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1. Introduction

According to Thurston’s classification [220] of 3-dimensional geometries, there exist eight simply connected
model spaces. The model spaces are the following homogeneous Riemannian spaces:

• space forms: Euclidean 3-space E3, 3-sphere S3, hyperbolic 3-space H3,
• reducible Riemannian symmetric spaces: S2 × E1, H2 × E1,
• the Heisenberg group Nil3, the universal covering group S̃L2R ∼= S̃U(1, 1).
• the Minkowski motion group Sol3.

Other than space forms and product spaces, model spaces are not Riemannian symmetric spaces. As is well
known, local symmetry of Riemannian manifolds is characterized by the parallelism of the Riemannian
curvature due to E. Cartan. As a generalization of local symmetry, Ambrose and Singer [5] obtained an
infinitesimal characterization of Riemannian homogeneity of Riemannian manifolds. They showed that local
Riemannian homogeneity is equivalent to the existence of certain tensor field S. Such a tensor field S is referred
as to a homogeneous Riemannian structure. The moduli space of homogeneous structures on a homogeneous
Riemannian space (M, g) represents the all possible coset space representations of (M, g) up to isomorphisms.
In other words, the moduli space is identified with the space of canonical connections (also called the Ambrose-
Singer connections). Katsuda [137] obtained a pinching theorem for locally homogeneous Riemannian spaces
by using homogeneous Riemannian structures. Recently Ni and Zheng studied Hermitian manifolds whose
Chern connection is an Ambrose-Singer connection [166].

The moduli problem of 3-dimensional homogeneous Riemannian structures indicates us some interesting
phenomena. For instance, Riemannian symmetric spaces are homogeneous Riemannian spaces with trivial
homogeneous Riemannian structure S = 0. However the trivial homogeneous Riemannian structure may not
determine uniquely the Riemannian symmetric spaces. For instance, the Euclidean plane E2 is represented by
SE(2)/SO(2) as a Riemannian symmetric space with S = 0. On the other hand, The homogeneous Riemannian
space E2 = E2/{0} has trivial homogeneous Riemannian structure S = 0 (See [222, Introduction, p. II, Corollary
4.2]).

The 3-dimensional (homogeneous) geometry is rather special. Olmos and Reggiani [176, 177] proved the
uniqueness of canonical connections for the hyperbolic space Hn for n ̸= 3. More precisely represent Hn as
Hn = SO+(1, n)/SO(n) as a naturally reductive homogeneous space. Then the Levi-Civita connection is the only
canonical connection associated to this representation when n ̸= 3. But the hyperbolic 3-space H3 admits exactly
a line of canonical connections. On the other hand, for the naturally reductive spheres Sn = SO(n+ 1)/SO(n),
the canonical connection is unique. But as we will see later the 3-sphere S3 has another naturally reductive
space representation (SU(2)×U(1))/U(1) = U(2)/U(1).

It is known that any oriented Riemannian 3-manifold (M, g,dvg) admits an almost contact structure
compatible to the metric and the orientation. Here an almost contact structure is a triplet (φ, ξ, η) of tensor
fields consisting of an endomorphism field φ, a vector field ξ and a 1-form η satisfying

φ2 = −I + η ⊗ ξ, η(ξ) = 1.

An almost contact structure (φ, ξ, η) is said to be compatible to the metric g and the orientation if it satisfies

g(φX,φY ) = g(X,Y )− η(X)η(Y )

for any vector fields X and Y on M and
dvg = −3η ∧ Φ,

where Φ is a 2-form defined by Φ(X,Y ) = g(X,φY ). An oriented Riemannian 3-manifold (M, g,dvg) equipped
an compatible almost contact structure is called an almost contact Riemannian 3-manifold.

An almost contact Riemannian 3-manifold M is said to be a contact Riemannian 3-manifold if Φ = dη. One can
see that the 1-form η of a contact Riemannian 3-manifold M is a contact form, i.e., dη ∧ η ̸= 0. Moreover ξ is the
Reeb vector field of a contact 3-manifold (M,η).

On the other hand, an almost contact Riemannian 3-manifold M is said to be normal if the almost complex
structure on the product manifold M ×R is integrable. An normal contact Riemannian 3-manifold is called a
Sasakian 3-manifold.

From almost contact structure viewpoint, we emphasize that every seven model space other than Sol3 admits
normal almost contact structure compatible to to the metric. On the other hand, Sol3 admits an almost contact
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structure compatible to the metric such that the resulting almost contact 3-manifold is non-normal contact
Riemannian 3-manifold.

Among the eight model spaces, S3, Nil3, S̃L2R and Sol3 admit homogeneous contact structure compatible
to the metric. In particular, S3, Nil3, S̃L2R are homogeneous Sasakian 3-manifolds of constant holomorphic
sectional curvature (Sasakian space forms). Note that 3-dimensional simply connected Sasakian space forms are
exhausted by S3, Nil3, S̃L2R and the Berger 3-spheres. Moreover Sasakian space forms are naturally reductive
homogeneous Riemannian spaces [21].

Model space Homogeneity Compatible almost contact structure
E3 Symmetric (space form) CoKähler
S3 Symmetric (space form) Sasakian
H3 Symmetric (space form) Kenmotsu

S2 × E1, H2 × E1 Symmetric CoKähler
Nil3, S̃L2R Naturally reductive Sasakian

Sol3 Homogeneous (4-symmetric) Contact

Table 1. The eight model spaces

This article has three purposes.
The first aim of this article is to give a survey on homogeneous Riemannian structures on model spaces of

Thurston geometries.

The second purpose of the present paper is to describe all the homogeneous Riemannian structures of model
spaces of Thurston geometries explicitly.

In contact Riemannian geometry or CR-geometry, certain kind of linear connections with non-vanishing
torsion have been used. Tanaka [212] and Webster [228] introduced a linear connection on contact strongly
pseudo-convex CR-manifolds. This connection is referred as to the Tanaka-Webster connection. Note that
Sasakian manifolds are strongly pseudo-convex CR-manifolds.

Tanno [219] introduced the notion of generalized Tanaka-Webster connection on general contact Riemannian
manifolds. The generalized Tanaka-Webster connection coincides with original Tanaka-Webster connection on
contact strongly pseudo-convex CR-manifolds.

The third purpose of the present article is to study relations between these two kinds of connections,
Ambrose-Singer connections and generalized Tanaka-Webster connections, derived from different geometric
backgrounds. More precisely we shall study relations between generalized Tanaka-Webster connections and
Ambrose-Singer connections on 3-dimensional Sasakian space forms.

Throughout this paper all manifolds are assumed to be connected.
Conventions. In this paper we use the following symbols and conventions for exterior differentiation of
differential forms:

• Throughout this paper we denote the space of all smooth sections of a vector bundle E by Γ (E). For
instance the Lie algebra of all smooth vector fields on M is denoted by Γ (TM). Here TM is the tangent
bundle of M . The space Γ (TM) forms an infinite dimensional Lie algebra with Lie bracket:

[X,Y ]f = X(Y (f))− Y (X(f)), f ∈ C∞(M),

where C∞(M) is the commutative ring of all smooth functions onM . The resulting Lie algebra is denoted
by X(M).

• The Lie differentiation by a vector field X is denoted by £X .
• The space of all real square matrices of degree n is denote by MnR.
• The space of all complex square matrices of degree n is denote by MnC.
• The skew field of quaternions is denoted by H.
• The space of all quaternion square matrices of degree n is denote by MnH.
• The unit element of a Lie group is denoted by e. In case G = SU(2), SU(1, 1) and SL2R, we denote the unit

element also by 1.
• The matrix units are denoted by Eij .
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• The identity matrix of degree n is denoted by En.
• The zero matrix of type (m,n) are denoted by Om,n or simply O. In particular On,n is denoted by On.
• The identity endomorphism field is denoted by I ∈ Γ (End(TM)).
• Let M be a manifold and η a 1-form on M . Then the exterior derivative dη is defined by

2dη(X,Y ) = X(η(Y ))− Y (η(X))− η([X,Y ]), X, Y ∈ Γ (TM).

• The exterior derivative dΦ of a 2-form Φ is defined by

dΦ =X(Φ(Y, Z) ) + Y (Φ(Z,X) ) + Z(Φ(X,Y ) )

− Φ([X,Y ], Z)− Φ([Y,Z], X)− Φ([Z,X], Y ).

• On an oriented Riemannian manifold (M, g), dη and dΦ are rewritten as

dη(X,Y ) =
1

2
((∇Xη)Y − (∇Y η)X) , dΦ(X,Y, Z) =

1

3
S

X,Y,Z
(∇XΦ)(Y,Z)

in terms of Levi-Civita connection ∇. The codifferential δη and δΦ are given by

δη = −tr(∇η), (δΦ)X = −tr(∇·Φ)(·, X).

• On an oriented Riemannian n-manifold (M, g,dvg), the volume element dvg satisfies

dvg(e1, e2, . . . , en) = 1

for any positively oriented local orthonormal frame field E = {e1, e2, . . . , en}. In terms of the coframe field
{ϑ1, ϑ2, . . . , ϑn}metrically dual to E , dvg is expressed as

dvg = n!ϑ1 ∧ ϑ2 ∧ · · · ∧ ϑn.

• For a tensor field S of type (1, 2), its covariant form is denoted by S♭, i.e.,

S♭(X,Y, Z) = g(S(X)Y,Z), X, Y, Z ∈ Γ (TM).

2. Riemannian manifolds

2.1. Linear connections

Let M be a smooth manifold. A linear connection

D : Γ (TM)× Γ (TM)→ Γ (TM); (X,Y ) 7−→ DXY

is a differential operator on the tangent bundle TM satisfying that it

• is linear in the both first and second slots,
• is C∞(M)-linear in the first slot and
• satisfies the Leipniz rule:

DX(fY ) = X(f)Y + fDXY, f ∈ C∞(M), X, Y ∈ Γ (TM).

The torsion tensor field (often called the torsion) T = TD is defined by

T (X,Y ) = DXY −DYX − [X,Y ].

A linear connection D is said to be torsion free if its torsion T vanishes. The curvature R = RD is defined by

RD(X,Y ) = [DX , DY ]−D[X,Y ].
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2.2. Curvatures

Let (M, g) be a Riemannian manifold. A linear connection D is said to be metrical with respect to g, if g is
parallel with respect to D, i.e.,

(Dg)(Y,Z;X) = (DXg)(Y,Z) = Xg(Y, Z)− g(DXY,Z)− g(Y,DXZ) = 0

for all X , Y , Z ∈ Γ (TM). Such a linear connection D on (M, g) is called a metric connection.
On a Riemannian manifold (M, g), there exits a unique torsion free metrical connection ∇ called the Levi-

Civita connection.
The Levi-Civita connection ∇ is determined by the Koszul formula:

2g(∇XY,Z) = Xg(Y, Z) + Y g(Z,X)− Zg(X,Y ) + g([X,Y ], Z) + g([Z,X], Y )− g([Y,Z], X).

The curvature R = R∇ of the Levi-Civita connection is called the Riemannian curvature. The Ricci tensor field Ric
of (M, g) is defined by

Ric(X,Y ) = trg(Z 7−→ R(Z, Y )X).

The self-adjoint endomorphism field Q metrically equivalent to Ric is called the Ricci operator. The scalar
curvature s is defined by s = trg Ric = trg Q.

We define a curvature-like tensor field (X ∧ Y )Z by

(X ∧ Y )Z = g(Y,Z)X − g(Z,X)Y, X, Y, Z ∈ Γ (TM).

One can see that (M, g) is of constant curvature c if and only if R(X,Y )Z = c(X ∧ Y )Z for all vector fields
X,Y, Z ∈ Γ (TM).

We denote by Iso(M) = Iso(M, g) the full isometry group of (M, g). The identity component of Iso(M) is
denote by Iso◦(M). The Lie algebra of Iso◦(M) is denote by iso(M).

A vector field X ∈ Γ (TM) is said to be a Killing vector field if its (local) flows are isometric. The set i(M) of all
Killing vector fields is a subalgebra of X(M). A vector field X is a Killing vector field if and only if £Xg = 0,
i.e.,

Xg(Y,Z)− g([X,Y ], Z)− g(Y, [X,Z]) = 0, Y, Z ∈ Γ (TM).

The Killing property of X is equivalent to that ∇X is skew-adjoint with respect to g, i.e.,

g(∇YX,Z) + g(Y,∇ZX) = 0, Y, Z ∈ Γ (TM).

2.3. Connection form

Let E = {e1, e2, . . . , en} be a local orthonormal frame field on a Riemannian n-manifold (M, g). Denote by
Θ = (ϑ1, ϑ2, . . . , ϑn) the local orthonormal coframe field metrically dual to E . We regard Θ as an Rn-valued
1-form

Θ =


ϑ1

ϑ2

...
ϑn


Since the Levi-Civita connection ∇ is torsion free, the following first structure equation:

dΘ + ω ∧Θ = 0

holds. The so(n)-valued 1-form

ω =


0 ω 1

2 · · · ω 1
n

−ω 1
2 0 · · · ω 2

n
...

...
. . .

...
−ω 1

n −ω 2
n · · · 0


determined by the first structure equation is called the connection form. Here so(n) is the Lie algebra of real
skew-symmetric matrices of degree n (see Example 4.3). A component ω i

j of ω is called a connection 1-form. The
first structure equation is the differential system:

dϑi +

n∑
j=1

ω i
j ∧ ϑj = 0.
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The connection coefficients {Γ i
jk} of the Levi-Civita connection ∇ is relative to E is defined by

∇eiej =

n∑
k=1

Γ k
ij ek.

Then the connection 1-forms are related to connection coefficients by

ω k
j =

n∑
ℓ=1

Γ k
ℓj ϑ

ℓ.

Hence we obtain
g(∇Xei, ej) = ω j

i (X). (2.1)
Thus

ωij = ω j
i = −ω i

j .

Remark 2.1. Tricerri and Venhecke [222] used the convention:

g(∇Xei, ej) = ωij(X).

2.4. Curvature forms

Next, the so(n)-valued 2-form Ω = (Ω i
j ) defined by

Ω = dω + ω ∧ ω

is called the curvature form relative to Θ. This formula is called the second structure equation. The components
Ω i

j are called curvature 2-forms. The second structure equation is the differential system:

Ω i
j = dω i

j +

n∑
k=1

ω i
k ∧ ω k

j .

One can see that

R(X,Y )ei = 2

n∑
j=1

Ω j
i (X,Y )ej .

If we express the Riemannian curvature R as

R(ek, eℓ)ei =

n∑
j=1

R j
ikℓ ej ,

and set
Rijkℓ = g(R(ek, eℓ)ei, ej) = R j

ikℓ, Ωij := Ω j
i ,

then we obtain

Ωij =
1

2

n∑
k,ℓ=1

Rijkℓ θ
k ∧ θℓ.

The components of Ricci tensor field are given by

Rij = Ric(ei, ej) =

n∑
k=1

R k
ikj .

The scalar curvature is given by s =

n∑
i=1

Rii.

The sectional curvature Kij of the tangent plane ei ∧ ej spanned by ei and ej is given by

Kij = K(ei ∧ ej) = g(R(ei, ej)ej , ei) = Rjiij = Rijji.

In case dimM = 3, we have
R12 = R1323, R23 = R1213, R31 = −R1223.

The sectional curvature Kij are related to Ric by

K12 =
1

2
(R11 +R22 −R33), K13 =

1

2
(R11 −R22 +R33), K23 =

1

2
(−R11 +R22 +R33).
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2.5. The vector product

Let (M, g,dvg) be an oriented Riemannian 3-manifold. Then the volume element dvg defines the vector product
operation (also called the cross product) × on each tangent space TpM by the rule

g(X × Y, Z) = dvg(X,Y, Z), X, Y, Z ∈ TpM.

The vector product operation satisfies:

(X × Y )× Z = g(Z,X)Y − g(Y,Z)X,

Comparing this with the curvature-like tensor field

(X ∧ Y )Z = g(Y, Z)X − g(Z,X)Y,

we obtain the following formula:

(X ∧ Y )Z = −(X × Y )× Z = Z × (X × Y ).

We denote by dV the tensor field of type (1, 2) metrically equivalent to dvg;

dvg(X,Y, Z) = g(dV (X)Y,Z). (2.2)

In other words, dV♭ = dvg. Equivalently dV (X)Y = X × Y .

3. Homogeneous geometry

3.1. Homogeneous manifolds

Let M = G/H be a homogeneous manifold with connected Lie group G. We denote by g and h, the Lie
algebras of G and H , respectively. We denote by Πh the projection from g onto h.

Let π be the natural projection of G onto M ;

π : G→M, π(a) = aH.

Denote by τ the natural left action of G on M .

τ : G×M →M ; τ(a, bH) = (ab)H, a, b ∈ G.

The diffeomorphism τa on M defined by τa(bH) = τ(a, bH) is called the translation on M by a. For h ∈ H , the
differential ρ(h) := τh∗o of τh at the origin o := H defines a representation ρ of H over the tangent space ToM at
o. This representation ρ of H is called the linear isotropy representation of H . The group ρ(H) is called the linear
isotropy group of M .

We describe the tangent spaces of M . Let τ ♯ : g×M → TM be the linearization of the natural left action τ on
M :

τ ♯(X, p) = X♯
p :=

d

dt

∣∣∣∣
t=0

τexp(tX)(p), X ∈ g, p ∈M.

One can check that
[X,Y ]♯ = −[X♯, Y ♯].

Express p as p = a · o. Then the kernel of τ ♯(·, p) is hp = Ad(a)h. The kernel hp is the Lie algebra of the isotropy
subgroup Hp at p.

Note that the isotropy subgroup Hp of G at p = a · o is aHa−1. Thus we get the linear isomorphism

g/Ad(a)h ∼= Ta·oM ; X +Ad(a)h 7−→ X#
a·o.

The isotropy bundle h defined by

h =
⋃
p∈M

Ker τ#(·, p)
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is isomorphic to the vector bundle G/H ×H h associated to G→ G/H with standard fiber h.

Note that τa∗oX#
o is given by

τa∗oX
#
o =

d

dt

∣∣∣∣
t=0

τexp(tAd(a)X)(p), p = a · o.

Here we define another map τ ♮ :M × g→ TM by

τ ♮(p,X) = X♮
p =

d

dt

∣∣∣∣
t=0

τexp(tAd(a)X)(p), p = a · o.

Thus τ ♮ is a vector bundle morphism from the trivial bundle M × g to TM . The kernel of each τ ♮(p, ·) is h. Thus
we get a linear isomorphism;

g/h ∼= Ta·oM ; X + h 7−→ X♮
a·o.

This linear isomorphism induces the isomorphism between the tangent bundle TM and the vector bundle
G×H g/h associated to the principal H-bundle G:

X♮
a·o 7−→ [(a,X + h)].

3.2. Reductive homogeneous spaces

Hereafter we assume thatM = G/H is reductive. Namely there exists a linear subspace m of g complementary
to h such that

ad(h)m ⊂ m.

The linear subspace m is called the Lie subspace of g. We denote by Πm the projection from g onto m.
Via the differential π∗e : g→ ToM of the natural projection at e ∈ G, the tangent space ToM is identified with

the Lie subspace m. Under this identification the linear isotropy group ρ(H) is identified with Ad(H). Moreover
the tangent spaces of M are given by

Ta·oM ∼= Ad(a)m; X#
a·o 7−→ Ad(a)X.

Thus we obtain a linear isomorphism:

τ ♯a·o : m→ Ta·oM ; τ ♯a·o(X) = X♯
a·o.

Let us denote by βp : TpM → m the inverse mapping of τ ♯a·o for p = a · o. Then βp is naturally extended to an
m-valued 1-form on M .

Proposition 3.1 ([34]). For X ∈ g and p = a · o, we have

βp(X
♯
p) = Ad(a)Πm(Ad(a−1)X).

Note that

v =
d

dt

∣∣∣∣
t=0

τexp(tβp(v))p

holds for any v ∈ TpM .

Corollary 3.1 ([34]). For any X ∈ m and p = a · o ∈M :

βp(X
♮
p) = Ad(a)X, X ∈ m.

The m-valued 1-form β is called the Maurer-Cartan form of the reductive homogeneous space M = G/H (see
[34]).

For a reductive homogeneous space M = G/H , the tangent bundle TM is identified with m := G×H m via
the bundle isomorphism β.

The Maurer-Cartan form β is characterized as the unique bundle homomorphism from TM to G/H × g
satisfying

β ◦ τ# = Πm, τ# ◦ β = ITM .
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3.3. The canonical connection

The vector bundle g = G×H g is decomposed as g = h⊕m according to the reductive splitting of g. Denote
by Πh, the projection g→ h. The Maurer-Cartan form ϑ of G is the unique left invariant g-valued 1-form which
satisfies

ϑe(Xe) = Xe, Xe ∈ TeG.

The Maurer-Cartan form ϑ can be defined by the following formula:

ϑa(Xa) = L−1
a∗Xa ∈ TeG.

Here La is the left translation of G by a ∈ G. The 1-form ϑh := Πh ◦ ϑ is a connection form of the principal
H-bundle π : G→ G/H . The horizontal distribution of this connection is

Qa = La∗m.

This connection induces a linear connection∇c onM . The linear connection∇c is called the canonical connection
of the reductive homogeneous space M = G/H . Note that ∇c is the canonical connection of second kind in the
sense of Nomizu [170].

Proposition 3.2 ([34]).
β(∇c

XY ) = Xβ(Y )− [β(X), β(Y )], X, Y ∈ Γ (TM).

The torsion T c of ∇c is described by the following structure equations:

dβ = (I− 1

2
Πm)[β ∧ β], β ◦ T c = −1

2
Πm[β ∧ β].

