1.319 2.889 1.699 -0.482 

ANN 1.575 3.572 1.89 0.044 1.147 2.352 1.533 -0.206 

CART 1.562 3.61 1.9 0.034 1.291 2.723 1.65 -0.397 

EoT 1.624 3.863 1.965 -0.033 1.236 2.89 1.7 -0.482 

 
According to the Table 4, the best MAE value was obtained as 1.056 on 

normalized time-domain features, extracted from the raw signals, by utilizing ANN 

as regressor and the feature reduction method. The best performance values in terms 

of MSE, RMSE, and R2 were achieved as 1.726, 1.313, and 0.114, respectively by 

utilizing EoT as regressor and the feature reduction method. 
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Table 5. Regression results for normalized frequency-domain features. 

 Normalized frequency-domain features (136 features) 

 Validation Test 

Model MAE MSE RMSE R2 MAE MSE RMSE R2 

SVR 1.574 3.762 1.939 -0.006 1.155 2.061 1.435 -0.057 

ANN 1.571 3.404 1.845 0.089 1.246 2.983 1.727 -0.53 

CART 1.493 3.368 1.835 0.099 1.282 2.853 1.689 -0.463 

EoT 1.536 3.389 1.841 0.093 1.125 2.195 1.481 -0.126 

 RReliefF (2 features) 

SVR 1.426 3.107 1.762 0.168 1.241 2.734 1.653 -0.402 

ANN 1.629 3.917 1.979 -0.047 1.205 2.237 1.495 -0.147 

CART 1.515 3.231 1.797 0.135 1.397 3.759 1.938 -0.928 

EoT 1.519 3.278 1.81 0.123 1.227 2.689 1.639 -0.379 

 PCA (95% variance, 2 components) 

SVR 1.451 3.212 1.792 0.14 1.446 3.081 1.755 -0.58 

ANN 1.62 3.933 1.983 -0.052 1.48 3.542 1.882 -0.817 

CART 1.535 3.252 1.803 0.13 1.037 2.146 1.465 -0.101 

EoT 1.67 3.854 1.963 -0.031 1.082 2.113 1.453 -0.084 

 RReliefF + PCA (2 components) 

SVR 1.488 3.159 1.777 0.155 1.373 3.348 1.83 -0.718 

ANN 1.441 2.959 1.72 0.208 1.456 3.723 1.929 -0.91 

CART 1.468 3.384 1.839 0.094 1.251 2.598 1.611 -0.332 

EoT 1.598 3.636 1.907 0.027 1.265 2.993 1.73 -0.535 

 
According to the Table 5, the best MAE value was obtained as 1.037 on 

normalized frequency-domain features, extracted from the raw signals, by utilizing 

CART as regressor and the feature reduction method. The other best performance 

values were achieved as 2.061, 1.435, and -0.057 in terms of MSE, RMSE, and R2, 

respectively, by utilizing SVR without the inclusion of the feature selection and 

reduction methods. 

    The best performance values, according to the independent test set results, are 

shown in Table 6, for each experimental setup. 
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Table 6. The best regression results for 5 experimental setups. 

 Setup 1: Raw signals + Age + Gender (26 features) 

 Validation Test 

Model MAE MSE RMSE R2 MAE MSE RMSE R2 

SVR 1.419 3.152 1.775 0.157 1.016 1.783 1.335 0.085 

Setup 2: Normalized features + RReliefF (19 features) 

SVR 1.132 1.991 1.411 0.467 0.943 1.764 1.328 0.095 

Setup 2: Normalized features + RReliefF + PCA (3 components) 

ANN 1.042 2.152 1.467 0.424 0.981 1.508 1.228 0.226 

 Setup 3: Normalized features w/o Age & Gender (24 features) 

SVR 1.463 3.34 1.827 0.107 1.004 1.951 1.396 -0.001 

Setup 4: Normalized time-domain features + PCA (1 component) 