Take a representation of H on a finite dimensional linear space V . Then the vector bundle V = G×H V is
identified with the trivial bundle G/H × V via

V ∋ [(g, v)] 7−→ (π(g), g · v).

Proposition 3.3 ([34]). Let s be a section of V , then ds = ∇cs+ β · s.

3.4. Invariant connections

There is a bijective correspondence between the set of all G-invariant linear connections on a reductive
homogeneous space G/H with Lie subspace m and the set of all linear maps µ : m→ gl(g) satisfying

µ(Ad(h)X) = ad(ρ(h))µ(X)

for any X ∈ m and h ∈ H . Here ρ is the linear isotropy representation as before. The linear connection ∇µ

corresponding to µ is described as (see [145, 203]):

(∇µ
X♯Y

♯)o = −[X,Y ]m + µ(X)Y. (3.1)

The torsion Tµ and curvature Rµ of ∇µ are given by

Tµ(X♯, Y ♯)|o = µ(X)Y − µ(Y )X − [X,Y ]m, Rµ(X♯, Y ♯)|o = [µ(X), µ(Y )]− µ([X,Y ]m)− ρ([X,Y ]h).

Here we used the notation
[X,Y ]h = Πh([X,Y ]), [X,Y ]m = Πm([X,Y ]).

Obviously the canonical connection ∇c corresponds to µ = 0. Thus the torsion T c and curvature Rc of ∇c are
given by ([145, Theorem 2.6]):

T c(X♯, Y ♯)|o = −[X,Y ]m, Rc(X♯, Y ♯)Z♯|o = −[ [X,Y ]h, Z], X, Y, Z ∈ m.

In particular ∇cT c = 0 and ∇cRc = 0 holds.
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3.5. Canonical connections on Lie groups

Since the model spaces of Thurston geometry (other than S2 × E1) are realized as Lie groups equipped with
specific left invariant metrics, here we discuss canonical connections on Lie groups.

We can regard a Lie group G as a homogeneous space in two ways: G = G/{e} and G = (G×G)/∆G. The
Lie algebra g is defined as the tangent space TeG of G at the unit element and we often regard g as the space of
all smooth left invariant vector fields on M . It should be remarked that for X ∈ g = TeG, X♯ is a right invariant
vector field on G. However it is desirable to use only left-invariant vector fields to describe everything on G.
On this reason, here, we give left invariant formulation for canonical connections.

In the first representation, the isotropy algebra is {0} and m = g. Obviously the splitting g = {0}+ g is
reductive. The natural projection π : G→ G/{e} is the identity map. By definition, the canonical connection
∇c is determined by

(∇c
X♯Y

♯)e = −[X,Y ].

The canonical connection of G/{e} is characterized as

∇c
XY = 0, X, Y ∈ g.

The torsion T c of ∇c is given by T c(X,Y ) = −[X,Y ]. The canonical connection ∇c is also called the Cartan-
Schouten’s (−)-connection and denoted by ∇(−).

Next, let us take the product Lie group G×G. The Lie algebra of G×G is

g = {(X,Y ) |X,Y ∈ g}

with Lie bracket
[(X1, Y1), (X2, Y2)] = ([X1, Y1], [X2, Y2]).

The product Lie group G×G acts on G by the action:

(G×G)×G→ G; (a, b)x = axb−1. (3.2)

The isotropy subgroup at the identity e is the diagonal subgroup

∆G = {(a, a) | a ∈ G}

with Lie algebra ∆g = {(X,X) |X ∈ g}. We can consider the following three Lie subspaces;

m+ = {(0, X) |X ∈ g}, m− = {(X, 0) |X ∈ g}, m0 = {(X,−X) |X ∈ g}.

Then g⊕ g = ∆g⊕m+, g⊕ g = ∆g⊕m− and g⊕ g = ∆g⊕m0 are reductive.
The corresponding splittings are given explicitly by

(X,Y ) = (X,X) + (0,−X + Y )) ∈ ∆g⊕m+

(X,Y ) = (Y, Y ) + (X − Y, 0) ∈ ∆g⊕m−

(X,Y ) =

(
X + Y

2
,
X + Y

2

)
+

(
X − Y

2
,−X − Y

2

)
∈ ∆g⊕m0.

Let us identify the tangent space TeG of G at e with these Lie subspaces. Then the canonical connection with
respect to the reductive decomposition g⊕ g = ∆g⊕m+ is denoted by ∇(+) and given by

(∇(+)

X♯ Y
♯)e = 0, X, Y ∈ g.

In left invariant way, we have
∇(+)

X Y = [X,Y ], X, Y ∈ g.

The torsion T (+) of ∇(+) is given by T (+)(X,Y ) = [X,Y ]. The canonical connection ∇(+) is called the Cartan-
Schouten’s (+)-connection or anti canonical connection [60].

Next, the canonical connection with respect to the reductive decomposition g⊕ g = ∆g⊕m− is∇(−). Finally
the canonical connection with respect to the reductive decomposition g⊕ g = ∆g⊕m0 is denoted by ∇(0) and
given by

(∇(0)

X♯Y
♯)e = −

1

2
[X,Y ], X, Y ∈ g,

dergipark.org.tr/en/pub/iejg 570

https://dergipark.org.tr/en/pub/iejg


J. Inoguchi

equivalently,

∇(0)
X Y =

1

2
[X,Y ], X, Y ∈ g.

The connection ∇(0) is torsion free and called the Cartan-Schouten’s (0)-connection, the natural torsion free
connection [170] or neutral connection [60].

More generally, there exists a bijective correspondence between the set of all left invariant linear connections
on G and the set {µ : g× g→ g | µ is bilinear}. The linear connection ∇µ corresponding to µ is described as

∇µ
XY = µ(X)Y, X, Y ∈ g.

4. Homogeneous Riemannian spaces

4.1. Riemannian homogeneity

Definition 4.1. A Riemannian manifold (M, g) is said to be a homogeneous Riemannian space if there exits a Lie
group G of isometries which acts transitively on M .

More generally, M is said to be locally homogeneous Riemannian space if for each p, q ∈M , there exists a local
isometry which sends p to q.

Without loss of generality, we may assume that a homogeneous Riemannian space (M, g) is reductive. In
fact, the following result is known (see e.g., [151]):

Proposition 4.1. Any homogeneous Riemannian space (M, g) is a reductive homogeneous space.

Moreover it is known that isotropy subgroup H of a homogeneous Riemannian space G/H is compact.
Since G acts isometrically on (M, g), for any X ∈ g, the vector field X♯ is a Killing vector field. In particular,

the correspondence X 7−→ X♯ is an anti isomorphism, i.e.,

[X♯, Y ♯] = −[X,Y ]♯.

Let M = G/H be a reductive homogeneous Riemannian space with Lie subspace m. We denote by ⟨·, ·⟩ the
inner product on m induced from the Riemannian metric g of M .

Let us introduce a bilinear map Um : m×m→ m by

2⟨Um(X,Y ), Z⟩ = ⟨[Z,X]m, Y ⟩+ ⟨X, [Z, Y ]m⟩. (4.1)

The Levi-Civita connection ∇ at the origin o is given by:

(∇X♯Y ♯)o = Um(X,Y )− 1

2
[X,Y ]m, X, Y ∈ m.

Example 4.1. Let us consider a Lie group G equipped with a left invariant metric. We regard G as a
homogeneous space G/{e} and denote the bilinear map (4.1) by U, that is,

2⟨U(X,Y ), Z⟩ = ⟨[Z,X], Y ⟩+ ⟨Y, [Z,X]⟩, X, Y, Z ∈ g. (4.2)

Then the Levi-Civita connection ∇ of the metric is given by

∇XY = U(X,Y ) +
1

2
[X,Y ], X, Y ∈ g.

Proposition 4.2. The following properties for a left invariant Riemannian metric on a Lie group G are mutually
equivalent:

1. The metric is bi-invariant.

2. U = 0.

3. ∇ = ∇(0).

When the metric is bi-invariant, G is represented by G = (G×G)/∆G as a Riemannian symmetric space with Lie
subspace m0 (see Example 4.2).
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4.2. Riemannian symmetric spaces

Let (M, g) be a Riemannian manifold. At a point p ∈M , take a linear isometry L of TpM and a normal
neighborhood U of p such that expp is defined on L(exp−1

p (U)). Then the polar map ΨL is defined by ([182,
p. 221]):

ΨL = expp ◦L ◦ exp−1
p : U →M. (4.3)

The polar map ζp of L = −Ip is called the local geodesic symmetry (or local geodesic reflection) of M at p.
A Riemannian manifold (M, g) is said to be locally symmetric if its local geodesic symmetries are isometric.

Proposition 4.3. A Riemannian manifold (M, g) is locally symmetric if and only if its Riemannian curvature R is
parallel with respect to Levi-Civita connection.

A Riemannian manifold (M, g) is said to be a Riemannian symmetric space if at each point p ∈M , there is a
unique isometry ζp with differential map (dζp)p = −Ip and fixes p. The isometry ζp is called the global symmetry
at p and is the unique extension of local geodesic symmetry. One can see that Riemannian symmetric spaces
are complete and locally symmetric.

Proposition 4.4. A complete, simply connected locally symmetric Riemannian manifold is a Riemannian symmetric
space.

Moreover Riemannian symmetric spaces are homogeneous Riemannian spaces.
Let M be a Riemannian symmetric space with global symmetries {ζp}p∈M . Since M is a homogeneous

Riemannian space, G = Iso◦(M) acts isometrically and transitively on M . Then we obtain an involutive Lie
group automorphism σ of G by

σ(a) = ζoaζo, a ∈ G,

where ζo is the global symmetry at the origin o. The isotropy subgroup H at o satisfies G◦
σ ⊂ H ⊂ Gσ, where

Gσ = {a ∈ G | σ(a) = a}

and its identity component is denoted by G◦
σ. The isotropy algebra h is characterized by the differential map

dσ as
h = {X ∈ g | dσ(X) = X}.

Since dσ has eigenvalues ±1, we get the eigenspace decomposition

g = h⊕m, m = {X ∈ g | dσ(X) = −X}.

The linear subspace m is identified with ToM and the eigenspace decomposition g = h⊕m is reductive. Thus
G/H is a reductive homogeneous Riemannian space. Moreover [m,m] ⊂ h holds. This condition implies that
G/H is naturally reductive with respect to m.

The Riemannian curvatureR of a Riemannian symmetric spaceM = G/K is described as [145, Theorem 2.2]:

R(X,Y )Z = −[[X,Y ], Z], X, Y, Z ∈ m.

We recall the following notion from O’Neill’s textbook [182, p. 317]:

Definition 4.2. A triplet (G/H, σ, ⟨·, ·⟩) is called a symmetric data if

1. H is a closed subgroup of a connected Lie group G.

2. σ is an involutive Lie group automorphism of G satisfying G◦
σ ⊂ H ⊂ Gσ.

3. ⟨·, ·⟩ is an Ad(H)-invariant inner product on the (−1)-eigenspace m of dσ : g→ g.

We obtain a symmetric data from a Riemannian symmetric spaceM = G/H . Note that the isotropy subgroup
H is compact.

Conversely from a given symmetric date, we obtain a Riemannian symmetric space M = G/H . On the other
hand, we recall the following definition form Helgason’s textbook [92, p. 209]:

Definition 4.3. A pair (G,H) is said to be a Riemannian symmetric pair if

1. H is a closed subgroup of a connected Lie group G.
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2. σ is an involutive Lie group automorphism of G satisfying G◦
σ ⊂ H ⊂ Gσ.

3. The group Ad(H) is a compact subgroup of GL(g).

The third condition of Definition 4.3 implies the existence of inner product satisfying the third condition
of Definition 4.2. Note that the notion of Riemannian symmetric pair in the sense of Takeuchi [129, part II] is
the symmetric data in the sense of O’Neill (Definition 4.2). On the other hand, Definition 4.2 is valid also for
indefinite semi-Riemannian symmetric spaces.

For more information on Riemannian symmetric spaces, we refer to [92] and [145].

Example 4.2 (Lie groups). LetG be a connected Lie group equipped with a bi-invariant metric. Then the product
Lie group G×G acts transitively and isometrically on G via the action (3.2). One can see that (G×G)/∆G is
a Riemannian symmetric space with Lie subspace m0. The Levi-Civita connection coincides with ∇(0) (see
Proposition 4.2).

The notion of invariant connection as well as that of canonical connection are generalized to any principal
bundles over homogeneous spaces G/H . One can see that canonical connections are Yang-Mills [130].

Remark 4.1. Some generalizations of local symmetry have been proposed. Here we mention two examples. A
Riemannian manifold (M, g) is said to be

• semi-symmetric if R ·R = 0. Here R ·R is the derivative of R by R itself;

(R ·R)(U, V,W ;Y,X) = (R(X,Y )R)(U, V )W,

(R(X,Y )R)(U, V )W = R(X,Y )R(U, V )W −R(R(X,Y )U, V )W −R(U,R(X,Y )V )W −R(U, V )R(X,Y )W.

Obviously local symmetry implies the semi-symmetry. The tensorial equation R ·R = 0 has a clear
differential geometric meaning. At a point p ∈M of a Riemannian manifold M , denote by php the linear
subspace of so(TpM) spanned by the set {Rp(X,Y ) |X,Y ∈ TpM}. Then the semi-symmetry condition
R ·R = 0 is equivalent to that php is a Lie subalgebra of so(TpM). The connected Lie group pHp with Lie
algebra php is called the primitive holonomy group at p (in the sense of Z. I. Szabó).

• pseudo-symmetric (in the sense of R. Deszcz) if there exists a smooth function L such that

R(X,Y ) ·R = L(X ∧ Y ) ·R

for all vector fields on M .

The semi-symmetry is equivalent to the pseudo-symmetry with L = 0. It should be remarked that pseudo-
symmetry as well as semi-symmetry do not implies the (local) homogeneity. Indeed there exist non-
homogeneous examples. Pseudo-symmetric almost contact manifolds are studied in [48, 49, 51]. See also [98].

Here we would like to point out that all the eight model spaces of Thurston geometry are pseudo-symmetric.
In particular, Nil3 and S̃L2R and Sol3 are pseudo-symmetric, but not semi-symmetric.

4.3. Riemannian symmetric space representations of space forms

In this subsection we exhibit Riemannian symmetric space representations of space forms.

Example 4.3 (The Euclidean space). Let En the Euclidean n-space with natural coordinates (x1, x2, . . . , xn) and
Euclidean inner product

(x|y) = x1y1 + x2y2 + · · ·+ xnyn.

The full isometry group E(n) is the semi-direct product group E(n) = O(n)⋉Rn, where

O(n) = {A ∈ MnR | tAA = En}

is a compact Lie group called the orthogonal group. The orthogonal group has two connected components:

O+(n) = {A ∈ O(n) | detA = 1}, O−(n) = {A ∈ O(n) | detA = −1}.

The identity component of O(n) is
SO(n) = SLnR ∩O(n) = O+(n)
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and called the rotation group. Note that the Lie algebra o(n) of O(n) coincides with the Lie algebra so(n) of
SO(n):

so(n) = {X ∈ MnR | tX = −X}.
The Lie group E(n) is called the Euclidean group. The Euclidean group acts isometrically and transitively on En

by the action:
(A, b)x = Ax+ b, (A, b) ∈ O(n)⋉Rn, x ∈ En.

The identity component SE(n) = SO(n)⋉Rn of E(n) is called the Euclidean motion group. Here we identify E(n)
with the following linear Lie group:{(

A b
t0 1

) ∣∣∣∣ A ∈ O(n), b ∈ Rn

}
⊂ GLn+1R.

Then the isotropy subgroup of E(n) at o = 0 is{(
A 0
t0 1

) ∣∣∣∣ A ∈ O(n)

}
∼= O(n).

Thus we obtain the homogeneous space representation

En = E(n)/O(n) = SE(n)/SO(n).

The Lie algebra of SE(n) is

se(n) =

{(
X x
t0 0

) ∣∣∣∣ X ∈ so(n), x ∈ Rn

}
The isotropy algebra is given by {(

X 0
t0 0

) ∣∣∣∣ X ∈ so(n)

}
∼= so(n).

Let us take a linear subspace

m =

{(
On x
t0 0

) ∣∣∣∣ x ∈ Rn

}
.

Then the decomposition se(n) = so(n)⊕m is reductive and satisfies [m,m] ⊂ so(n). Thus En = SE(n)/SO(n) is
a Riemannian symmetric space representation of En.

Example 4.4 (The sphere). The orthogonal group O(n+ 1) acts isometrically and transitively on the n-sphere

Sn(c2) = {x = (x1, x2, . . . , xn+1) ∈ En+1 | x21 + x22 + · · ·+ x2n+1 = 1/c2}

of curvature c2 > 0 (c > 0) via the usual matrix multiplication. The isotropy subgroup of O(n+ 1) at o =
(0, . . . , 0, c) is {

A =

(
A◦ 0
t0 1

) ∣∣∣∣ A◦ ∈ O(n)

}
∼= O(n).

Moreover the isotropy subgroup of SO(n+ 1) at o = (0, 0, . . . , c) is{
A =

(
A◦ 0
t0 1

) ∣∣∣∣ A◦ ∈ SO(n)

}
∼= SO(n).

Hence we obtain homogeneous space representations

Sn(c2) = O(n+ 1)/O(n) = SO(n+ 1)/SO(n).

The Lie algebra so(n+ 1) is parametrized as

so(n+ 1) =

{
X =

(
X◦ x
−tx 0

) ∣∣∣∣ X◦ ∈ so(n), x ∈ Rn

}
.

The isotropy algebra is given by {
X =

(
X◦ 0
0 0

) ∣∣∣∣ X◦ ∈ so(n)

}
∼= so(n).
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The Killing form Bso(n+1) is given by

Bo(n+1)(X,Y ) = (n− 1)tr(XY )

and negative definite on so(n+ 1).
Let us introduce an inner product

⟨X,Y ⟩ = − 1

2c
tr(XY ) =

1

c

{
−1

2
tr(X◦Y ◦) + (x|y)

}
on so(n+ 1). The orthogonal complement m of the isotropy algebra in so(n+ 1) is given by

m =

{
X =

(
0 x
−tx O

) ∣∣∣∣ x ∈ Rn

}
.

The tangent space ToSn(c2) is expressed as

ToSn(c2) = {(x, 0) | x ∈ Rn} ⊂ ToEn+1 = En+1.

We identify the tangent space ToSn(c2) with m via the correspondence:

(x, 0) 7−→
(

0 −tx
x O

)
.

The orthogonal splitting so(n+ 1) = so(n)⊕m is reductive and sasisfies [m,m] ⊂ so(n). Thus Sn(c2) = SO(n+
1)/SO(n) is a Riemannian symmetric space. The involution σ corresponding to SO(n+ 1)/SO(n) is

σ(A) = Ad(En,1)A, En,1 = diag(1, . . . , 1,−1).

The action of the isotropy group on m is given explicitly by

Ad

(
A◦ 0
t0 0

)
X =

(
O A◦x

−t(A◦x) 0

)
.

For any vectors X , Y ∈ m, we have

[X,Y ] =

(
−xty + ytx A0

t0 0

)
.

Hence the Riemannian curvature is

R(X,Y )Z =

(
O (x ∧ y)z

−t{(x ∧ y)z} 0

)
.

This shows that
R(X,Y )Z = c2(X ∧ Y )Z, X, Y, Z ∈ ToSn(c2).

Example 4.5 (The unit tangent sphere bundle of Sn). The unit tangent sphere bundle USn of the unit n-sphere
Sn is described as

USn = {(x,v) ∈ En+1 × En+1 | (x|x) = (v|v) = 1, (x|v) = 0}.

The rotation group acts transitively on USn via the action:

A(x,v) = (Ax, Av).

The isotropy group at (o, (0, 0, . . . , 0, 1, 0)) is{
A =

(
A◦◦ O2,n−1

On−1,2 E2

) ∣∣∣∣ A◦◦ ∈ SO(n− 1)

}
∼= SO(n− 1)

with Lie algebra {
X =

(
X◦◦ O2,n−1

On−1,2 O2

) ∣∣∣∣ X◦◦ ∈ so(n− 1)

}
∼= so(n− 1).
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With respect to the inner product on so(n+ 1), the orthogonal complement p = so(n− 1)⊥ is given by

p =

{
X =

(
On−2 Y
−tY sJ

) ∣∣∣∣ s ∈ R, Y ∈ M2,n−1R
}
, J =

(
0 −1
1 0

)
∈ so(2).

One can see that USn = SO(n+ 1)/SO(n− 1) is naturally reductive with respect to p. In particular, we know
that

US2 = SO(3) = RP 2.

Namely US2 is identified with the rotation group SO(3) equipped with a bi-invariant metric of curvature 1/4
and hence it is isometric to the real projective 3-space RP 3 of curvature 1/4 (see Klingenberg-Sasaki [141] and
[115]).

Next, let Geo(Sn) be the space of all oriented geodesics in Sn. Then as is well known, Geo(Sn) is identified
with the Grassmannian manifold G̃r2(En+1) of oriented 2-planes in En+1 in the following manner:

G̃r2(En+1) ∋W ←→W ∩ Sn ∈ Geo(Sn).

The rotation group acts transitively on G̃r2(En+1) via the action:

A(x ∧ v) = (Ax) ∧ (Av).

The isotropy group at the plane spanned by o = (0, 0, . . . , 0, 1) and (0, 0, . . . , 0, 1, 0) is{
A =

(
A◦◦ O2,n−1

On−1,2 R(θ)

) ∣∣∣∣ A◦◦ ∈ SO(n− 1), R(θ) ∈ SO(2)

}
∼= SO(n− 1)× SO(2).

Thus the Grassmannian manifold G̃r2(En+1) is represented by G̃r2(En+1) = SO(n+ 1)/SO(n− 1)× SO(2) as
a Hermitian symmetric space. The natural projection USn → Geo(Sn) = G̃r2(En+1) defines a principal circle
bundle

SO(n+ 1)/SO(n− 1)→ SO(n+ 1)/SO(n− 1)× SO(2).

Moreover, with respect to the canonical contact form of USn, this fibering is the Boothby-Wang fibering. By
performing a suitable normalization of the almost contact Riemannian structure USn becomes a homogeneous
Sasakian manifold, especially it is a Sasakian φ-symmetric space (see Section 9). With respect to the normalized
SO(3)-invariant metric, US2 is identified with the real projective plane RP 2 equipped with a Riemannian metric
of constant curvature 1.

Example 4.6 (The hyperbolic space). Here we explain the hyperboloid model of the hyperbolic space.
Let us denote by E1,n the Minkowski (n+ 1)-space which is realized as the Cartesian (n+ 1)-space Rn+1

equipped with the scalar product

⟨x,y⟩ = −x0y0 + x1y1 + · · ·+ xnyn.

The full isometry group E(1, n) of E1,n is the semi-direct product O(1, n)⋉Rn+1, where

O(1, n) = {A ∈ Mn+1R | tAE1,nA = E1,n}, E1,n = diag(−1, 1, . . . , 1)

is called the Lorentz group. For a matrix A = (aij)0≤i,j≤n ∈ O(1, n), we set

ATime = a00, ASpace = (aij)1≤i,j≤n.

The Lorentz group O(1, n) has four connected components:

O++(1, n) ={A ∈ O(1, n) |ATime > 0, detASpace > 0},
O+−(1, n) ={A ∈ O(1, n) |ATime > 0, detASpace < 0},
O−+(1, n) ={A ∈ O(1, n) |ATime < 0, detASpace > 0},
O−−(1, n) ={A ∈ O(1, n) |ATime < 0, detASpace < 0}.

One can see that the identity component is O++(1, n). Next we set SO(1, n) = SLn+1R ∩O(1, n). Then we get
([182, p. 239]):

SO(1, n) = O++(1, n) ∪O−−(1, n).
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Moreover O++(1, n) ∪O+−(1, n) and O++(1, n) ∪O−+(1, n) are Lie subgroups of O(1, n).
The hyperbolic n-space Hn(−c2) of curvature −c2 < 0(c > 0) is realized as the connected component

{x ∈ E1,n | ⟨x,x⟩ = −1/c2, x0 > 0}

of the hyperboloid of two sheets. The full isometry group Iso(Hn+1) is given by ([182, Corollary 9]):

Iso(Hn) = O++(1, n) ∪O+−(1, n).

Thus the identity component is Iso◦(Hn) = O++(1, n). The identity component SO+(1, n) := O++(1, n) acts
isometrically and transitively on Hn(−c2). The isotropy subgroup at o = (c, 0, . . . , 0) is{

A =

(
1 t0
0 A◦

) ∣∣∣∣ A◦ ∈ SO(n)

}
which is isomorphic to the rotation group SO(n). Thus we have a homogeneous space representation:

Hn(−c2) = SO+(1, n)/SO(n).

Let us perform the Iwasawa decomposition of SO+(1, n) as SO+(1, n) = SO(n)AN , where A and N are abelian
part and nilpotent part of SO+(1, n), respectively. The Lie subgroup S = AN is solvable and acts simple
transitively on Hn(−c2). Thus Hn(−c2) is identified with the solvable Lie group S = AN equipped with a left
invariant metric. Note that dimA = 1 and dimN = n− 1.

The Lie algebra so(1, n) is expressed as

so(1, n) =

{
X =

(
0 tx
x X◦

) ∣∣∣∣ X◦ ∈ so(n), x ∈ Rn

}
.

We introduce a scalar product ⟨·, ·⟩ on so(1, n) by

⟨X,Y ⟩ = 1

2c
tr(XY ) =

1

2c
{2txy + tr(X◦Y ◦)}.

The isotropy algebra is {
X =

(
0 t0
0 X◦

) ∣∣∣∣ X◦ ∈ so(n)

}
∼= so(n)

is a non-degenerate linear subspace of so(1, n). Thus we can take

m = so(n)⊥ = {X ∈ so(1, n) | ⟨X,Y ⟩ = 0, ∀Y ∈ so(n)} =
{(

0 tx
x O

) ∣∣∣∣ x ∈ Rn

}
.

On can see that m is spacelike, i.e., the restriction of the scalar product on m is positive definite. The orthogonal
decomposition so(1, n) = so(n)⊕m is reductive. Under the identification m = ToHn(−c2), the induced inner
product on m coincides with the one induced from the Riemannian metric of Hn(−c2). Moreover [m,m] ⊂ so(n)
holds. Thus Hn(−c2) = SO(1, n)/O(n) = SO+(1, n)/SO(n) with m = so(n)⊥ is a Riemannian symmetric space.

Olmos and Reggiani [176, 177] proved the uniqueness of canonical connections for hyperbolic space
Hn(−c2) for n ̸= 3. More precisely represent Hn(−c2) as Hn(−c2) = SO+(1, n)/SO(n) as a naturally reductive
homogeneous space. Then the Levi-Civita connection is the only canonical connection associated to this
representation. In other words, the Levi-Civita connection is the only Ambrose-Singer connection associated
to the naturally reductive Hn(−c2) for n ̸= 3. The hyperbolic 3-space H3(−c2) admits exactly a line of canonical
connections. Compare [176, Remark 6.1] and [177, Remark 2.5] with Abe’s classification (Proposition 16.2).
Homogeneous Riemannian structures on Hn with n > 3 are investigated in [40, 41, 186].

Example 4.7 (The unit tangent sphere bundle of Hn). The unit tangent sphere bundle UHn of the hyperbolic
n-space of constant curvature −1 is described as

UHn = {(x,v) ∈ E1,n × E1,n | − ⟨x,x⟩ = ⟨v,v⟩ = 1, ⟨x,v⟩ = 0, x0 > 0}.

The Lorentz group acts transitively on UHn via the action:

A(x,v) = (Ax, Av).
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The isotropy group at (o, (0, 1, . . . , 0)) is{
A =

(
E2 On−1,2

O2,n−1 A◦◦

) ∣∣∣∣ A◦◦ ∈ SO(n− 1)

}
∼= SO(n− 1)

with Lie algebra {
X =

(
O2 On−1,2

O2,n−1 X◦◦

) ∣∣∣∣ X◦◦ ∈ so(n− 1)

}
∼= so(n− 1).

With respect to the scalar product on so(1, n), the orthogonal complement p = so(n− 1)⊥ is given by

p =

X =

 0 t tx
t 0 ty
x −y 0

 ∣∣∣∣∣∣ t ∈ R, x,y ∈ Rn−1

 .

The scalar product on so(1, n) induces an SO+(1, n)-invariant semi-Riemannian metric of signature
(−,−,−,+,+) on UHn. One can see that UHn = SO+(1, n)/SO(n− 1) is naturally reductive with respect to
p (see [59]).

Next, let Geo(Hn) be the space of all oriented geodesics in Hn. Then as is well known, Geo(Hn) is identified
with the Grassmannian manifold G̃r1,1(E1,n) of oriented timelike planes in E1,n in the following manner:

G̃r1,1(E1,n) ∋W ←→W ∩Hn ∈ Geo(Hn).

The Lorentz group acts transitively on G̃r1,1(E1,n) via the action:

A(x ∧ v) = (Ax) ∧ (Av).

The isotropy group at the plane spanned by o = (1, 0, . . . , 0) and (0, 1, 0, . . . , 0) is{
A =

(
A◦ O2,n−1

On−1,2 A◦◦

) ∣∣∣∣ A◦ ∈ SO(1, 1), A◦◦ ∈ SO(n− 1)

}
∼= SO(1, 1)× SO(n− 1).

Thus the Grassmannian manifold G̃r1,1(E1,n) is represented by G̃r1,1(E1,n) = SO+(1, n)/SO(1, 1)× SO(n− 1)

as para-Kähler symmetric space of neutral signature. The natural projection UHn → Geo(Hn) = G̃r1,1(E1,n)
defines a principal line bundle

SO+(1, n)/SO(n− 1)→ SO+(1, n)/SO(1, 1)× SO(n− 1).

In contact Riemannian geometry, another Riemannian metric (Sasaki-lift metric) is introduced on UHn. See
Section 5.8 and Section 13.2.

Remark 4.2 (SE(1, 1)). In the Minkowski plane E1,1 = (R2(x0, x1),−dx20 + dx21), we may take a null coordinate
system (u, v) defined by

u := x0 + x1, v := −x0 + x1.

Then the scalar product is rewritten as du⊙ dv = (du⊗ dv + dv ⊗ du)/2. With respect to the null coordinate
system, the identity component of the isometry group is expressed as{((

et 0
0 e−t

)
,

(
x
y

)) ∣∣∣∣ x, y, t ∈ R
}
∼=


 et 0 x

0 e−t y
0 0 1

 ∣∣∣∣∣∣ x, y, t ∈ R

 . (4.4)

4.4. Ambrose-Singer connections

Ambrose and Singer [5] gave an infinitesimal characterization of local homogeneity of Riemannian manifolds.
To explain their characterization we recall the following notion:

Definition 4.4. A homogeneous Riemannian structure S on (M, g) is a tensor field of type (1, 2) which satisfies

∇̃g = 0, ∇̃R = 0, ∇̃S = 0. (4.5)

Here ∇̃ is a linear connection on M defined by ∇̃ = ∇+ S. The linear connection ∇̃ is called the Ambrose-Singer
connection.
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Note that ∇̃R = 0 is equivalent to the condition ∇̃R̃ = 0, where R̃ is the curvature of ∇̃.
Let (M, g) = G/H be a homogeneous Riemannian space. Here G is a connected Lie group acting transitively

on M as a group of isometries. Without loss of generality we can assume that G acts effectively on M . The
subgroup H is the isotropy subgroup of G at a point o ∈M which will be called the origin of M . Denote by
g and h the Lie algebras of G and H , respectively. Then there exists a linear subspace m of g which is Ad(H)-
invariant. If H is connected, then Ad(H)-invariant property of m is equivalent to the condition [h,m] ⊂ m, i.e.,
G/H is reductive. Then as we saw in the preceding section, TpM is identified with m via the isomorphism
τ ♮(p, ·):

τ ♮(p, ·) : m ∋ X 7−→ X♮
p ∈ TpM.

Then the canonical connection ∇̃ = ∇c is given by

(∇̃X♮Y ♮)o = −([X,Y ]m)
♮
o, X, Y ∈ m.

One can see the difference tensor field S = ∇̃ − ∇ is a homogeneous Riemannian structure. Thus every
homogeneous Riemannian space admits at least one homogeneous Riemannian structure.

Conversely, let (M,S) be a simply connected and complete Riemannian manifold equipped with a
homogeneous Riemannian structure. Fix a point o ∈M and put m = ToM . Denote by R̃ the curvature of the
Ambrose-Singer connection ∇̃. Then the holonomy algebra h of ∇̃ the Lie subalgebra of the Lie algebra so(m, go)

generated by the curvature operators R̃(X,Y ) with X , Y ∈ m, since ∇̃R̃ = 0 and ∇̃T̃ = 0 (see [149, p. 178, B9]).
Here T̃ is the torsion tensor field of ∇̃. Now we define a Lie algebra structure on the direct sum g = h⊕m by

[U, V ] =UV − V U,
[U,X] =U(X),

[X,Y ] =− R̃(X,Y )− S(X)Y + S(Y )X

for all X , Y ∈ m and U , V ∈ h. The Lie algebra g is the transvection algebra of (M, ∇̃) (see [222, pp. 31–32] and
[?]).

Now let G̃ be the simply connected Lie group with Lie algebra g. Then M is a coset manifold G̃/H̃ , where H̃
is a Lie subgroup of G̃ with Lie algebra h. Let Γ be the set of all elements in G which act trivially on M . Then Γ

is a discrete normal subgroup of G̃ and G = G̃/Γ acts transitively and effectively on M as an isometry group.
The isotropy subgroup H of G at o is H = H̃/Γ. Hence (M, g) is a homogeneous Riemannian space with coset
space representation M = G/H .

Theorem 4.1 ([5]). A Riemannian manifold (M, g) with a homogeneous Riemannian structure S is locally homogeneous.

Definition 4.5. Let (M, g, S) and (M ′, g′, S′) be homogeneous Riemannian spaces with homogeneous
Riemannian structures. Then (M, g, S) and (M ′, g′, S′) are said to be isomorphic if there exits an isometry
f :M →M ′ satisfying f∗S′ = S, that is

df(S(X)Y ) = S′(df(X))df(Y )

for all X , Y ∈ Γ (TM).

Theorem 4.2 ([222]). Let (M, g) be a homogenous Riemannian space and G, G′ connected Lie subgroups of the identity
component Iso◦(M, g) of the full isometry group acting transitively onM . Assume that the Lie algebras g ofG and g′ ofG′

has reductive decompositions g = h⊕m and g′ = h′ ⊕m′, respectively. Then the homogeneous Riemannian structures
S determined by g = h⊕m and S′ determined by g′ = h′ ⊕m′ are isomorphic if and only if there exits a Lie algebra
isomorphism F : g→ g′ such that

F (h) = h′, F (m) = m′

and F |m is a linear isometry.

Note that there exist locally homogeneous Riemannian manifolds which are not locally isometric to any
homogeneous Riemannian spaces. Indeed Kowalski gave explicit examples in [150] (see also [189]). Bazdar
and Teleman gave a reformulation of homogeneous Riemannian structure [9].
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4.5. The eight classes of homogeneous Riemannian structures

Let (M, g) be a Riemannian manifold and S a homogeneous Riemannian structure on M . Then the metrical
condition ∇̃g = 0 for the Ambrose-Singer connection ∇̃ = ∇+ S is rewritten as

S♭(X,Y, Z) + S♭(X,Z, Y ) = 0 (4.6)

for all vector fields X , Y and Z. Here S♭ is the covariant form of S.
Tricerri and Vanhecke [222] obtained the following decompositions of all possible types of homogeneous

Riemannian structures into eight classes (Table 2):

Classes Defining conditions
Symmetric S = 0
T1 S♭(X,Y, Z) = g(X,Y )ω(Z)− g(Z,X)ω(Y ) for some 1-form ω
T2 S

X,Y,Z
S♭(X,Y, Z) = 0 and c12(S♭) = 0

T3 S♭(X,Y, Z) + S♭(Y,X,Z) = 0
T1 ⊕ T2 S

X,Y,Z
S♭(X,Y, Z) = 0

T1 ⊕ T3 S♭(X,Y, Z) + S♭(Y,X,Z) = 2g(X,Y )ω(Z)− g(Z,X)ω(Y )− g(Y,Z)ω(X)
for some 1-form ω

T2 ⊕ T3 c12(S♭) = 0
T1 ⊕ T2 ⊕ T3 no conditions

Table 2. The eight classes

Here S
X,Y,Z

S♭ denotes the cyclic sum of S♭, i.e.,

S
X,Y,Z

S♭(X,Y, Z) = S♭(X,Y, Z) + S♭(Y, Z,X) + S♭(Z,X, Y ).

Next c12 denotes the contraction operator in (1, 2)-entries;

c12(S♭)(Z) =

n∑
i=1

S♭(ei, ei, Z),

where {e1, e2, . . . , en} is a local orthonormal frame field.
A homogeneous Riemannian structure S is said to be of linear type if it is of type T1 [36].
A reductive homogeneous Riemannian manifold M = G/H is said to be cyclic ([77]) if there exists a Lie

subspace m satisfying
S

X,Y,Z
⟨[X,Y ]m, Z⟩ = 0, X, Y, Z ∈ m.

If in addition G is unimodular, then M is said to be traceless cyclic. On can see that M = G/H is cyclic [resp.
traceless cyclic] with respect to m if and only if corresponding homogeneous Riemannian structure is of
type T1 ⊕ T2. [type T2]. Kowalski and Tricerri classified traceless cyclic homogeneous Riemannian spaces of
dimension less than 5. Their classification is extended to cyclic homogeneous Riemannian spaces of dimension
less than 5 in [76, 77].

In addition, Gadea, González-Dávila, and Oubiña proved the following fact.

Theorem 4.3 ([78]). A homogeneous spin Riemannian manifold has a Dirac operator like that on a Riemannian
symmetric spin space if and only if it is traceless cyclic.

Early studies on homogeneous Riemannian structures of type T1 ⊕ T3, T3 and T1 ⊕ T2, we refer to [183],
[184, 185] and [187], respectively.

4.6. Homogeneous Riemannian structures on Riemannian 2-manifolds

In this subsection we collect results on homogeneous Riemannian structures on homogeneous Riemannian
2-manifolds for later use.

First we recall the notion of homogeneous almost Hermitian structures.
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Definition 4.6. A Hermitian manifold (N,h, J) is said be a locally homogeneous Hermitian manifold if for each
p, q ∈ N , there exits a local holomorphic isometry which sends p to q.

Definition 4.7. A Hermitian manifold (N,h, J) is said be a homogeneous Hermitian manifold if there exits a Lie
group G of holomorphic isometries acts transitively on M .

The following fundamental fact is due to Sekigawa and generalized by Kiričhenko for more general
geometric structures (For a detailed proof of the so-called Sekigawa-Kiričhenko theorem, see [36, §2.3]).

Theorem 4.4 ([207, 142]). Let N = (G/H, h, J) be a homogeneous almost Hermitian manifold with Levi-Civita
connection ∇ and the canonical connection ∇̃. Then S = ∇̃ − ∇ is a homogeneous Riemannian structure satisfying
∇̃J = 0.

Conversely, an almost Hermitian manifold (N,h, J) with a homogeneous Riemannian structure S satisfying ∇̃J = 0

for ∇̃ = ∇+ S, then N is locally homogeneous almost Hermitian manifold.

A homogeneous Riemannian structure S satisfying ∇̃J = 0 for ∇̃ = ∇+ S is called a homogeneous almost
Hermitian structure. In case N is Hermitian [resp. Kähler], a homogeneous almost Hermitian structure S is
called a homogeneous Hermitian structure [resp. homogeneous Kähler structure].

Now let us turn our attention to homogeneous Riemannian 2-manifolds. The assumption dimension 2 implies
that possible types of homogeneous Riemannian structures are trivial or type T1.

Homogeneous Riemannian 2-manifolds with non-trivial homogenous Riemannian structure are classified as
follows:

Theorem 4.5 ([222]). Let S be a non-trivial homogeneous Riemannian structure on a Riemannian 2-manifold, then M
is of constant negative curvature.

Theorem 4.6 ([222]). The only homogeneous Riemannian structures on the 2-sphere S2(c2) of curvature c2 > 0 and
Euclidean plane E2 are trivial one.

Let us exhibit explicit expression of homogeneous Riemannian structures on 2-dimensional space forms.

Example 4.8 (The 2-sphere). In Example 4.4, we exhibit the Riemannian symmetric space representation of
Sn(c2). Here we investigate homogeneous Riemannian structures on

S2(c2) = {x = (x1, x2, x3) ∈ E3 | x21 + x22 + x23 = 1/c2}.

We take a basis
Ē1 = E32 − E23, Ē2 = E13 − E31, Ē3 = E21 − E12

of so(3). Then the commutation realtions are

[Ē1, Ē2] = Ē3, [Ē2, Ē3] = Ē1, [Ē3, Ē1] = Ē2.

The Lie algebra so(3) is parametrized as
 0 −y3 y2

x3 0 −y1
−y2 y2 0

 ∣∣∣∣∣∣ y1, y2, y3 ∈ R

 .

The isotropy subgroup H of SO(3) at ō = (0, 0, c) is

H =


 cos θ − sin θ 0

sin θ cos θ 0
0 0 1

 ∣∣∣∣∣∣ 0 ≤ θ < 2π

 ∼= SO(2).

The isotropy algebra is

h̄ =


 0 −y3 0

y3 0 0
0 0 0

 ∣∣∣∣∣∣ y3 ∈ R

 ∼= so(2).
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Let us look for Lie subspace. Since h is spanned by Ē3, the only possible Lie subspace m is

m =


 0 0 y2

0 0 −y1
−y2 y1 0

 ∣∣∣∣∣∣ y1, y2 ∈ R

 .

One can see that [m,m] ⊂ h. We identify the tangent space

ToS2(c2) = {(y1, y2, 0) | y1, y2 ∈ R}

via the correspondence

(y1, y2, 0) 7−→

 0 0 y2
0 0 −y1
−y2 y1 0

 .

Thus S2(c2) = SO(3)/SO(2) is a Riemannian symmetric space. This fact confirms that the only homogeneous
Riemannian structure of S2(c2) is the trivial one S = 0.

On the tangent space
ToS2(c2) ∼= {y1Ē1 + y2Ē2 | y1, y2 ∈ R}

Next we define a linear endomorphism Jo on m by

JĒ1 = Ē2, JĒ2 = −Ē2.

Then J gives an orthogonal complex structure on S2(c2). The resulting Kähler manifold (S2, g, J) is Hermitian
symmetric. If we regard ToS2(c2) as a linear subspace of E3, then the complex structure J is rewritten as

Jo(y, 0) = (0, 0, 1)× (y, 0).

Here × is the vector product of E3 with respect to the orientation determined by dv = dx1 ∧ dx2 ∧ dx3.