ANN 1.521 3.671 1.916 0.018 1.056 1.968 1.402 -0.009 

EoT 1.561 3.924 1.981 -0.049 1.145 1.726 1.313 0.114 

Setup 5: Normalized frequency-domain features + PCA (2 components) 

CART 1.535 3.252 1.803 0.13 1.037 2.146 1.465 -0.101 

Setup 5: Normalized frequency-domain features (136 features) 

SVR 1.574 3.762 1.939 -0.006 1.155 2.061 1.435 -0.057 

 
According to the Table 6, for the first experimental setup, the best performance 

values were obtained by SVR regressor on raw signals with the inclusion of age and 

gender information. For the second experimental setup, the best performance value 

was obtained by SVR regressor on normalized features with the inclusion of the 

feature selection algorithm in terms of MAE, while the best performance values were 

obtained by ANN regressor with the inclusion of the feature selection and reduction 

algorithms in terms of MSE, RMSE, and R2. For the third experimental setup, the 

best performance values were obtained by SVR regressor on normalized features 

without the inclusion of age and gender information. For the fourth experimental 

setup, the best performance value was obtained by ANN regressor on normalized 

time-domain features with the inclusion of the feature reduction algorithm in terms 

of MAE, while the best performance values were obtained by EoT regressor in terms 

of the other evaluation metrics. For the last experimental setup, the best performance 

value was obtained by CART regressor on frequency-domain features with the 

inclusion of the feature reduction algorithm in terms of MAE, while the best 

performance values were obtained by SVR regressor on frequency-domain features 

without the inclusion of the feature selection and reduction algorithms in terms of 

the other evaluation metrics. 

    In the first setup, for the SVR model, the hyperparameters were optimized by 

Bayesian optimization with a cost of 0.279, epsilon value of 1.116, and a kernel 

function of linear. In the second setup, for the SVR model, the hyperparameters were 

optimized with a cost of 0.207, epsilon value of 0.364, and a kernel function of 
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quadratic, while for the ANN model the number of hidden layers, the number of 

neurons, activation function, and regularization strength were optimized as 1, 1, 

sigmoid, and 1.385, respectively. In the third setup, for the SVR model, the 

hyperparameters were optimized with a cost of 0.001, epsilon value of 0.002, and a 

kernel function of quadratic. In the fourth setup, for the ANN model, the number of 

hidden layers, the number of neurons, activation function, and regularization 

strength were optimized as 1, 1, rectified layer unit, and 0.397, respectively. For the 

EoT model, the ensemble method, the number of learners, the learning rate, the 

minimum leaf size, and the number of the features to sample were optimized as 

LSBoost, 24, 0.998, 15, and 1, respectively. In the last setup, the minimum leaf size 

was optimized as 19 for the CART model, while the hyperparameters were optimized 

with a cost of 0.001, epsilon value of 0.013, and a kernel function of Gaussian, for 

the SVR model. 

 
5. Conclusion 

 
According to the data obtained from the experiments, it was observed that 

standardization on the features is an important preprocessing step. Experiments 

further showed that age and gender were informative features, as the performance of 

the regressors dropped when these features were removed from the feature vectors. 

When time-domain and frequency-domain features were used to feed the regressors 

without including age and gender information, the results showed that the time-

domain features led to better performance than the frequency-domain-features. 

Based on R2 evaluation metric, normalized raw signal and age-gender information 

can explain the dependent variable better than other features. It can be interpreted 

that the utilization of time and frequency-domain features is indicative of potential 

information loss relative to the raw signal. If we compare the models, it can be 

observed that while the SVR model stood out in 4 out of 5 different setups, the 

highest performance values were obtained with the ANN model. ANN provided the 

best performance values among the setups in terms of MSE, RMSE, and R2 after 

normalization, feature selection, and reduction were applied. We hope the results 

obtained from the first utilization of this relevant dataset will be established as a 

benchmark, encouraging further research, and paving the way for achieving even 

better results in the future. 
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