Remark 4.3. The Cartesian 3-space R3 is isomorphic to the Lie algebra so(3) via the isomorphism ι : R3 → so(3);

ι(x) =

 x1
x2
x3

 =

 0 −x3 x2
x3 0 −x1
−x2 x2 0

 =: X. (4.7)

Then we have
ι(x× y)z = (x ∧ y)z = z × (x× y),

ι(x× y) = [ι(x), ι(y)].

Hence we have
[X,Y ]z = (x ∧ y)z, X = ι(x), Y = ι(y).

The Euclidean inner product (·|·) corresponds to the inner product

(X|Y ) = −1

2
tr(XY ), X, Y ∈ so(3).

Under the identification E3 = so(3), S2(c2) is identified with

{X ∈ so(3) | tr(X2) = −2c2}.

The action of SO(3) on S2(c2) is rewritten as

Ad : SO(3)× S3(c2)→ S3(c2); (A,X) 7−→ Ad(A)X = AXA−1.

Example 4.9 (Euclidean plane). On the Euclidean plane E2, the Euclidean motion group SE(2) = SO(2)⋉R2

acts isometrically and transitively. The isotropy subgroup H at ō = (0, 0) is SO(2). The Lie algebra se(2) and the
isotropy algebra h are given by

se(2) =


 0 u3 u1
−u3 0 u2
0 0 0

 ∣∣∣∣∣∣ u1, u2, u3 ∈ R

 , h =


 0 u3 0
−u3 0 0
0 0 0

 ∣∣∣∣∣∣ u3 ∈ R

 .
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The only possible Lie subspace m is

m =


 0 0 u1

0 0 u2
0 0 0

 ∣∣∣∣∣∣ u1, u2, u3 ∈ R

 .

Thus SE(2)/SO(2) is a Riemannian symmetric space corresponding to the trivial homogeneous Riemannian
structure. The Lie subspace m is a Lie subalgebra of se(2). The corresponding simply connected Lie group is

 1 0 x
0 1 y
0 0 1

 ∣∣∣∣∣∣ x, y, z ∈ R


which is isomorphic and isometric to the abelian Lie group (E2(x, y),+). Thus E2 is interpreted also as
E2/{0}. The homogeneous Riemannian structure of E2/{0} is the trivial one S = 0. The transvection algebra
determined by S = 0 is m. Thus S = 0 corresponds to both SE(2)/SO(2) and E2/{0}.

Remark 4.4. Let G be a Lie group equipped with a bi-invariant Riemannian metric. Then G is a homogeneous
space (G×G)/∆G under the action (3.2). However, in case G is abelian, we need to pay attention to the
homogeneous space representation of G. Indeed if G = (E2,+), then we the action (3.2) is described as

(a, b) · x = a+ x− b.

However we know that dim Iso◦(E2) = 3. On the other hand, dim(E2 × E2) = 4. Thus (E2 × E2)/∆E2 is not the
correct homogeneous space representation for (E2,+). In case if we regard E2 as an abelian Lie group, the
correct homogeneous space representation is E2 = E2/{0}.

Here we exhibit homogeneous Riemannian structures on the hyperbolic plane H2(−c2) of curvature−c2 < 0.
We realize H2(−c2) as the upper half plane:

H2(−c2) = ({(x, y) ∈ R2 | y > 0}, ḡ) = ({x+
√
−1y ∈ C | y > 0}, ḡ)

equipped with the Poincaré metric

ḡ =
dx2 + dy2

c2y2
.

We can take a globally defined orthonormal frame field

ē1 = (cy)
∂

∂x
, ē2 = (cy)

∂

∂y
.

Th dual coframe field Θ̄ = {ϑ̄1, ϑ̄2} is given by

ϑ̄1 =
dx

cy
, ϑ̄2 =

dy

cy
.

Since
dϑ̄1 = c ϑ̄1 ∧ ϑ̄2, dϑ̄2 = 0,

the connection form ω and curvature form Ω relative to Θ̄ are given by

ω =

(
0 −c ϑ̄1
c ϑ̄1 0

)
, Ω =

(
0 −c2 ϑ̄1 ∧ ϑ̄2

c2 ϑ̄1 ∧ ϑ̄2 0

)
.

The Levi-Civita connection ∇ of ḡ is computed as

∇ē1 ē1 = c ē2, ∇ē1 ē2 = −c ē1, ∇ē2 ē1 = ∇ē2 ē2 = 0.

The complex structure J is determined by

J
∂

∂x
=

∂

∂y
, J

∂

∂y
= − ∂

∂x
.

583 dergipark.org.tr/en/pub/iejg

https://dergipark.org.tr/en/pub/iejg


Homogeneous Riemannian Structures in Thurston Geometries and Contact Riemannian Geometries

Then the Kähler form Ω̄ = ḡ(·, J) is given by

Ω̄ = −2 ϑ̄1 ∧ ϑ̄2 = −2dx ∧ dy

c2y2
.

Note that the area element is
dvg = 2 ϑ̄1 ∧ ϑ̄2 = −Ω̄.

The Kähler form is an exact 2-form with potential

ω̄ = −2

c
ϑ1 = −2dx

c2y
.

The resulting almost Hermitian manifold (H2(−c2), ḡ, J) is Kähler.
The special linear group

SL2R =

{
A =

(
a11 a12
a21 a22

) ∣∣∣∣ a11, a12, a21, a22 ∈ R, a11a22 − a12a21 = 1

}
acts isometrically, holomorphically and transitively on H2(−c2) as the linear fractional transformation group.
The linear fractional action T : SL2R×H2(−c2)→ H2(−c2) is described as

TA(x+
√
−1y) =

(
a11 a12
a21 a22

)
· (x+

√
−1y) = a11(x+

√
−1y) + a12

a21(x+
√
−1y) + a22

.

The isotropy subgroup at
√
−1 = (0, 1) is the rotation group

K = SO(2) =

{(
cos θ sin θ
− sin θ cos θ

) ∣∣∣∣ 0 ≤ θ < 2π

}
.

The Lie algebra sl2R is given by

sl2R =

{
X =

(
x11 x12
x21 x22

)
∈ M2R

∣∣∣∣ trX = x11 + x22 = 0

}
and spanned by the split-quaternionic basis ([94, 96]):

i =

(
0 −1
1 0

)
, j′ =

(
0 1
1 0

)
, k′ =

(
−1 0
0 1

)
. (4.8)

The isotropy algebra is k = Ri. The tangent space TōH2(−c2) at the origin ō = (0, 1) is identified with

m0 = Rj′ ⊕Rk′.

One can see that [m0,m0] ⊂ k. Hence H2(−c2) = SL2R/SO(2) equipped with m0 is a Riemannian symmetric
space. Moreover it is Hermitian symmetric. The corresponding homogeneous Riemannian structure is S̄ = 0.

The hyperbolic plane H2(−c2) admits a non-trivial homogeneous Riemannian structure. To describe it, here
we recall the Iwasawa decomposition of SL2R.

The Iwasawa decomposition of the special linear group SL2R is given explicitly by SL2R = NAK, where

N =

{(
1 x
0 1

)}
, A =

{( √
y 0
0 1/

√
y

) ∣∣∣∣ y > 0

}
and K = SO(2) as mentioned before. Next the polar decomposition of SL2R is the Lie group decomposition

SL2R = S · SO(2), S = NA =

{( √
y x/

√
y

0 1/
√
y

) ∣∣∣∣ x ∈ R, y > 0

}
.

On the solvable part S = NA of SL2R, the Poincaré metric is left invariant on S. Hence S is identified with
H2(−c2). Let us describe the action of SL2R on S.
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Proposition 4.5 (Dressing action). The special linear group SL2R acts on S by the action:

SL2R× S → S; a · z := (az)S , a ∈ SL2R, z ∈ S.

Here we decompose az as az = (az)SO(2)(az)S along the polar decomposition SL2R = SO(2) · S.

Here we describe the dressing action in detail. By performing the polar decomposition, we obtain(
a11 a12
a21 a22

)( √
y x/

√
y

0 1/
√
y

)
=

(
a11
√
y (a11x+ b)/

√
y

a21
√
y (a21x+ d)/

√
y

)
=

( √
ỹ x̃/

√
ỹ

0 1/
√
ỹ

)(
cosϕ sinϕ
− sinϕ cosϕ

)
,

where

x̃ =
(a11x+ a12)(a21x+ a22) + a11a21y

2

(a21x+ a22)2 + (a21y)2
, ỹ =

y

(a21x+ a22)2 + (a21y)2
, eiϕ =

a21x+ a22 −
√
−1a21y√

(a21x+ a22)2 + (a21y)2
√
y
.

One can see that the complex coordinate x+
√
−1y and x̃+

√
−1ỹ are related by the linear fractional

transformation:

x̃+
√
−1ỹ =

a11(x+
√
−1y) + a12

a21(x+
√
−1y) + a22

.

The tangent space TōH2(−c2) is identified with the Lie algebra s of S;

s =

{(
u2 u1
0 −u2

)}
Thus we have a decomposition(

v1 v2
v3 −v1

)
=

(
0 −v3

−(−v3) 0

)
+

(
v1 v2 + v3
0 −v1

)
along sl2R = k+ s. Note that

ē1 = cy
∂

∂x

∣∣∣∣
ō

=

(
0 c
0 0

)
, ē2 = cy

∂

∂y

∣∣∣∣
ō

=

(
c/2 0
0 −c/2

)
.

The solvable Lie part S is isomorphic to the following solvable Lie group

M =

{(
y x
0 1

) ∣∣∣∣ x, y ∈ R, y > 0

}
(4.9)

via the Lie group isomorphism ( √
y x/

√
y

0 1/
√
y

)
7−→

(
y x
0 1

)
.

The Lie algebra ofM is

m =

{(
v u
0 0

) ∣∣∣∣ u, v ∈ R
}
.

The Poincaré metric ḡ is a left invariant metric onM. Moreover {ē1, ē2} is a global left invariant orthonormal
frame field onM. At the origin, we have

ē1
∣∣
o
=

(
0 c
0 0

)
, ē2

∣∣
o
=

(
c 0
0 0

)
.

The homogeneous Riemannian structures on H2(−c2) are classified as follows (see also [80, Corollary 3.3]):

Proposition 4.6 ([222]). Up to isomorphisms, there are two homogeneous Riemannian structures on H2(−c2):

• S̄ = 0: The corresponding coset space representation is

H2 = SL2R/SO(2) = SO+(1, 2)/SO(2).
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• The nontrivial homogeneous structure S̄ of type T1 given by

S̄(X)Y = −c{ḡ(X,Y )ē2 − ḡ(ē2, Y )X} = −cḡ(X, ē1)JY.

The corresponding coset space representation is the solvable Lie group model S = S/{E2} of H2(−c2). The
canonical connection ∇+ S̄ coincides with Cartan-Schouten’s (−)-connection.

One can check that the homogeneous Riemannian structure S̄ of type T1 satisfies S̄(X)JY + JS̄(X)Y = 0.
Thus we get the following result (see [80, Corollary 3.3]):

Corollary 4.1. All the homogeneous Riemannian structures of H2(−c2) are homogeneous Kähler structures.

Since the area form dvḡ of H2(−c2) is given by −Ω̄, the covariant form of the homogeneous Riemannian
structure S̄ of type T1 is rewritten as

S̄♭ = −2c ϑ̄1 ⊗ (ϑ̄1 ∧ ϑ̄2) = cϑ̄1 ⊗ Ω̄ = −c ϑ̄1 ⊗ dvḡ =
c2

2
ω̄ ⊗ dvḡ. (4.10)

From the proof of [222, Theorem 4.1], we deduce the following result.

Proposition 4.7. Let M be a Riemannian 2-manifold which posses a non-trivial homogeneous Riemannian structure S̄,
then S̄ is represented as S̄♭ = −2c ϑ̄1 ⊗ (ϑ̄1 ∧ ϑ̄2) with respect to a suitable local orthonormal coframe field Θ = (ϑ1, ϑ2)
and the Gaussian curvature is K = −c2 < 0.

4.7. Homogeneous Riemannian structures of type T3 on 3-dimensional space forms

Let (M, g) be a Riemannian 3-manifold. Take a S♭ be a tensor field of type (0, 3) satisfying

S♭(X,Y, Z) + S♭(X,Z, Y ) = 0. (4.11)

Then S♭ is expressed as

S♭(X,Y, Z) = 2{S♭(X, e1, e2)(ϑ
1 ∧ ϑ2) + S♭(X, e2, e3)(ϑ

2 ∧ ϑ3) + S♭(X, e3, e1)(ϑ
3 ∧ ϑ1)}(Y,Z). (4.12)

We define a tensor field S by
S♭(X,Y, Z) = g(S(X)Y, Z). (4.13)

By using S, we define a linear connection ∇̃ by ∇̃ = ∇+ S. Then we have the following useful lemma.

Lemma 4.1. Let S♭ be a tensor field of type (0, 3) on a Riemannian 3-manifold. Define a tensor field S of type (1, 2) by
(4.13) and set ∇̃ = ∇+ S, then ∇̃ satisfies ∇̃R = 0 if and only if

(∇XRic)(Y,Z) = Ric(S(X)Y,Z) + Ric(Y, S(X)Z) (4.14)

holds.

Tricerri and Vanhecke classified homogeneous Riemannian structures of type T3 on 3-dimensional space
forms [222, Theorem 6.3].

Theorem 4.7. Let M3(εc2) = (M3, g, dvg) be the one of the following 3-dimensional space forms of constant curvature
εc2 ( c > 0, ε = 0,±1):

• ε = 1 : S3(c2).
• ε = 0 : E3.
• ε = −1 : H3(−c2).

Then all the non-vanishing homogeneous Riemannian structures of type T3 on M3(εc2) are given by the following 1-
parameter family:

Sλ
♭ = −λ dvg, λ ∈ R×.

Two homogeneous Riemannian structures Sλ1

♭ and Sλ2

♭ are isomorphic each other if and only if λ1 = ±λ2.
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4.8. Naturally reductive homogeneous spaces

A reductive homogeneous Riemannian space M = G/H with Lie subspace m is said to be naturally reductive
with respect to m if the geodesic through o ∈M and tangent to X ∈ m = ToM is the orbit {exp(tX) · o}t∈R of
the one-parameter subgroup {exp(tX)}t∈R for all X . Note that every Riemannian symmetric space M = G/H
satisfies this property.

The following infinitesimal reformulation of natural reducibility is useful [145].

Proposition 4.8. A reductive homogeneous Riemannian space M = G/H with Lie subspace m is naturally reductive
with respect to m if and only if the bilinear map Um defined by (4.1) vanishes.

Definition 4.8. A reductive homogeneous Riemannian space M = G/H is said to be naturally reductive if
M = G/H is reductive and has a Lie subspace m with respect to which G/H is naturally reductive.

Naturally reductive spaces may be regarded as generalizations of Riemannian symmetric spaces. For
instance, as we mentioned above, every geodesic through o ∈M and tangent to X ∈ m = ToM is the orbit
{exp(tX) · o}t∈R of the one-parameter subgroup {exp(tX)}t∈R for all X . Next, every (local) geodesic symmetry
is volume preserving up to sign. For more information on naturally reductive homogeneous spaces, we refer
to [85, 55].

Remark 4.5. There are several attempts to generalize the class of naturally reductive homogeneous spaces. One
of the generalization is the class of Riemannian g. o. space [154]. On the other hand, studies on Riemannian
manifolds with volume preserving local geodesic symmetries (up to sign) was initiated by D’Atri and
Nickerson [53, 54]. Those spaces are called D’Atri spaces. See [194]. Another attempt was proposed by Kowalski
and Vanhecke [153].

Tricerri and Vanhecke obtained the following characterizations.

Theorem 4.8 ([222], [223]). Let M = G/H be a naturally reductive homogeneous space with canonical connection ∇̃.
Then S = ∇̃ − ∇ is a homogeneous Riemannian structure which satisfies

S(X)X = 0, X ∈ Γ (TM). (4.15)

Namely S is of type T3. Conversely, a simply connected and complete Riemannian manifold (M, g, S) together with a
homogeneous structure S is naturally reductive if and only if S satisfies (4.15).

Theorem 4.9 ([222]). Let (M, g) be a complete and simply connected Riemannian manifold. Then M is a naturally
reductive homogeneous space if and only if there exists a homogeneous Riemannian structure S so that ∇̃ = ∇+ S is
projectively equivalent to the Levi-Civita connection ∇.

Three-dimensional simply connected and connected naturally reductive homogeneous spaces are classified
by Tricerri and Vanhecke [222]. See also Theorem 15.1 of the present article.

4.9. Canonical connections on general Riemannian manifolds

Olmos and Sánchez [178] introduced the notion of "canonical connection" in the following manner:

Definition 4.9. Let (M, g) be a Riemannian manifold with Levi-Civita connection. A metric connection D is
said to be a canonical connection in the sense of Olmos-Sánchez if it satisfies DS = 0, where S = D −∇.

Obviously, any Ambrose-Singer connections are canonical connections in the sense of Olmos-Sánchez. Under
this definition, they proved the following result.

Theorem 4.10 ([178]). Let M be linearly full immersed submanifold of Euclidean space En with vector valued second
fundamental form α. Then the following properties are mutually equivalent:

1. M admits a canonical connection in the sense of Olmos-Sánchez satisfying Dα = 0.

2. M is an (extrinsically) homogeneous submanifold with constant principal curvatures.

3. M is an orbit of an s-representation. Namely M is a standardly embedded symmetric R-spaces.
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4.10. Cartan-Riemannian manifolds

In [62], a Riemannian manifold (M, g,D) equipped with a metric linear connection D is called a Cartan-
Riemannian manifold. Note that the authors of [84] use the terminology Riemann-Cartan manifold. Obviously,
a Riemannian manifold (M, g,∇+ S) together with a homogeneous Riemannian structure S is a Cartan-
Riemannian manifold.

Proposition 4.9. Let (M, g,D) be a Cartan-Riemannian manifold. The linear connection has the same geodesics as the
Levi-Civita connection if and only if the difference tensor field S := D −∇ is symmetric.

Note that Theorem 4.9 is a special case of Proposition 4.9.
Let us denote by TD the torsion tensor field of D and set S = D −∇, then by the definition of torsion, we

have
TD(X,Y ) = DXY −DYX − [X,Y ] = S(X)Y − S(Y )X.

The covariant tensor field TD
♭ is called the torsion form of (M, g,D).

Definition 4.10. A Cartan-Riemannian manifold (M, g,D) is said to be a Cartan-Riemannian manifold of totally
skew-symmetric torsion if TD

♭ is a 3-form on M . If in addition, D satisfies DTD = 0, then M is said to be a
Cartan-Riemannian manifold of parallel totally skew-symmetric torsion.

If a Cartan-Riemannian manifold (M, g,D) has totally skew-symmetric torsion and D is a canonical
connection in the sense of Olmos-Sánchez, then (M, g,D) has parallel totally skew-symmetric torsion.

Differential geometry of Cartan-Riemannian manifold of totally skew-symmetric torsion is motivated by
string theory and special geometry. For more information, we refer to [2, 52, 71, 73, 74].

4.11. Sekigawa’s theorem

Sekigawa proved the following fundamental fact for homogeneous Riemannian 3-spaces.

Theorem 4.11 ([204]). Let M be a homogeneous Riemannian 3-space, then M is locally symmetric or M is a Lie group
equipped with a left invariant metric.

On the other hand Lie groups equipped with a left invariant metric are classified by Milnor [163]. See also
[86, 147].

Sekigawa gave a list of all homogeneous Riemannian 3-spaces in [205, 206].

4.12. Three dimensional unimodular Lie groups

Let G be a Lie group with a Lie algebra g and a left invariant Riemannian metric ⟨·, ·⟩. A Lie group G is said
to be unimodular if its left invariant Haar measure is right invariant. Milnor gave an infinitesimal reformulation
of unimodularity for 3-dimensional Lie groups [163]. We recall it briefly here.

Let g be a 3-dimensional oriented Lie algebra with the inner product ⟨·, ·⟩. Denote by × the vector product
operation of the oriented inner product space (g, ⟨·, ·⟩). The vector product operation is a skew-symmetric
bilinear map × : g× g→ g which is uniquely determined by the following conditions (cf. Section 2.5):

(i) ⟨X,X × Y ⟩ = ⟨Y,X × Y ⟩ = 0,
(ii) ⟨X × Y,X × Y ⟩ = ⟨X,X⟩⟨Y, Y ⟩ − ⟨X,Y ⟩2,

(iii) if X and Y are linearly independent, then det(X,Y,X × Y ) > 0,

for all X,Y ∈ g. On the other hand, the Lie-bracket [·, ·] : g× g→ g is a skew-symmetric bilinear map.
Comparing these two operations, we get a linear endomorphism Lg which is uniquely determined by the
formula

[X,Y ] = Lg(X × Y ), X, Y ∈ g.

Now let G be an oriented 3-dimensional Lie group equipped with a left invariant Riemannian metric. Then the
metric induces an inner product on the Lie algebra g. With respect to the orientation on g induced from G, the
endomorphism field Lg is uniquely determined. The unimodularity of G is characterized as follows.

Proposition 4.10 ([163]). Let G be an oriented 3-dimensional Lie group with a left invariant Riemannian metric. Then
G is unimodular if and only if the endomorphism Lg is self-adjoint with respect to the metric.
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Let G be a 3-dimensional unimodular Lie group with a left invariant metric ⟨·, ·⟩. Then there exists an
orthonormal basis {e1, e2, e3} (called a unimodular basis) of the Lie algebra g such that

[e1, e2] = c3e3, [e2, e3] = c1e1, [e3, e1] = c2e2, c1, c2, c3 ∈ R. (4.16)

Three-dimensional unimodular Lie groups are classified by Milnor as in Table 3 (up to numeration of c1, c2 and
c3). Note that without loss of generality we may assume that c3 ≥ 0.

Signature of (c1, c2, c3) Simply connected Lie group Property
(+,+,+) SU(2) compact and simple

(−,−,+) or (+,−,+) S̃L2R non-compact and simple
(0,+,+) S̃E(2) solvable
(0,−,+) SE(1, 1) solvable
(0, 0,+) Heisenberg group nilpotent
(0, 0, 0) (R3,+) Abelian

Table 3. Three dimensional unimodular Lie groups

Here S̃E(2) is the universal covering group of the Euclidean motion group SE(2) (see, Example 4.9). The solvable
Lie group SE(1, 1) is the identity component of the isometry group (Minkowski motion group) of the Minkowski
plane E1,1 (see, Remark 4.2) and isomorphic to

 e−z 0 x
0 ez y
0 0 1

 ∣∣∣∣∣∣ x, y, z ∈ R

 .

To describe the Levi-Civita connection ∇ of G, we introduce the following constants:

µi =
1

2
(c1 + c2 + c3)− ci, i = 1, 2, 3. (4.17)

Proposition 4.11. The Levi-Civita connection ∇ is given by

∇e1e1 = 0, ∇e1e2 = µ1e3, ∇e1e3 = −µ1e2
∇e2e1 = −µ2e3, ∇e2e2 = 0, ∇e2e3 = µ2e1
∇e3e1 = µ3e2, ∇e3e2 = −µ3e1 ∇e3e3 = 0.

The Riemannian curvature R is given by

R(e1, e2)e1 = (µ1µ2 − c3µ3)e2, R(e1, e2)e2 = −(µ1µ2 − c3µ3)e1,

R(e2, e3)e2 = (µ2µ3 − c1µ1)e3, R(e2, e3)e3 = −(µ2µ3 − c1µ1)e2,

R(e1, e3)e1 = (µ3µ1 − c2µ2)e3, R(e1, e3)e3 = −(µ3µ1 − c2µ2)e1.

The unimodular basis {e1, e2, e3} diagonalizes the Ricci tensor field. The components of the Ricci tensor field are given by

R11 = 2µ2µ3, R22 = 2µ1µ3, R33 = 2µ1µ2.

The bilinear map U defined by (4.2) is given by

U(e1, e2) =
1

2
(−c1 + c2)e3, U(e1, e3) =

1

2
(c1 − c3)e2, U(e2, e3) =

1

2
(−c2 + c3)e1.

Here we compute the difference tensor fields of Cartan-Schouten connections. Set S(+) = ∇(+) −∇, S(−) =
∇(−) −∇ and S(0) = ∇(+) −∇, then we have

S(+)(X,Y ) = −U(X,Y ) +
1

2
[X,Y ], S(−)(X,Y ) = −U(X,Y )− 1

2
[X,Y ], S(0)(X,Y ) = −U(X,Y ).
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5. Contact 3-manifolds

As is well known contact structures play important roles in 3-dimensional topology and geometry (see
e.g. [63, 81]). In this section we collect fundamental facts on contact structures on 3-dimensional Riemannian
geometry.

5.1. Contact manifolds

Let M be a (2n+ 1)-manifold. A one form η is called a contact form on M if η ∧ (dη)n ̸= 0. A (2n+ 1)-manifold
M together with a contact form is called a contact manifold. The distribution D defined by

D = {X ∈ TM | η(X) = 0}

is called the contact structure (or contact distribution) determined by η. We denote the vector subbundle of TM
determined by D by the same letter D:

D :=
⋃
p∈M

Dp, Dp = {Xp ∈ TpM | ηp(Xp) = 0}

On a contact manifold (M,η), there exists a unique vector field ξ such that

η(ξ) = 1, dη(ξ, ·) = 0.

Namely ξ is transversal to the contact structure D. This vector field ξ is called the Reeb vector field of (M,η). The
flows of ξ are called Reeb flows. Martinet proved that any orientable 3-manifold admits a contact form.

Definition 5.1. A diffeomorphism f on a contact manifold (M,η) is said to be a contact transformation if f
preserves the contact distributionD. In particular, a diffeomorphism f satisfying f∗η = η is called a strict contact
transformation.

We denote by DD(M) the group of all contact transformations. Next we set Dη(M) the group of all strict
contact transformations. Both are subgroups of the diffeomorphism group D(M) of M . In case M is compact
we can equip a infinite dimensional Lie group structures on DD(M) and Dη(M) (Omori [180, 181]). Obviously,
any strict contact transformation f satisfies df(ξ) = ξ.

On a contact manifold (M,η), there exists an endomorphism field φ and a Riemannian metric g on a contact
manifold (M,η) such that

φ2 = −I + η ⊗ ξ, η(ξ) = 1, (5.1)

g(φX,φY ) = g(X,Y )− η(X)η(Y ), g(ξ, ·) = η, (5.2)

dη(X,Y ) = g(X,φY ) (5.3)

for all vector fields X, Y on M . The pair (φ, g) (or quartet (η, ξ, φ, g) ) is called the associated almost contact
Riemannian structure of (M,η). A contact manifold (M,η) together with an associated contact Riemannian
structure is called a contact Riemannian manifold (or contact metric manifold) and denote it by M = (M,η, ξ, φ, g).

On a contact Riemannian manifold M , we define an endomorphism field h by h = (£ξφ)/2.

hX =
1

2
{[ξ, φX]− φ([ξ,X])}, X ∈ Γ (TM).

Definition 5.2 ([18]). A contact Riemannian manifoldM is said to be a contact (κ, µ)-space if there exits constants
κ and µ such that

R(X,Y )ξ = η(Y )(κI + µh)X − η(X)(κI + µh)Y

for all X , Y ∈ Γ (TM).

5.2. Almost contact manifolds

More generally, a (2n+ 1)-manifold M is said to be an almost contact manifold if it admits a triplet (η, ξ, φ)
satisfying (5.1). A (2n+ 1)-manifold M is said to be an almost contact Riemannian manifold if it admits a quartet
(η, ξ, φ, g) satisfying (5.1)–(5.2). The vector field ξ will be called the characteristic vector field. The (local) flows of
ξ will be called the characteristic flows.

An almost contact Riemannian manifoldM is said to be a contact Riemannian manifold if it satisfies (5.3). Every
contact Riemannian manifold is orientable. Here we recall the following fundamental fact:
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Proposition 5.1. On a (2n+ 1)-dimensional contact Riemannian manifold (M,φ, ξ, η, g), the volume element dvg
induced from the associated metric g is related to the contact form η by

dvg =
(−1)n(2n+ 1)!

2nn!
η ∧ (dη)n. (5.4)

Remark 5.1. In [17, Theorem 4.6], the volume element dvg is expressed as

dvg =
(−1)n

2nn!
η ∧ (dη)n.

Because, the convention for the volume element used in [17] is dvg = θ1 ∧ θ2 ∧ · · · ∧ θn for Riemannian n-
manifolds. On the other hand, in the present article, we use the convention dvg = n! θ1 ∧ θ2 ∧ · · · ∧ θn (see [222,
p. 67]).

Even if M is non-contact, we orient M by the volume element

dvg =
(−1)n(2n+ 1)!

2nn!
η ∧ Φn.

Definition 5.3. A contact Riemannian manifold M is said to be a K-contact manifold if its Reeb vector field is a
Killing vector field.

On can see that a contact Riemannian manifold M is K-contact if and only if h = 0.

5.3. Holomorphic maps

A smooth map f : (M,φ, ξ, η)→ (M̃, φ̃, ξ̃, η̃) between almost contact manifolds is said to be a holomorphic map
if it satisfies

df ◦ φ = φ̃ ◦ df.

We denote by the subgroup of D(M) consisting of all holomorphic diffeomorphisms by Dφ(M).

Definition 5.4. A diffeomorphism f : (M,φ, ξ, η)→ (M̃, φ̃, ξ̃, η̃) between almost contact Riemannian manifolds
is called an almost contact isomorphism if it preserves the structure tensor fields, i.e.,

df ◦ φ = φ̃ ◦ df, df(ξ) = ξ̃, f∗η̃ = η.

Two almost contact manifolds M and M̃ are said to be isomorphic each other if there exits an almost contact
isomorphim between them.

Here we set
Dφ,ξ,η(M) = Dφ(M) ∩Dη(M).

Then Dφ,ξ,η(M) is the group of all almost contact isomorphisms fromM ontoM itself. An element of Dφ,ξ,η(M)
is called an almost contact automorphism.

Definition 5.5. A diffeomorphism f : (M,φ, ξ, η, g)→ (M̃, φ̃, ξ̃, η̃, g̃) between almost contact Riemannian
manifolds is called an isomorphism if it preserves the structure tensor fields, i.e.,

df ◦ φ = φ̃ ◦ df, df(ξ) = ξ̃, f∗η̃ = η, f∗g̃ = g.

Two almost contact Riemannian manifolds M and M̃ are said to be isomorphic each other if there exits an
isomorphim between them.

The set Aut(M) of isomorphims from an almost contact Riemannian manifold M onto M itself forms a
finite dimensional Lie group. Indeed, it is a Lie subgroup of the isometry group Iso(M). An element of
Aut(M) = Dφ,ξ,η(M) ∩ Iso(M) is called an automorphism ofM . Tanno [217] showed that dimAut(M) ≤ (n+ 1)2.

Morimoto [164] proved the following fundamental fact.

Lemma 5.1. Let M = (M,φ, ξ, η) and M̃ = (M̃, φ̃, ξ̃, η̃) be almost contact manifolds. If a diffeomorphims f :M → M̃

is holomorphic and satisfies df(ξ) = ξ̃, then f∗η̃ = η.

Contact Riemannian manifolds satisfy the following property.

591 dergipark.org.tr/en/pub/iejg

https://dergipark.org.tr/en/pub/iejg


Homogeneous Riemannian Structures in Thurston Geometries and Contact Riemannian Geometries

Proposition 5.2 ([214]). If a diffeomorphism f :M → M̃ between contact Riemannian manifolds is holomorphic, then
there exits a positive constant a such that

f∗η̃ = aη, df(ξ) = aξ̃, f∗g̃ = ag + a(a− 1)η ⊗ η.

Based on this result due to Tanno, we introduce the following notion.

Definition 5.6. A diffemomorphism f on a contact Riemannian manifold M is said to be a transversally
homothety or D-homothety if there exists a positive constant a such that

f∗η = aη, df(ξ) = aξ, f∗g = ag + a(a− 1)η ⊗ η.

Moreover the following theorem holds ([29, Proposition 8.1.11]).

Theorem 5.1. The automorphism group Aut(M) of a contact Riemannian manifold M satisfies

Aut(M) = Dφ,ξ,η(M) = Dη(M) ∩ Iso(M).

Motivated by Proposition 5.2, we introduce the following notion:

Definition 5.7. Let (M,φ, ξ, η, g) be a contact Riemannian manifold and a a positive constant. Then the
deformation

φ̃ := φ, ξ̃ :=
1

a
ξ, η̃ := aη, g̃ := ag + a(a− 1)η ⊗ η (5.5)

gives a new contact Riemannian structure (φ̃, ξ̃, η̃, g̃) on M . The new structure is called the transversally
homotehtic deformation or D-homothetic deformation of the original structure.

5.4. Holomorphic sectional curvature

At a point p of an almost contact Riemannian manifold M . We can take a vector v ∈ TpM orthogonal to ξp.
Then the tangent plane v ∧ φpv is called a holomorphic plane at p since it is invariant under φp. A holomorphic
plane is also called φ-section [16, 17]. The sectional curvature of a holomorphic plane is called a holomorphic
sectional curvature (or φ-sectional curvature). On the other hand, a plane section v ∧ ξp is called a ξ-section. The
sectional curvature of a ξ-section is called a ξ-sectional curvature.

5.5. Normality

On the direct productM ×R(t) of an almost contact manifold (M,φ, ξ, η) and the real line R(t), we can extend
naturally the endomorphism field φ to an almost complex structure J on M ×R(t):

J

(
X, f

∂

∂t

)
=

(
φX − fξ, η(X)

∂

∂t

)
, X ∈ Γ (TM), f ∈ C∞(M ×R).

If the almost complex structure J on M ×R is integrable then (M,φ, ξ, η) is said to be normal. The normality is
equivalent to the vanishing of the Sasaki-Hatakeyama torsion N :

N (X,Y ) = [φ,φ](X,Y ) + 2dη(X,Y ).

Here [φ,φ] is the Nijenhuis torsion of φ:

[φ,φ](X,Y ) = φ2[X,Y ] + [φX,φY ]− φ[φX, Y ]− φ[X,φY ], X, Y ∈ Γ (TM).

Note that the notion of normality is defined without metric.
Tanno [217] showed that if an almost contact Riemannian manifold M satisfies dimAut(M) = (n+ 1)2, then

M is normal.
A normal contact Riemannian manifold (M,φ, η, ξ, g) is called a Sasakian manifold (or Sasaki manifold).
A Sasakian manifold is regarded as a contact (κ, µ)-space with κ = 1 and h = 0.

Remark 5.2. Let M be a contact Riemannian manifold, then the product manifold M ×R equipped with the
above almost complex structure is almost Hermitian with respect to the product metric. Then M is Sasakian if
and only if M ×R is Hermitian. More strongly, the Hermitian structure on M ×R is locally conformal Kähler.
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Here is another characterization of normality. Let us consider the product manifold C(M) = R+ ×M of the
positive real line R+ with coordinate r > 0 and an almost contact manifold (M,φ, ξ, η). The vector field r∂r is
called the Liouville vector field (also called the Euler vector field). Then we can define an almost complex structure
J on C(M) by

JX = η(X)(r∂r) + φX, J(r∂r) = −ξ, X ∈ Γ (TM). (5.6)

One can see that the normality of M is equivalent to the integrability of J on C(M) (see [29]).
Now let us consider almost contact Riemannian manifolds.

Definition 5.8. Let (M, g) be a Riemannian manifold. The product manifold C(M) = R+ ×M equip with a
Riemannian metric dr2 + r2g is called the Riemannian cone of M .

The metric dr2 + r2g is called the cone metric of the Riemannian cone C(M).
Let M be a contact Riemannian manifold. Then M is Sasakian if and only if its Riemannian cone C(M)

equipped with the almost complex structure (5.6) is a Kähler manifold [29].

Definition 5.9 ([131]). An almost contact Riemannian manifold (M,φ, η, ξ, g) is said to be

1. almost coKähler (or almost cosymplectic) if dη = 0 and dΦ = 0.

2. almost b-Kenmotsu if dη = 0 and dΦ = 2bη ∧ Φ, where b is a non-zero constant. In particular an almost
1-Kenmotsu manifold is simply called an almost Kenmotsu manifold.

A coKähler manifold [resp. Kenmotsu manifold] is a normal almost coKähler manifold [resp. normal almost
Kenmotsu manifold].

Proposition 5.3. An almost contact Riemannian manifold M is

• coKähler if and only if ∇φ = 0. In this case ∇ξ = 0.
• Sasakian if and only if (∇Xφ)Y = g(X,Y )ξ − η(Y )X . In this case ∇Xξ = −φX .
• Kenmotsu if and only if (∇Xφ)Y = −g(X,φY )ξ − η(Y )φX . In this case ∇Xξ = X − η(X)ξ.

A complete Sasakian manifold of constant holomorphic sectional curvature is called a Sasakian space form.
Analogously, a complete coKähler manifold of constant holomorphic sectional curvature is called a coKähler
space form.

Example 5.1 (Real hypersurfaces). Let (N,h, J) be an almost Hermitian manifold and M is an orientable real
hypersurface of N with inclusion map ι :M ⊂ N and unit normal vector field ν. Then the almost Hermitian
structure (h, J) induces an almost contact Riemannian structure on M . First, let g = ι∗h be the induced metric.
Next, set ξ = −Jν. For any vector field X on M , we decompose JX into its tangential and normal components:

JX = φX + η(X)ν.

Then one can see that (φ, ξ, η, g) is an almost contact Riemannian structure on M .
Now let Cn+1 the complex Euclidean (n+ 1)-space. Then the Kähler structure of Cn+1 induces an

almost contact Riemannian structure on the unit (2n+ 1)-sphere S2n+1 ⊂ Cn+1. The resulting almost contact
Riemannian manifold (S2n+1, φ, ξ, η, g) is Sasakian. In particular S2n+1 is a Sasakian space form of constant
holomorphic sectional curvature 1.

Example 5.2 (Product manifolds). Let (M, ḡ, J) be an almost Hermitian manifold. Take a Riemannian product
M =M ×R or M =M × S1 equipped with the product metric g = ḡ + dt2. Set ξ = ∂/∂t and η = g(ξ, ·). We can
extend J to an endomorphism field φ on M by the rule

φ(X + aξ) = JX, X ∈ Γ (TM).

Then we obtain an almost contact Riemannian manifold (M,φ, ξ, η, g). One can see that M is almost coKähler if
and only if M is almost Kähler. In particular M is coKähler if and only if M is Kähler (see [102]). Now let take a
complex space form (M, ḡ, J) of constant holomorphic sectional curvature k. Then M is a coKähler space form
of constant holomorphic sectional curvature k. The 3-dimensional coKq̈hler space forms are given by (see also
[217]):

S2(c2)× E1, E3 = E2 × E1, H2(−c2)× E1, S2(c2)× S1, E2 × S1, H2(−c2)× S1.

Here S2(c2) and H2(−c2) are sphere of curvature c2 and hyperbolic plane of curvature −c2, respectively.
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Example 5.3 (Bianchi-Cartan-Vrănceanu models). Let κ and τ be real constants. Define a region R of R3 by

R =
{
(x, y, z) ∈ R3

∣∣ 1 + κ

4
(x2 + y2) > 0

}
.

On the region R, we equip a Riemannian metric

gκ,τ =
dx2 + dy2

{1 + κ
4 (x

2 + y2)}2
+

(
dz +

τ(ydx− xdy)
1 + κ

4 (x
2 + y2)

)2

. (5.7)

This 2-parameter family {gκ,τ} of Riemannian metrics is called the Bianchi-Cartan-Vrănceanu metrics [13, 38, 226].
The metrics as above are defined over the whole 3-space R3 for κ ≥ 0 and over the region x2 + y2 < −4/κ
for κ < 0. The resulting Riemannian 3-manifold E(κ, τ) = (R, gκ,τ ), the Bianchi-Cartan-Vrănceanu spaces (BCV-
spaces in short [10]). This 2-parameter family includes all Riemannian metrics with 4 or 6-dimensional isometry
groups except constant negative curvature ones.

Take an orthonormal frame field U = (u1, u2, u3):

u1 = {1 + κ

4
(x2 + y2)} ∂

∂x
− τy ∂

∂z
, u2 = {1 + κ

4
(x2 + y2)} ∂

∂y
+ τx

∂

∂z
, u3 =

∂

∂z
.

The Levi-Civita connection ∇ of the BCV-space E(κ, τ) is described by the formulas:

∇u1
u1 =

κy

2
u2, ∇u1

u2 = −κy
2
u1 + τu3, ∇u1

u3 = −τu2,

∇u2
u1 = −κx

2
u2 − τu3, ∇u2

u2 =
κx

2
e1, ∇u2

u3 = τu1, (5.8)

∇u3
u1 = −τu2, ∇u3

u2 = τu1, ∇u3
u3 = 0.

[u1, u2] = −
κ

2
yu1 +

κ

2
xu2 + 2τu3, [u2, u3] = [u3, u1] = 0. (5.9)

The Riemannian curvature R is described by the formula:

R1212 = κ− 3τ2, R1313 = R2323 = τ2. (5.10)

The BCV-space is isomorphic to the following model spaces:

Model space base and bundle curvatures
S3(κ/4)∖ {∞} κ = 4τ2 ̸= 0

(S2(κ)∖ {∞})× E1 κ > 0, τ = 0
H2(κ)× E1 κ < 0, τ = 0

Berger sphere κ > 0, τ ̸= 0
Nil3 κ = 0, τ ̸= 0

S̃L2R κ < 0, τ ̸= 0

Table 4. The Bianchi-Cartan-Vrănceanu model spaces

Define an endomorphism field φ by φu1 = u2, φu2 = −u1, φu3 = 0 and set ξ := u3. Then it is easy to check
that (η, ξ, φ, gκ,τ ) is an almost contact structure. In particular if τ ̸= 0, (φ, ξ, gκ,τ ) is the associated almost contact
structure of η up to a constant multiple. More precisely the exterior derivative dη is related to φ by

dη(X,Y ) = τg(X,φY ). (5.11)

This almost contact structure satisfies the following:

(∇Xφ)Y = τ{g(X,Y )ξ − η(Y )X}, ∇Xξ = −τφX. (5.12)

These formulas show that ξ is a Killing vector field on the BCV-space. Moreover the BCV-space is normal. In
case τ = 0, the BCV-space is a coKähler manifold of constant holomorphic sectional curvature.
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Thus if we fix the bundle curvature τ = 1. Then we obtain a Sasakian manifold (R, η, ξ, φ, gκ,1) of constant
holomorphic sectional curvature −3 + κ.

In case τ ̸= 0, we perform the normalization

η̃ := τη, ξ̃ :=
1

τ
ξ, φ̃ := φ, g̃ = τ2g.

Then the resulting manifold (R, η̃, ξ̃, φ̃, g̃) is a Sasakian manifold of constant holomorphic sectional curvature
c̃ := −3 + κ.

Example 5.4 (The hyperbolic Sasakian space form). Let H2(−c2) be the upper half plane model of the
hyperbolic plane of curvature −c2 exhibited in Section 4.6. On the product manifold H2(−c2)×R(t), we equip
a contact form

η = dt− 2dx

c2y

with Reeb vector field ξ = ∂t. By using the contact form η, we introduce a Riemannian metric

g =
dx2 + dy2

c2y2
+ η ⊗ η.

We can take an orthonormal frame field

e1 = (cy)
∂

∂x
+

2

c

∂

∂t
, e2 = (cy)

∂

∂y
, e3 = ξ.

The endomorphism field φ is determined by the formula g(X,φY ) = dη(X,Y ). Since

dη = − 2

c2y2
dx ∧ dy,

we deduce that
φe1 = e2, φe2 = −e1, φe3 = 0.

The resulting contact Riemannian 3-manifold (H2(−c2)×R(t), φ, ξ, η, g) is a Sasakian space form of constant
holomorphic sectional curvature −c2 − 3 < −3 [218]. Note that this Sasakian manifold is isomorphic to the
universal coverings S̃L2R of SL2R as well as the universal coverings S̃U(1, 1) of SU(1, 1). See Section 14.

Example 5.5 (Warped products). Let (M, ḡ, J) be an almost Kähler manifold. Consider a warped product:

M = R×cet M, g = dt2 + c2e2tḡ,

where c is a non-zero constant. Then we can introduce an almost contact structure (φ, ξ, η) by

φX = JX, X ∈ Γ (TM), φξ = 0, ξ =
∂

∂t
, η = g(ξ, ·).

Then M is almost Kenmotsu. In particular M is Kenmotsu if and only if M is Kähler. Now let us take

M = Cn(z1, z2, . . . , zn) ḡ =

n∑
k=1

dx2k +

n∑
i=1

dy2k, zk = xk + yki

Then the warped product metric

g = dt2 + c2e2t

(
n∑

k=1

dx2k +

n∑
i=1

dy2k

)
is of constant curvature −1. Thus M is isometric to the hyperbolic (2n+ 1)-space H2n+1.

The notion of Kenmotsu space form is defined in much the same way to that of Sasakian space form.
However the constancy of holomorphic sectional curvature is a strong restriction for Kenmotsu manifolds.
Indeed, Kenmotsu [139] proved that Kenmotsu manifolds of constant holomorphic sectional curvature are of
constant curvature −1. Thus the only Kenmotsu space form is the hyperbolic space H2n+1. The Kenmotsu
structure of H3 will be discussed again in Section 16. For 3-dimensional Kenmtsu manfolds, we have the
following fact:
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Proposition 5.4 ([100, 101]). A Kenmotsu 3-manifold has constant scalar curvature if and only if it is of constant
curvature −1.

Tanno [217] proved that almost contact Riemannian manifolds with automorphism group of maximum
dimension are Sasakian space forms, coKähler space forms or Kenmotsu manifolds of constant curvature −1
(Table 5).

Model space Almost contact structure
E3 CoKähler space form
S3 Sasakian space form
H3 Kenmotsu space form

S2 × E1, H2 × E1 CoKähler space form

Table 5. The model spaces of constant holomorphic sectional curvature

5.6. Regularity

Example 5.2 and Example 5.3 motivates us to study homogeneous Riemannian 3-manifolds fibered over
homogeneous Riemannian 2-manifolds.

A non-vanishing vector field ξ on an m-manifold M is said to be quasi regular if if there exits some positive
integer k and each point p has a cubical coordinate neighborhood (U ;x1, x2, . . . , xm) such that

• each integral curve of the vector field ξ passes through U at most k times, and
• each component of the intersection of an integral curve with U has the form x1 = a1, x2 = a2, . . . , xm−1 =
am with a1, a2, . . . , am−1 are constant. In case k = 1, ξ is said to be regular. If in addition, all the integral
curves are homeomorphic to each other, then ξ is said to be a strictly regular vector field.

Tanno [215] showed that the following three conditions are mutually equivalent for regular (and complete)
vector field ξ:

1. The period function of ξ is constant (maybe infinite).

2. There exists a 1-form η satisfying η(ξ) = 1 and £ξη = 0.

3. There exists a Riemannian metric g satisfying g(ξ, ξ) = 1 and £ξg = 0.

In such a case, M is a principal bundle over the orbit space M =M/G, where G is the 1-parameter group (of
isometries) G = {Exp(tξ)}t∈R. The prescribed vector field ξ is a unit Killing vector field with respect to the
Riemannian metric g. In addition, there exists a Riemannian metric ḡ on M so that π :M →M is a Riemannian
submersion. Moreover the 1-form η is a connection form of the principal bundle π :M →M .

Definition 5.10 ([171]). An almost contact manifold (M,φ, ξ, η) is said to be regular [resp. strictly regular] if ξ is
regular [resp. strictly regular].

Proposition 5.5 ([171]). Let M be a strictly regular almost contact manifold. If φ and η are invariant under the 1-
parameter group G = {Exp(tξ)}t∈R, then M is a principal G-bundle over M with connection form η.

Corollary 5.1 ([171]). Let M be a compact regular almost contact manifold. If φ and η are invariant under the 1-
parameter group G = {Exp(tξ)}t∈R, then G = S1 and M is a principal circle bundle over M with connection form η.

Lemma 5.2. If the endomorphism field φ and the 1-form η of a regular M are invariant under the 1-parameter group
G = {Exp(tξ)}t∈R, then

Jπ(p)Xπ(p) = π∗p(φpX
h

p), X ∈ Γ (TM) (5.13)

defines an almost complex structure J on the orbit space M . Here the superscript h means the horizontal lift operation
with respect to the connection form η.

Let us consider contact Riemannian manifold. Assume that M = (M,η) is a regular contact manifold, then
one can see that φ and η are invariant under the 1-parameter group G = {Exp(tξ)}t∈R. When M is compact,
Boothby and Wang proved the following prominent theorem (see also Kobayashi [143]).
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Theorem 5.2 ([28]). Let (M,η′) be a compact regular contact manifold. Then there exists a contact form η = µ η′ on
M , where µ is a non-vanishing smooth function so that the Reeb vector field ξ generates a free effective S1-action on
M . Moreover M is a principal circle bundle over M =M/G. The orbit space M inherits a symplectic form Ω satisfying
dη = π∗Ω. The symplectic form determines an integral cocycle on Ω. The contact form is a connection form of π :M →M .

The fibering π : (M,η)→ (M,Ω) is called the Boothby-Wang fibering.

Proposition 5.6 ([90, 171]). Let M be a regular K-contact manifold. Then φ and η are invariant under the 1-parameter
group G = {Exp(tξ)}t∈R and M is a principal G-bundle over M =M/G with connection form η. The orbit space inherits
an almost Kähler structure and the fundamental 2-form Ω determines an integral cocycle on Ω. In particular, M is
Sasakian if and only if M is a Kähler manifold.

Corollary 5.2 ([90, 171]). Let M be a regular Sasakian manifold. Then φ and η are invariant under the 1-parameter
group G = {Exp(tξ)}t∈R and M is a principal G-bundle over a Hodge manifold M =M/G with connection form η.

5.7. The Boeckx invariant

Let M be a non-Sasakian contact (κ, µ)-space. Take a positive constant a and perform the transversally
homothetic deformation (5.5) to M . Then (M, φ̃, ξ̃, η̃, g̃) is a contact (κ̃, µ̃)-space with

κ̃ =
κ+ a2 − 1

a
, µ̃ =

µ+ 2a− 2

a2
.

The Boeckx invariant I of a non-Sasakian contact (κ, µ)-space is defined by

I =
1√
1− κ

(
1− µ

2

)
.

Then one can check that two non-Sasakian contact (κ, µ)-spaces are related by pseudo-homothetic deformation
if and only if their Boeckx invariants agree [24].

5.8. Unit tangent sphere bundles

Let M be an n-manifold, then its tangent bundle TM is a smooth (2n)-manifold. Denote by π : TM→M the
projection. Take a local coordinate sytem (x1, x2, . . . , xn) of M , then

(x1 ◦ π, x2 ◦ π, . . . , xn ◦ π, u1, u2, . . . , un), ui := dxi

gives a local coordinate system of TM . One can confirm that

U =

n∑
i=1

ui
∂

∂ui

is globally defined on TM and called the canonical vertical vector field. The vertical distribution V of TM is
defined as V = Ker π∗. For any vector field X on M there exits a unique vector field Xv on TM satisfying
Xv

(p;v) ∈ V(p;v). The vector field Xv is called the vertical lift of X .
Let us equip a Riemannian metric g on M , then the Levi-Civita connection ∇ of g defines the horizontal

distribution H. Moreover for any vector field X on M , there exits a unique vector field Xh on TM satisfying
Xh

(p;v) ∈ H(p;v). The vector field Xh is called the horizontal lift of X .
Sasaki introduced a Riemannian metric gs on TM by

gs(p;v)(X
h, Y h) = gs(p;v)(X

v, Y v) = gp(X,Y ), gs(p;v)(X
h, Y v) = 0.

This Riemannian metic gs is called the Sasaki lift metric. On the other hand, Dombrowski [58] and Hsu [93]
introduced the following almost complex structure

JXh = Xv, JXv = −Xh.

One can see that (TM, gs, J) is almost Kähler. If we identify TM with the cotangent bundle T∗M via the metric
g, then the fundamental 2-form of TM is identified with the canonical symplectic form of T∗M (see [112, 161]).

597 dergipark.org.tr/en/pub/iejg

https://dergipark.org.tr/en/pub/iejg


Homogeneous Riemannian Structures in Thurston Geometries and Contact Riemannian Geometries

The unit tangent sphere bundle UM is defined as the hypersurface

UM = {(p; v) ∈ TM | gp(v, v) = 1}

of TM with unit normal vector field U . Thus the almost Kähler structure (gs, J) of TM induces an almost
contact Riemannian structure (φs, ξs, ηs, gs) on UM [200]. The 1-form ηs is a contact form on UM and called the
canonical contact form of UM . The Reeb vector field ξs is called the geodesic flow vector field ([199, 200]) or geodesic
spray ([4]). The integral curves of ξ project to geodesics on M .

The almost contact Riemannian structure of UM satisfies

gs(E,φF ) = 2dη(E,F ), Γ (T(TM)).

To adapt contact Riemanian condition, Blair considered the following change of the structure

φ̃s = φs, ξ̃s = 2ξs, η̃s =
1

2
ηs, g̃s =

1

4
gs. (5.14)

The contact Riemannian structure (φ̃s, ξ̃s, η̃s, g̃s) is referred as to the standard contact Riemannian structure
(standard contact metric structure) in [16, 17]. For curvature properties and homogeneity of unit tangent sphere
bundles, see [50].
Remark 5.3. The idea of Sasaki lift metric can be traced back to Poincaré. See Sasaki’s article [199, 201]. In
many articles, gs is called the Sasaki metric. To avoid the confusion with Sasakian metrics (metrics of Sasakian
manifolds), in this article, we use the terminology "Sasaki-lift metric".

5.9. Some adapted connections

Tanno [219] introduced the following linear connection on a contact Riemannian manifolds:

∗∇XY = ∇XY + {(∇Xη)Y }ξ − η(Y )∇Xξ + η(X)φY. (5.15)

This connection is called the generalized Tanaka-Webster connection. By using the operator h, Tanno’s generalized
Tanaka-Webster connection is rewritten as

∗∇XY = ∇XY − g(φ(I + h)X,Y )ξ + η(X)φY + η(Y )φ(I + h)X.

The generalized Tanaka-Webster connection satisfies

∗∇ξ = 0, ∗∇η = 0, ∗∇g = 0.

The covariant derivative ∗∇ is given by
(∗∇Xφ)Y = Q(Y,X),

where Q is the Tanno tensor field defined by

Q(Y,X) = (∇Xφ)Y − g((I + h)X,Y )ξ + η(Y )(I + h)X.

On the other hand, in our previous work [110], we introduced the following one-parameter family of linear
connections on almost contact Riemannian manifolds:

∇r
XY =∇XY +Ar

XY, (5.16)

Ar
XY =− 1

2
φ(∇Xφ)Y −

1

2
η(Y )∇Xξ − rη(X)φY + {(∇Xη)Y }ξ, r ∈ R.

One can verify that
∇rφ = 0, ∇rξ = 0, ∇rη = 0, ∇rg = 0

The connections ∇r are called the almost contact connections.
The linear connection ∇r|r=0 coincides with the (φ, ξ, η)-connection in the sense of Sasaki-Hatakeyama [202].

Thus we may call∇r by the name generalized Sasaki-Hatakeyama connection. In [110], we call it generalized Tanaka-
Webster-Okumura connection. Note that the linear connection∇r|r=1 was introduced by Cho [47]. As we will see
later many Ambrose-Singer connections are given by almost connections.

For more details on contact Riemannian manifolds, we refer to [16, 17, 29] .
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6. CR-manifolds

6.1. CR-structures

An almost CR-structure S of a smooth manifold M is a complex vector subbundle S ⊂ TCM of the
complexified tangent bundle ofM satisfying S ∩ S = {0}. A manifoldM equipped with an almost CR-structure
is called an almost CR-manifold.

An almost CR-structure S is said to be integrable if it satisfies the integrability condition:

[Γ (S), Γ (S)] ⊂ Γ (S).

In such a case, (M,S) is called a CR-manifold.
Now let M = (M,φ, ξ, η, g) be an almost contact Riemannian manifold. Then we define an almost CR-

structure S of M by
S = {X −

√
−1φX | X ∈ Γ (D)}

with
D = {X ∈ TM | η(X) = 0}.

We call S the almost CR-structure associated to (φ, ξ, η, g). It should be emphasized that the integrability of S is
equivalent to the vanishing of the Sasaki-Hatakeyama torsion on D. Thus the associated almost CR-structures
of normal almost contact Riemannian manifolds are integrable.

Note that when dimM = 3, the associated almost CR-structure S is automatically integrable.
Assume that M is a contact Riemannian manifold. Define a section L of Γ (D∗ ⊗D∗) by

L(X,Y ) = −dη(X,φY ).

Then L is positive definite on D ⊗D and called the Levi-form of M . When the associated almost CR-structure S

is integrable, the resulting CR-manifold (M,S) is called a strongly pseudo-convex CR-manifold or strongly pseudo-
convex pseudo-Hermitian manifold.

Proposition 6.1. Let M be a contact Riemannian manifold. Then its associated almost CR-structure is integrable if and
only if its Tanno tensor field Q vanishes.

On a strongly pseudo-convex CR-manifolds, the following formula holds:

(∇Xφ)Y = g((I + h)X,Y )ξ − η(Y )(I + h)X (6.1)

for all vector fields X and Y . The formula (6.1) implies

∇Xξ = −φ(I + h)X, X ∈ Γ (TM)

According to Tanaka [213], a strongly pseudo-convex CR manifold is said to be normal if its Reeb vector field
is analytic, that is, [ξ, Γ (S)] ⊂ Γ (S). The Reeb vector field is analytic if and only if ξ is an infinitesimal contact
transformation and [X,φY ] = φ[X,Y ] for all X , Y ∈ Γ (D). One can see that a strongly pseudo-convex CR-
manifold is normal if and only if its underlying contact Riemannian structure is Sasakian.

6.2. Tanaka-Webster connections

In the study of strongly pseudo-convex CR-manifolds, the linear connection ∇̂ introduced by Tanaka and
Webster is highly useful:

∇̂XY = ∇XY + η(X)φY + {(∇Xη)Y }ξ − η(Y )∇Xξ. (6.2)

Here ∇ is the Levi-Civita connection of the associated metric. The linear connection ∇̂ is referred as to the
Tanaka-Webster connection [213, 228]. The Tanaka-Webster connection is rewritten as

∇̂XY = ∇XY + η(X)φY + η(Y )φ(I + h)X − g(φ(I + h)X,Y )ξ.

It should be remarked that the Tanaka-Webster connection has non-vanishing torsion T̂ :

T̂ (X,Y ) = 2g(X,φY )ξ + η(Y )φhX − η(X)φhY.
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With respect to the Tanaka-Webster connection, all the structure tensor fields (φ, ξ, η, g) are parallel, i.e.,

∇̂φ = 0, ∇̂ξ = 0, ∇̂η = 0, ∇̂g = 0.

On a strongly pseudo-convex CR-manifold M , the generalized Tanaka-Webster connection coincides with the
Tanaka-Webster connection.

On a strongly pseudo-convex CR-manifold M , the almost contact connection ∇r has the form

∇r
XY = ∇XY − g(φ(I + h)X,Y )ξ − rη(X)φY + η(Y )φ(I + h)X.

Hence∇r|r=−1 is the Tanaka-Webster connection. Thus, on a strongly pseudo-convex CR-manifoldM , we have
∗∇ = ∇̂ = ∇r|r=−1.

7. Three dimensional almost contact geometry

7.1. The vector product of almost contact Riemannian 3-manifolds

Let (M,φ, ξ, η, g) be a 3-dimensional contact metric manifold. Then as we have seen before, the volume
element dvg derived from the associated metric g is related to the contact form η by

dvg = −3η ∧ Φ. (7.1)

Even if M is non-contact, M is orientable by the 3-form −3η ∧ Φ and the volume element dvg coincides with
this 3-form. Thus hereafter we orient 3-dimensional almost contact metric manifolds by dvg = −3η ∧ Φ given
in (7.1). With respect to this orientation, the vector product × is computed as

X × Y = −Φ(X,Y )ξ + η(X)φY − η(Y )φX. (7.2)

Note that for a unit vector field X orthogonal to ξ, the local frame field {X,φX, ξ} is positively oriented and

ξ ×X = φX.

Here we emphasize that the existence of almost contact structure has no topological restriction for orientable
3-manifolds. Indeed, let (M, g,dvg) be an oriented Riemannian 3-manifold. Then there exists a non-vanishing
vector field Z ∈ Γ (TM). Set ξ = Z/||Z∥|, η = g(ξ, ·) and define an endomorphism field φ by φX := ξ ×X . One
can check that (φ, ξ, η, g) is an almost contact Riemannian structure such that dvg = −3Φ ∧ η.

Proposition 7.1 ([35]). Let (M, g,dvg) be an oriented Riemannian 3-manifold. Then there exits an almost contact
structure (φ, ξ, η) compatible to g and dvg.

7.2. Normal almost contact Riemannian manifolds

For an arbitrary almost contact Riemannian 3-manifold M , we have the following Olszak’s formula [179]:

(∇Xφ)Y = g(φ∇Xξ, Y )ξ − η(Y )φ∇Xξ. (7.3)

Moreover, we have
dη = η ∧∇ξη + αΦ, dΦ = 2βη ∧ Φ,

where α and β are the functions defined by

α =
1

2
tr (φ∇ξ), β =

1

2
tr (∇ξ) = 1

2
div ξ. (7.4)

The functions α and β are related by
dα(ξ) + 2αβ = 0.

On an almost contact Riemannian 3-manifold M , the almost contact connection has the form:

∇r
XY = ∇XY +Ar

XY, Ar
XY = −η(Y )∇Xξ + g(∇Xξ, Y )ξ − rη(X)φY. (7.5)

Olszak [179] showed that an almost contact Riemannian 3-manifold M is normal if and only if∇ξ ◦ φ = φ ◦ ∇ξ
or, equivalently,

∇Xξ = −αφX + β(X − η(X)ξ), X ∈ Γ (TM). (7.6)

We call the pair (α, β) the type of a normal almost contact Riemannian 3-manifold M .
A normal almost contact Riemannian 3-manifold M is said to be (cf. Definition 5.9)
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• quasi-Sasakian if β = 0.
• a-Sasakian if α = a is a non-zero constant and β = 0
• b-Kenmotsu if β = b is a non-zero constant and α = 0.

Note that Sasakian 3-manifolds [resp. Kenmotsu 3-manifold] are 1-Sasakian 3-manifolds [1-Kenmotsu 3-
manifolds]. A coKähler 3-manifold is a normal almost contact Riemannian 3-manifold of type (0, 0).

Now let M be a contact Riemannian 3-manifold, then its associated almost CR-structure is automatically
integrable. Hence we have

∇Xξ = −φ(I + h)X, X ∈ Γ (TM).

The covariant derivative φ is given by

(∇Xφ)Y = g((I + h)X,Y )ξ − η(Y )(I + h)X.

Hence we obtain the following result.

Proposition 7.2. Let (M,φ, η, ξ, g) be a contact Riemannian 3-manifold. Then the following three conditions are
mutually equivalent.

• M is a Sasakian manifold,
• ξ is a Killing vector field,
• ∇ξ = −φ,
• (∇Xφ)Y = g(X,Y )ξ − η(Y )X for any vector fields X and Y on M .
• h = 0 on M .

Remark 7.1. Analogous to the table of possible types of homogeneous Riemannian structures due to Tricerri and
Vanhecke [222], Chinea and Gonzalez gave a table of possible types of almost contact Riemannian structures
[45, 46]. Martín Cabrera [160] proved the non-existence of 132 Chinea and González-Dávila types of almost
contact Riemannian structures is proved in case the dimension is greater than 3.

8. Homogeneous contact Riemannian structures

8.1. Perrone’s classification

According to Boothby and Wang [28], a contact manifold (M,η) is said to be a homogeneous contact manifold if
there exists a Lie group of strictly contact transformations acting transitively (and effectively) on M .

Theorem 8.1 ([28]). Let (M,η) be a homogeneous contact manifold, then its Reeb vector field is regular.

Corollary 8.1 ([164]). Let M be a compact homogeneous contact manifold, then its associated almost contact structure
(φ, ξ, η) is normal.

Let M be a contact Riemannian manifold. Then M is said to be a homogeneous contact Riemannian manifold if
there exists a Lie group G of isometries which preserves the contact form and acts transitively on M . Theorem
5.1 implies that elements of G are automorphisms.

Perrone classified simply connected homogeneous contact Riemannian 3-manifolds. Such spaces are
classified by the Webster scalar curvature W = (s− Ric(ξ, ξ) + 4)/8 and the torsion invariant |τ |2 := |£ξg|2 =
8− 4Ric(ξ, ξ).

Theorem 8.2 ([190]). Let (M,η, ξ, φ, g) be a simply connected homogeneous contact Riemannian 3-manifold. Then M
is a Lie groupG equipped with a left invariant contact metric structure. IfG is unimodular, thenG is one of the following:

1. the Heisenberg group if W = |τ |2 = 0,

2. the special unitary group SU(2) if 4
√
2W > |τ |,

3. the universal covering S̃E(2) of the Euclidean motion group if 4
√
2W = |τ | > 0,

4. the universal covering S̃L2R if −|τ | ≠ 4
√
2W < |τ |,

5. the Minkowski motion group SE(1, 1) if 4
√
2W = −|τ | < 0.
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If G is non-unimoduar, then the Lie algebra g satisfies the commutation relations:

[e1, e2] = αe2 + 2e3, [e2, e3] = 0, [e3, e1] = γe2,

where ξ = e3, e1, e2 ∈ Γ (D), e2 = φe1, α ̸= 0 and 4
√
2W < |τ |. If γ = 0, then G is Sasakian.

Here we compute the fundamental quantities of 3-dimensional unimodular Lie group classified in Perrone’s
classification (see [99]).

Proposition 8.1. Let G be a 3-dimensional unimodular Lie group equipped with a left invariant contact Riemannian
structure (φ, ξ, η, g). Take a unimodular basis {e1, e2 = φe1, e3 = ξ}, then the endomorphism field h, the Webster scalar
curvature and the torsion invariant are given by

he1 = λe1, he2 = −λe1, λ = −1

2
(c1 − c2), W =

1

4
(c1 + c2), |τ |2 = (c1 − c2)2.

The holomorphic sectional curvature of G is

−3 + 1

4
(c1 − c2)2 + c1 + c2.

The unimodular Lie group G is Sasakian if and only if c1 = c2. In such a case, G is of constant holomorphic sectional
curvature c = −3 + c1 + c2.

Corollary 8.2. If a unimodular Lie group G is non-Sasakian, i.e., c1 ̸= c2, then G is a contact (κ, µ)-space with

κ = 1− 1

4
(c1 − c2)2, µ = 2− (c1 + c2).

Remark 8.1. A 3-dimensional non-unimodular Lie groupG equipped with a left invariant homogeneous contact
metric structure with γ = 0 is a Sasakian space form of constant holomorphic sectional curvature −3− α2 (see
[99]).

8.2. Homogeneous almost contact Riemannian structures

Let (M,η, ξ, φ, g) be an almost contact Riemannian manifold. A homogeneous almost contact Riemannian
structure is a homogeneous Riemannian structure S which satisfies the additional condition ∇̃φ = 0 (cf. [142]).

Chinea and Gonzalez obtained the following fundamental result.

Lemma 8.1 ([44]). Let S be a homogeneous almost contact Riemannian structure on an almost contact Riemannian
manifold M . Then the Ambrose-Singer connection ∇̃ satisfies

∇̃η = 0, ∇̃ξ = 0.

As a direct consequence of this Lemma, we have:

Theorem 8.3 ([44]). Let (M,η, ξ, φ, g) be a homogeneous contact Riemannian manifold. Then there exists a homogeneous
contact Riemannian structure S on M . Conversely, let M be a simply connected and complete contact Riemannian
manifold with a homogeneous contact Riemannian structure S then M is a homogeneous contact Riemannian manifold.

Here we quote the following fact.

Proposition 8.2 ([18, 23]). A non-Sasakian contact (κ, µ)-space is a locally homogeneous contact Riemannian manifold
with homogeneous contact Riemannian structure

SB(X)Y = −g(φ(I + h)X,Y )ξ + η(Y )φ(I + h)X +
µ

2
η(X)φY. (8.1)

For more information on homogeneous almost contact Riemannian structures, we refer to [146, 69, 70, 83,
227].
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8.3. Homogeneous contact Riemannian structures on 3-dimensional Lie groups

8.3.1. The unimodular Lie groups Tricerri and Vanhecke studied Cartan-Schouten’s (−)-connections and
corresponding homogeneous Riemannian structures on 3-dimensional Lie groups [222]. Calviño-Louzao,
Ferreiro-Subrido, García-Río and Vázquez-Lorenzo classified homogeneous Riemannian structures of 3-
dimensional unimodular Lie groups under the assumption the homogeneous Riemannian structures are left
invariant [39]. Ohno and the present author proved that the classification result due to [39] is true without the
left invariance assumption.

Proposition 8.3 ([39, 124]). LetG be a 3-dimensional unimodular Lie group with a unimodular basis {e1, e2, e3}. Denote
by {ϑ1, ϑ2, ϑ3} the metrically dual coframe field. Assume that c1, c2 and c3 are all distinct, then the only homogeneous
Riemannian structure of G is given by

S♭ = −(c1 + c2 − c3)η ⊗ (ϑ1 ∧ ϑ2) + (c1 − c2 − c3)ϑ1 ⊗ (ϑ2 ∧ ϑ3)− (c1 − c2 + c3)ϑ
2 ⊗ (ϑ3 ∧ ϑ1).

The homogeneous Riemannian structure S is of type T2 ⊕ T3. In particular it is of type T2 if and only if c1 + c2 + c3 = 0.
The connection ∇+ S is the Cartan-Schouten’s (−)-connection.

It should be remarked that on unimodular Lie groups whose Lie algebras are isomorphic to sl2R, there exists
a non left invariant homogeneous Riemannian structure. We will describe this phenomena in Theorem 15.3 (see
also [124]).

Let us apply this classification to the unimodular Lie group equipped with a left invariant homogeneous
contact Riemannian structure, then S♭ is rewritten as

S♭ = µη ⊗ (ϑ1 ∧ ϑ2)− 2(1 + λ)ϑ1 ⊗ (ϑ2 ∧ ϑ3)− 2(1− λ)ϑ2 ⊗ (ϑ3 ∧ ϑ1).

On the other hand, the almost contact connections ∇r is described as

Ar
♭ = −2rη ⊗ (ϑ1 ∧ ϑ2)− 2(1 + λ)ϑ1 ⊗ (ϑ2 ∧ ϑ3)− 2(1− λ)ϑ2 ⊗ (ϑ3 ∧ ϑ1).

Thus we obtain the following result.

Corollary 8.3. Let G be a 3-dimensional unimodular Lie group equipped with a left invariant contact Riemannian
structure. Assume that the structure constants c1, c2 and c3 = 2 are all distinct, then G is a contact (κ, µ)-space with
κ = 1− (c1 − c2)2/4 and µ = 2− (c1 + c2). The only homogeneous Riemannian structure of G is given by

S♭ = Ar
♭ = SB

♭ , r = −µ
2
= −1 + 1

2
(c1 + c2).

The homogeneous Riemannian structure coincides with the one given by (8.1). Moreover, the connection ∇+ S is the
Cartan-Schouten’s (−)-connection. The homogeneous Riemannian structure S is of type T2 ⊕ T3. In particular it is of
type T2 if and only if c1 + c2 = −2. In particular,

1. ∇(−) = ∇+ S coincides with Tanaka-Webster connection when and only when c1 + c2 = 0. In such a case,
g ∼= sl2R ∼= su(1, 1). The Lie group G is a contact (κ, 2)-space with κ = 1− c21 < 1. In case (c1, c2) = (±2,∓2),
then G is locally isometric to UH2 equipped with the standard contact Riemannian structure.

2. When c1 = 0 and c2 ̸= 0, 2, then G is locally isomorphic to SE(2) if c2 > 0 and SE(1, 1) if c2 < 0, respectively. The
fundamental quantities are λ = c2/2,W = c2/4, |τ |2 = c22. The holomorphic sectional curvature is−3 + c2 + c22/4.

Note that when c1 = 0 and c2 = 2, then G is locally isomorphic to SE(2). The left invariant metric of G is
flat, λ = 1, W = 1/4 and |τ |2 = 4. We notice that the universal covering group S̃E(2) is isometric to Euclidean
3-space (but not isomorphic as a Lie group). For later use, we describe (almost) contact Riemannian structures
on SE(2) in detail.

8.3.2. The Euclidean motion group SE(2) The rigid motion group SE(2) of E2 is the semi-direct product of rotation
group SO(2) and translation group (R2,+). The semi-direct product structure of SO(2)⋉R2 is

(A,p) · (B, q) := (AB,p+Aq), A,B ∈ SO(2), p, q ∈ R2. (8.2)

The semi-direct product SO(2)⋉R2 is isomorphic to the following closed subgroup of GL3R (Example 4.9):

SE(2) =


 cos θ − sin θ x

sin θ cos θ y
0 0 1

 ∣∣∣∣∣∣ x, y ∈ R, 0 ≤ θ < 2π

 (8.3)
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We may regard (x, y, θ) as a global coordinate system of SE(2). Thus SE(2) is R2(x, y)× S1 with multiplication
rule:

(x, y, θ) ∗ (x′, y′, θ′) = (x+ cos θ x′ − sin θ y′, y + sin θ x′ + cos θ y′, θ + θ′). (8.4)

The Lie algebra e(2) corresponds to

se(2) =


 0 −w u

w 0 v
0 0 0

 ∣∣∣∣∣∣ u, v, w ∈ R

 (8.5)

We take a basis {V1, V2, V3} of se(2):

V1 =

 0 0 1
0 0 0
0 0 0

 , V2 =

 0 0 0
0 0 1
0 0 0

 , V3 =

 0 −1 0
1 0 0
0 0 0

 .

Then the left translated vector fields of V1, V2 and V3 are

v1 = cos θ
∂

∂x
+ sin θ

∂

∂y
, v2 = − sin θ

∂

∂x
+ cos θ

∂

∂y
, v3 =

∂

∂θ
.

The left invariant Riemannian metric determined by the condition {V1, V2, V3} is orthonormal is

g = dx2 + dy2 + dθ2.

Namely, as a Riemannian manifold, SE(2) is a Riemanian product of E2(x, y) and S1. In other words, SE(2) is
identified with the unit tangent sphere bundle UE2. Since

[v1, v2] = 0, [v2, v3] = v1, [v3, v1] = v2,

{v1, v2, v3} is a unimodular basis. The Levi-Civita connection ∇ of SE(2) is described as follows (Table 3):

∇v1v1 = 0, ∇v1v2 = 0, ∇v1v3 = 0,

∇v2v1 = 0, ∇v2v2 = 0, ∇v2v3 = 0,

∇v3v1 = v2, ∇v3v2 = −v1, ∇v3v3 = 0.

Define a linear endomorphism ψ on SE(2) by

ψv1 = v2, ψv2 = −v1, ψv3 = 0

and set ζ = v3 and ω = g(v3, ·). Then the triplet (ψ, ζ, ω) gives a left invariant almost contact structure compatible
to g. Since ω is exact, this almost contact structure is non-contact. Denote by Ψ the fundamental 2-form. Then
one can see that dω = 0 and dΨ = 0. hence the structure (ψ, ζ, ω, g) is almost coKähler satisfying ∇ζ = 0 and
hence (SE(2), ψ, ζ, ω, g) is coKähler space form.

In the next subsection, we exhibit canonical contact structure of SE(2).

8.3.3. Canonical contact structure on SE(2) The universal covering group S̃E(2) of SE(2) is Cartesian 3-space
R3(x, y, z) with multiplication:

(x, y, z) ∗ (x′, y′, z′) = (x+ cos z x′ − sin z y′, y + sin z x′ + cos z y′, z + z′). (8.6)

On S̃E(2) = (R3, ∗), the discrete subgroup ΓE = 2πZ of (R3, ∗) acts on S̃E(2) by translation:

S̃E(2)× ΓE → S̃E(2); (x, y, z) · 2πm = (x, y, z + 2πm). (8.7)

This action is properly discontinuous. The factor space of S̃E(2) is diffeomorphic to R2(x, y)× S1 and identified
with SE(2). Let us denote by pE the projection pE : S̃E(2)→ SE(2). To adapt with contact Riemannian condition
Φ = dη, we take a contact form

η̃ =
1

2
(cos z dx+ sin z dy)
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and a Riemannian metric
g̃ =

1

4
(dx2 + dy2 + dz2).

Then the Reeb vector field is

ξ̃ = 2

(
cos z

∂

∂x
+ sin z

∂

∂y

)
.

Let us introduce the endomorphism field φ̃ by

dη̃(X,Y ) = g̃(X, φ̃Y ), X, Y ∈ Γ (TS̃E(2)).

Since
dη̃ = −cos z

2
dy ∧ dz − sin z

2
dz ∧ dx,

we have
φ̃∂x = − sin z ∂z, φ̃∂y = cos z ∂z, φ̃∂z = sin z

∂

∂x
− cos z

∂

∂y
.

Set

ẽ1 = 2

(
− sin z

∂

∂x
+ cos z

∂

∂y

)
, ẽ2 = 2

∂

∂z
, ẽ3 = ξ̃.

Then we have
[ẽ1, ẽ2] = 2 ẽ3, [ẽ2, ẽ3] = 0, [ẽ3, ẽ1] = 2 ẽ2.

Hence (S̃E(2), φ̃, ξ̃, η̃, g̃) is a simply connected unimodular Lie group equipped with a left invariant contact
Riemannian structure. From Corollary 8.3, we deduce that the homogeneous contact Riemannian 3-manifold
(S̃E(2), φ̃, ξ̃, η̃, g̃) is a contact (0, 0)-space. One can confirm that the almost contact connection ∇r defined by
(5.16) with respect to the contact Riemannian structure (φ̃, ξ̃, η̃, g̃) is an Ambrose-Singer connection when
and only when r = 0 (Sasaki-Hatakeyama’s (φ, ξ, η)-connection). Moreover, since S̃E(2) is a contact (0, 0)-
space, the Sasaki-Hatakeyama’s (φ, ξ, η)-connection coincides with Boeckx’s connection (8.1). It should be
emphasized that the Sasaki-Hatakeyama’s (φ, ξ, η)-connection of S̃E(2) is nothing but the (−)-connection. The
(−)-connection of S̃E(2) is described as (cf. (16.6)):

∇(−)
∂z
∂x = −∂y, ∇(−)

∂z
∂y = ∂x. (8.8)

The contact form η̃ induces a contact form η on SE(2) so that p∗Eη = η̃. As a contact manifold, the Euclidean
motion group SE(2) is isomorphic to (R3/2πZ, η).

8.3.4. Standard contact structure on tori The canonical contact structure on S̃E(2) induces a contact structure on
3-dimensional tori. In this section, we exhibit the induced contact structure on flat tori.

The contact form η̃ is invariant under the action of discrete subgroup ΓT = 2πZ3 of the abelian group (R3,+)
defined by

(x, y, z) + 2π(l,m, n), (l,m, n) ∈ Z3.

Furthermore the Euclidean metric g̃ = dx2 + dy2 + dz2 is invariant under ΓT. Hence η̃ induces a contact
structure ηT on the (flat) torus T3 = R3/ΓT. Thus (T3, ηT) is a compact flat 3-manifold which admits a contact
structure [95, 113].

Proposition 8.4. The 3-torus S̃E(2)/2πZ3 admits a contact structure.

Note that on ΓT, two multiplications "+" and "∗" given by (8.6) coincide. Hence the factor space (R3, ∗)/2πZ3

is a 3-torus with "noncommutative" Lie group structure.
We can see that this contact manifold T3 is not regular. The integral curve ψ(t) of the Reeb vector field ξ̃

through (0, 0, π/3) is

ψ(t) = Exp(tξ̃)(0, 0, π/3) =

(
t

2
,

√
3t

2
,
π

3

)
.

Hence ξ induces an irrational flow on 2-torus in T3 defined by z = π/3. Thus the 3-torus T3 is not regular
contact manifold. More generally every 3-torus can not admit regular contact structure. The contact Riemanian
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structure on E3 and T3 are not homogeneous with respect to the additive group structure but homogeneous
with respect to the group structure of S̃E(2). In particular, SE(2) itself is a homogeneous contact Riemannian
manifold.

According to this observation, it seems to be natural that the contact structure determined by η̃ on R3 is
regarded as a contact structure on the covering group S̃E(2) of the Euclidean motion group from the group
theoretical view.

8.3.5. The model space Sol3 Let us realize the Minkowski plane E1,1 as Cartesian plane R2(x, y) equipped with
the scalar product dx⊙ dy relative to the global null coordinates (x, y). Then the identity component of the
isometry group is realized as

SE(1, 1) =


 e−z 0 x

0 ez y
0 0 1

 ∣∣∣∣∣∣ x, y, z ∈ R


and called the Minkowski motion group (Remark 4.2, Table 3). The Lie algebra se(1, 1) is given by

se(1, 1) =


 −w 0 u

0 w v
0 0 0

 ∣∣∣∣∣∣ u, v, w ∈ R

 .

We can take a basis

e1 =

 0 0 1
0 0 0
0 0 0

 , e2 =

 0 0 0
0 0 1
0 0 0

 , e3 =

 −1 0 0
0 1 0
0 0 0


of se(1, 1). By left translation, we obtain a left invariant vector fields:

e1 = e−z ∂

∂x
, e1 = ez

∂

∂y
, e1 =

∂

∂z
,

[e1, e2] = 0, [e2, e3] = −e2, [e3, e1] = −e1.

The left invariant Riemannian metric on SE(1, 1) determined by the condition {e1, e2, e3} is orthonormal with
respect to it is

g = e2zdx2 + e−2zdy2 + dz2.

The homogeneous Riemannian 3-space Sol3 := (R3, g) = SE(1, 1)/{E3} is the model space of solvegeometry in
the sense of Thurston [220]. According to the classification of Kowalski [149, Theorem VI.2], the only simply
connected proper generalized symmetric Riemannian 3-space is Sol3 = Sol3/{e}. The Riemannian 4-symmetric
space representation is Sol3 = Sol3/{e} associated with the automorphism

τ(x, y, z) = (−y, x,−z).

It should be remarked that Sol3/{e} is irreducible. Tsunero Takahashi [210] showed that Sol3 can be
isometrically embedded in hyperbolic 4-space H4 of constant curvature −1. He proved that simply connected
homogeneous Riemannian 3-space (M3, g) can be isometrically immersed in H4 with type number 2 if and only
if M3 is isometric to Sol3.

8.4. The standard contact structure on SE(1, 1)

Let us start to study homogeneous contact structures on the space Sol3. To adapt with the convention dη = Φ,
the standard contact form of Sol3 is rescaled as

ω =
1

2
√
2
(ezdx+ e−zdy).

The Reeb vector field ζ of ω is

ζ =
√
2

(
e−z ∂

∂x
+ ez

∂

∂x

)
.
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The associated Riemannian metric is

g̃ =
1

4
g =

1

4
(e2zdx2 + e−2zdy2 + dz2).

Note that the Levi-Civita connection of g̃ coincides with ∇ of g.
Take a left invariant orthonormal frame field {u1, u2, u3} of (Sol3, g̃) defined by

u1 = 2
∂

∂z
, u2 = −

√
2

(
e−z ∂

∂x
− ez ∂

∂y

)
, u3 =

√
2

(
e−z ∂

∂x
+ ez

∂

∂y

)
= ζ.

Then the Levi-Civita connection of g̃ is described as

∇u1u1 = ∇u1u2 = ∇u1u3 = 0,

∇u2
u1 = −2u3, ∇u2

u2 = 0, ∇u2
u3 = 2u1,

∇u3u1 = −2u2, ∇u3u2 = 2u1, ∇u3u3 = 0.

The left invariant orthonormal frame field {u1, u2, u3} satisfies

[u1, u2] = 2u3, [u2, u3] = 0, [u3, u1] = −2u1.

Hence {u1, u2, u3} is a unimodular basis of sol3.
The endomorphism field ψ determined by the formula

dω(X,Y ) = g̃(X,ψY )

is computed as
ψu1 = u2, ψu2 = −u1, ψu3 = 0.

The endomorphism field ψ is described as

ψe1 =
1√
2
e3, ψe2 = − 1√

2
e3, ψe3 = − 1√

2
(e1 − e2)

relative to the orthonormal frame field {e1, e2, e3}.
From Corollary 8.3, we deduce that the homogeneous contact Riemannian 3-manifold (Sol3, g̃) is a contact

(0, 4)-space. The only homogeneous (contact) Riemannian structure is S = A−2. This connection will be
reinterpreted in Corollary 16.1.

9. Sasakian φ-symmetric spaces

Okumura [175] proved that locally symmetric Sasakian manifolds are of constant curvature 1. Tanno
generalized Okumura’s result toK-contact manifolds [216]. Boeckx and Cho [26] proved that locally symmetric
contact Riemannian (2n+ 1)-manifolds are locally isomorphic to S2n+1 or the unit tangent sphere bundle
UEn+1 equipped with a normalized Sasaki-lift metric (thus it is isometric to En+1 × Sn(4)). Thus the local
symmetry is a too strong restriction for contact Riemannian manifolds.

9.1. The canonical connection

Let M be a Sasakian manifold. Then the almost contact connection (5.16) has a particular form:

∇r
XY = ∇XY +Ar

XY, Ar
XY = dη(X,Y )ξ − rη(X)φY + η(Y )φX, r ∈ R. (9.1)

Since Sasakian manifolds are strongly pseudo-convex, the connection ∇r|r=−1 coincides with Tanaka-Webster
connection ∇̂. This 1-parameter family of linear connection coincides with the one introduced by Okumura
[175]. The connection ∇r|r=1 was investigated by Motomiya [165] (see also [136]). Some authors called ∇r|r=1,
the Okumura connection ( e.g., [21]). Toshio Takahashi [209] called it the M -connection.

The connection ∇r|r=1 is called the characteristic connection by Friedrich and Ivanov [73].
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Proposition 9.1 ([175, 209]). The linear connection ∇r satisfies

∇rg = 0, ∇rφ = 0, ∇rη = 0, ∇rξ = 0, ∇rAr = 0.

This Proposition implies that if a Sasakian manifold M satisfies ∇rR = 0 then it is a locally homogeneous
Sasakian manifold with homogeneous contact Riemannian structure Ar.

Proposition 9.2 (cf. [126, 209]). The curvature Rr and torsion T r of the connection∇r satisfies the following formulas:

T r(X,Y ) =2dη(X,Y )ξ − (r + 1){η(X)φY − η(Y )φX},
Rr(X,Y )Z =R(X,Y )Z + {η(Y )g(Z,X)− η(X)g(Y, Z)}ξ + η(Z)η(X)Y − η(Y )η(Z)X

+ dη(Y, Z)φX + dη(Z,X)φY − 2rdη(X,Y )φZ,

Rr(X,Y )ξ =Rr(ξ,X)Y = 0, η(Rr(X,Y )Z) = 0,

Rr(φX,φY )φZ =φRr(X,Y )Z.

for all X ,Y ,Z ∈ Γ (TM).

Proposition 9.3 ([209]). On a Sasakian manifold M , ∇rRr = 0 holds if and only if ∇rR = 0.

Here we recall a more geometric interpretation of the parallelism ∇rRr = 0. For this purpose we use the
following conservation law:

Lemma 9.1. Let M be a K-contact manifold. A geodesic γ initially orthogonal to ξ remain orthogonal to ξ.

The following notion was originally introduced by Toshio Takahashi [209]. Here is a reformulated one due
to Bueken and Vanhecke [32].

Definition 9.1 ([32, 209]). Let M be a K-contact manifold.

1. A geodesic γ(s) parametrized by arc length in M is said to be a φ-geodesic if η(γ′) = 0.

2. A local diffeomorphism sp is said to be a φ-geodesic symmetry with base point p ∈M if for each φ-geodesic
γ(s) such that γ(0) lies in the trajectory of ξ passing through p, spγ(s) = γ(−s) for each s.

3. M is said to be a locally φ-symmetric space if its φ-geodesic symmetries are isometric.

Since the points of the Reeb flow through p is are fixed by sp, one can see that sp is represented as a polar
map (see (4.3)):

sp = expp ◦ (−Ip + 2ηp ⊗ ξp) ◦ exp−1
p .

Bueken and Vanhecke proved the following important fact.

Proposition 9.4 ([32]). LetM be a locally φ-symmetric space, thenM is Sasakian and all the local φ-geodesic symmetries
are local automorphisms.

A K-contact manifold M whose local φ-geodesic symmetries are extendable to global isometries is called a
φ-symmetric space. Takahashi proved that φ-symmetric spaces are homogeneous Sasakian manifolds on which
the automorphism group acts transitively. Moreover, φ-symmetric spaces are regular Sasakian manifolds and
principal bundles over Hermitian symmetric spaces.

Takahashi characterized locally φ-symmetric spaces in terms of almost contact connections as follows:

Proposition 9.5 ([209]). A Sasakian manifold is locally φ-symmetric if and only if the curvature tensor Rr of the almost
contact connections ∇r is parallel with respect to ∇r, i.e., ∇rRr = 0.

Since the difference tensor A1 satisfies A1
XX = 0, the following interesting result is deduced [21].

Proposition 9.6. Let M be a locally φ-symmetric space. Then A1 defines a homogeneous Riemannian structure of type
T3 on M .

Three-dimensional φ-symmetric spaces are classified by Blair and Vanhecke [20] (as a consequence of the
classification of 3-dimensional naturally reductive homogeneous spaces). Next, Kowalski and Węgrzynowski
[155] classified 5-dimensional φ-symmetric spaces. Jiménez and Kowalski [135] had done a full classification
of φ-symmetric spaces (see also Tamaru [211]).

Here we specialize that dimM = 3. Take a local orthonormal frame field {e1, e2, e3} satisfying

e2 = φe1, e3 = ξ.

Denote by {ϑ1, ϑ2, ϑ3} the dual orthonormal coframe field to {e1, e2, e3}, then Ar is locally expressed in the
following form:
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Proposition 9.7. The almost contact connection ∇r on a Sasakian 3-manifold M is expressed as ∇r = ∇+Ar with

Ar
♭ = −2rϑ3 ⊗ (ϑ1 ∧ ϑ2)− 2ϑ1 ⊗ (ϑ2 ∧ ϑ3)− 2ϑ2 ⊗ (ϑ3 ∧ ϑ1).

In particular A1
♭ = −dvg.

Proof. Since Ar
♭ satisfies

Ar
♭ (X,Y, Z) +Ar

♭ (X,Z, Y ) = 0,

Ar
♭ is expressed as

Ar
♭ = 2Ar

♭ (X, e1, e2)(ϑ
1 ∧ ϑ2) + 2Ar

♭ (X, e2, e3)(ϑ
2 ∧ ϑ3) + 2Ar

♭ (X, e3, e1)(ϑ
3 ∧ ϑ1).

By the definition of Ar, we get the required result.

Corollary 9.1. Let M be a 3-dimensional Sasakian φ-symmetric space, then Ar is a homogeneous Riemannian structure
of type T2 ⊕ T3. Moreover Ar is of type T2 if and only if r = −2.

Proof. Some calculation show that c12(Ar
♭ ) = 0 and

S
X,Y,Z

Ar
♭ (X,Y, Z) = −4(r + 2){ϑ3 ⊗ (ϑ1 ∧ ϑ2) + ϑ1 ⊗ (ϑ2 ∧ ϑ3) + ϑ2 ⊗ (ϑ3 ∧ ϑ1)}.

Under the Sasakian assumption, Bueken and Vanhecke proved the following characterization.

Proposition 9.8 ([31]). A Sasakian manifold M is locally φ-symmetric if and only if all the local φ-geodesic symmetries
are harmonic maps.

Remark 9.1 (Reflections around curves). Local φ-geodesic symmetry is a particular example of reflection around
a curve. Let (M, g) be a Riemannian manifold and γ be an embedded curve in M with tubular neighborhood
U . For any point p ∈M we set

p = expγ(t)(ru), u ∈ T⊥
γ(t)γ, ||u|| = 1, t ∈ [a, b],

where r is the Riemannian distance between p and γ(t). Then the map sγ : U → U defined by

sγ(expγ(t)(ru)) = expγ(t)(−ru)

is called a local reflection around γ [224]. More generally, Nicolodi and Vanhecke [167, 168, 169] introduced the
notion of rotation around a curve in the following manner. Take a field S of linear endomorphisms defined
along γ satisfying

S(t)γ̇(t) = γ̇(t), g(S(t)X,S(t)Y ) = g(X,Y ), X, Y ∈ T⊥
γ(t)M.

Then the polar map sγ
sγ = expγ ◦S ◦ exp−1

γ

is called the rotation around γ. In case S− I is non-singular in the normal bundle of γ, then sγ is called a free
rotation. One can see that rotation aroud γ with S = −I is noting but the reflection around γ. On a K-contact
manifoldM , a reflection with S = −I + 2η ⊗ ξ is a local φ-geodesic symmetry. On an almost Hermitian manifold
(M, g, J), Nicolodi and Vanhecke [167] studied rotations jγ = expγ ◦J ◦ exp−1

γ which are called J-rotations. The
present author [126] and Bueken and Vanhecke [33] studied rotations of the form sγ = expγ ◦(φ+ η ⊗ ξ) ◦ exp−1

γ

(called φ-rotations). Bueken and Vanhecke proved that a real analytic Sasakian manifold M is locally φ-
symmetric if and only if all the φ-rotations are isometric. Moreover a φ-rotation is harmonic if and only if it is
isometric. On the other hand, the present author [126] proved that a K-contact manifold is locally φ-symmetric
if and only if all the φ-rotations are isometric. Another kind of generalization of φ-geodesic symmetry on
K-contact manifolds was proposed in [128].

For more information on Sasakian φ-symmetric spaces, we refer to [22, 30, 135, 155]. Recently Ohnita
[172, 173] used the connection ∇r with r = −1/2
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9.2. SU(n+ 1)-invariant metric connections

Here we point out that Okumura connection ∇1 = ∇+A1 on S2n+1 can be discovered by the classification
of SU(n+ 1)-invariant metric connections [62, Theorem 4.9].

Theorem 9.1. For every SU(n+ 1)-invariant metric linear connection D on the unit sphere S2n+1 = SU(n+ 1)/SU(n)
with n ≥ 4 equipped with a SU(n+ 1)-invariant Sasakian structure, there exit q ∈ C and t ∈ R such that the difference
tensor field S = D −∇ is expressed as

S(X)Y = (Re q − 1)(g(X,φY )ξ + η(Y )φX) + Im q (∇Xφ)Y +

(
t+

1

n

)
η(X)φY.

In particular, every SU(n+ 1)-invariant metric linear connection D with totally skew symmetric torsion is expressed as

DXY = ∇XY + t A1(X)Y

for some t ∈ R.

In case n > 1, the canonical connection ∇c of the second kind (in the sense of Nomizu) of S2n+1 = SU(n+
1)/SU(n) is given by (see [62, Example 4.11]):

∇c
XY = ∇XY − g(X,φY )ξ − η(Y )φX +

1

n
η(X)φY.

Thus ∇c does not have totally skew-symmetric torsion. Note that when n = 1, the isotropy algebra is {0}.

9.3. CR-symmetry

Now let M be a strongly pseudo-convex CR-manifold. A local diffeomorphism σp defined around a point
p ∈M is said to be a local CR-symmetry at p if p is an isolated fixed point of it and satisfies (dσp)p

∣∣
Dp

= −Ip
∣∣
Dp

.
A strongly pseudo-convex CR-manifold M is said to be locally CR-symmetric if all the local CR-symmetries

are local CR-automorphism. When all the local CR-symmetry of a locally CR-symmetric space M are
extendable to global ones, then M is said to be a CR-symmetric space ([57, 138]). One can see that the local
CR-symmetry satisfies

(dσp)p = −Ip + 2ηp ⊗ ξp.

Thus we obtain the following CR-geometric interpretation of local φ-symmetry [57]:

Proposition 9.9. A Sasakian manifold M is locally CR-symmetric if and only if it is locally φ-symmetric.

A spherical CR-manifold is a strongly pseudo-convex CR-manifold locally CR-equivalent to S2n+1. Spherically
CR-manifolds are characterized as strongly pseudo-convex CR-manifolds with vanishing Chern-Moser-Tanaka
invariant. The unit sphere S2n+1 (n ≥ 2) is characterized as the unique simply connected and compact
spherically CR-symmetric space up to homothety.

Theorem 9.2 ([57]). Let M be a strongly pseudo-convex CR-manifold of dimension 2n+ 1 > 3. Assume that M is
non-Sasakian. Then M is locally CR-symmetric if and only if it is a contact (κ, µ)-space.

Theorem 9.3 ([57]). Let M be a locally CR-symmetric strongly pseudo-convex CR-manifold of dimension 2n+ 1 > 3.
Then the following properties are mutually equivalent:

• M is spherical.
• µ = 2.
• The Webster curvature of M vanishes.

Example 9.1. LetMn(εc2) be an n-dimensional Riemannian space form of curvature εc2. Here ε = 0 or±1 and c
is a positive constant. Then its unit tangent bundle UMn(εc2) equipped with the standard contact Riemannian
structure is a contact (κ, µ)-space with

κ = εc2(2− εc2), µ = −2εc2.

In particular, the unit tangent sphere bundle UHn is a contact (−3, 2)-space with vanishing Boeckx invariant.
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Remark 9.2. Boeckx and Cho [27] investigate two classes of contact Riemannian manifolds.

1. Contact Riemannian manifolds whose generalized Tanaka-Webster connection ∗∇ satisfying

∗∇ ∗T = 0, ∗∇ ∗R = 0.

Here ∗T and ∗R are torsion and curvature of ∗∇. Note that the parallelism ∗∇ ∗T = 0 implies the
integrability of the associated almost CR-structures. They showed that those contact Riemannian
manifolds are Sasakian locally φ-symmetric or non-Sasakian contact (κ, 2)-spaces.

2. A strongly pseudo-convex CR-manifold M is said to be a weakly locally pseudo-Hermitian symmetric space
in the sense of Boeckx-Cho if

L((∇̂XR̂)(Y,Z)U, V ) = 0

for any X , Y , Z, U , V ∈ Γ (D). Here L is the Levi-form and R̂ is the curvature of the Tanaka-Webster
connection ∇̂.

They showed that locally φ-symmetric spaces are weakly locally pseudo-Hermitian symmetric spaces.
Moreover non-Sasakian contact (κ, µ)-spaces are also weakly locally pseudo-Hermitian symmetric.

On the other hand, a strongly pseudo-convex CR-manifold M is said to be a strongly locally pseudo-Hermitian
symmetric space in the sense of Boeckx-Cho if all ∇̂-reflections around the Reeb flow are locally affine mappings.
It is known that M is strongly locally pseudo-Hermitian symmetric if and only if [14, 27, 65]

∇̂X T̂ = 0, ∇̂XR̂ = 0

for any X ∈ Γ (D).
Moreover, a strongly pseudo-convex CR manifold is a strongly locally pseudo-Hermitian symmetric if and

only if M is locally φ-symmetric or a non-Sasakian contact (κ, µ)-space ([27, Theorem 14]).

The local φ-symmetry can be interpreted as sub-Riemannian symmetry. We recommend [3, 14, 65, 66, 67, 208]
for interested readers.

9.4. Almost contact connections

In [225], Vezzoni considered linear connections on contact manifolds satisfying the following properties:

1. The contact distribution is invariant, that is, for any X ∈ Γ (TM), DXΓ (D) ⊂ Γ (D).

2. DξY = [Y, ξ] for any Y ∈ Γ (D).

3. DXξ = 0 for any X ∈ Γ (D).

4. (DY (dη))(Y1, Y2) = 0 for any Y1, Y2 ∈ Γ (D).

Such a linear connectionD is called an almost contact connection in [225]. The transverse torsion TD
D ofD is defined

by
TD
D (X,Y ) = DXY −DYX − [X,Y ]D, X, Y ∈ Γ (D).

An almost contact connection D in the sense of Vezzoni is said to be a contact connection if its transverse torsion
vanishes.

Vezzoni proved that every contact Riemannian manifoldM admits such a linear connection. One can confirm
the following propositions.

Proposition 9.10. The generalized Tanaka-Webster connection ∗∇ of a contact Riemannian manifoldM can be a contact
connection in the sense of Vezzoni when and only when M is Sasakian.

Proposition 9.11. On a Sasakian manifold M , the linear connection ∇r is a contact connection in the sense of Vezzoni
if and only if r = −1, that is, it is the Tanaka-Webster connection.

Note that the natural contact connection of a Sasakian manifold given in [225, Example 2.4] coincides with
the Tanaka-Webster connection.
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10. Sasakian space forms

10.1. Three dimensional Sasakian space forms

Let M be a (2n+ 1)-dimensional Sasakian space form of constant holomorphic sectional curvature c. Then
M is said to be an elliptic [resp. parabolic or hyperbolic ] Sasakian space form if c > −3 [resp. c = −3 or c < −3].

Tanno [218] classified simply connected Sasakian space forms. In 3-dimensional case, Tanno’s classification
is reformulated as follows (cf. [10, 20]) :

Proposition 10.1. ([218]) Let M3(c) be a 3-dimensional simply connected Sasakian space form of constant holomorphic
sectional curvature c. Then M3(c) is isomorphic to Heisenberg group Nil3 with canonical Sasakian structure if c = −3,
and M3(c) is isomorphic to the universal covering group S̃L2R of SL2R equipped with Sasakian structure if c < −3.

It is known that every Sasakian manifold of constant holomorphic sectional curvature is locally φ-symmetric
[209]. Conversely, every 3-dimensional Sasakian φ-symmetric space is of constant holomorphic sectional
curvature [20].

10.2. Elliptic Sasakian space forms

Now we recall Tanno’s explicit construction of simply connected elliptic Sasakian space form M2n+1(c), c >
−3.

Let us denote by (η1, ξ1, φ1, g1) the canonical contact structure Riemannian of unit sphere S2n+1. For any
constant c > −3, we perform the transversally homothetic deformation (5.5) to S2n+1 with a = 4/(c+ 3). The
resulting structure is described as

η :=
4

c+ 3
η1, ξ :=

c+ 3

4
ξ1, φ = φ1, g :=

4

c+ 3
g1 +

4(1− c)
(c+ 3)2

η1 ⊗ η1. (10.1)

One can easily check that the D-homothetic deformation of S2n+1 is a Sasakian manifold of constant
holomorphic sectional curvature c > −3. Tanno classified the simply connected elliptic Sasakian space forms.

Proposition 10.2. ([218]) Every simply connected 3-dimensional elliptic Sasakian space form M2n+1(c) is isomorphic
to a D-homothetic deformation of the unit sphere S2n+1 with c > −3.

As a Riemannian (2n+ 1)-manifold, M2n+1(c) with c > −3 and c ̸= 1 is the so-called Berger sphere (up to
homothety) [11, 12]. We give explicit models of 3-dimensional Sasakian space forms in Section 10, 11 and 12
(and 14) according as c = −3, c > −3 and c < −3, respectively.

11. Parabolic Sasakian space forms

In this section we give an explicit linear Lie group model of the Sasakian space form M3(−3).

11.1. The Heisenberg group Nil3

The 3-dimensional Heisenberg group Nil3 is R3(x, y, z) together with the group structure:

(x, y, z) · (x′, y′, z′) := (x+ x′, y + y′, z + z′ + (xy′ − x′y)/2 ).

We define a left invariant Riemannian metric g by

g =
dx2 + dy2

4
+

1

4

(
dz +

ydx− xdy
2

)2

. (11.1)

Then the homogeneous Riemannian 3-manifold (Nil3, g) has 4-dimensional isometry group. In fact the identity
component of the isometry group of (Nil3, g) is isomorphic to the semi-direct product Nil3⋉SO(2) [61]. The
action of Nil3⋉SO(2)3 on Nil3 is ab

c

 , [cos θ − sin θ
sin θ cos θ

] ·
xy
z


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=

 cos θ − sin θ 0
sin θ cos θ 0

1
2 (a sin θ − b cos θ)

1
2 (a cos θ + b sin θ) 1

xy
z

+

ab
c

 .
Note that the action of the subgroup 

ab
c

 , [1 0
0 1

] ∣∣∣∣∣∣ (a, b, c) ∈ Nil3


of Nil3⋉SO(2) on Nil3 is the left translations.

The Heisenberg group (Nil3, g) is represented by Nil3⋉SO(2)/SO(2). This is a naturally reductive
homogeneous space representation for (Nil3, g). Note that (Nil3, 4g) is the model space of nilgeometry in the
sense of Thurston [220].

The additive group (R,+) acts isometrically and freely on Nil3:

Nil3 ×R→ Nil3; (x, y, z) · a = (x, y, z + a).

The natural projection π : Nil3 → Nil3/R = R2(x, y) defines a principal line bundle over R2(x, y). The metric g
induces a flat Riemannian metric (dx2 + dy2)/4 on R2(x, y). Furthermore π is a Riemannian submersion.

Taking a left invariant orthonormal frame field E = (e1, e2, e3):

e1 = 2
∂

∂x
− y ∂

∂z
, e2 = 2

∂

∂y
+ x

∂

∂z
, e3 = 2

∂

∂z
, (11.2)

the commutation relations of E are

[e1, e2] = 2e3, [e2, e3] = [e3, e1] = 0. (11.3)

The dual coframe field ϑ = (ϑ1, ϑ2, ϑ3) is given by

ϑ1 =
1

2
dx, ϑ2 =

1

2
dy, ϑ3 =

1

2
dz − 1

4
(xdy − ydx).

Note that the 1-form η := θ3 is a contact form on Nil3. The Levi-Civita connection ∇ of (Nil3, g) is given by

∇e1e2 = −∇e2e1 = e3, ∇e1e3 = ∇e3e1 = −e2, ∇e2e3 = ∇e3e2 = e1. (11.4)

The Riemannian curvature R of (Nil3, g) is described by

R1212 = −3, R1313 = R2323 = 1.

The sectional curvatures are
K12 = −3, K13 = K23 = 1.

Define an endomorphism field φ by

φe1 = e2, φe2 = −e1, φξ = 0, ξ = e3.

Then (η, ξ, φ) is a left invariant almost contact structure on Nil3. Since the metric g is related to this almost
contact structure by

dη(X,Y ) = g(X,φY ).

Hence (Nil3, η, ξ, φ, g) is a contact Riemannian manifold. Moreover the holomorphic sectional curvature of Nil3
is constant −3. From Tanno’s classification we then obtain the following result.

Proposition 11.1. The simply connected parabolic Sasakian space form M3(−3) is isomorphic to the Heisenberg group
Nil3.

Remark 11.1. The Heisenberg group Nil3(x, y, z) is isomorphic to the following linear Lie group:

H3(x, y, t) =


 1 y t

0 1 x
0 0 1

 ;x, y, t ∈ R

 .
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In fact, the mapping ι : Nil3 → GL3R defined by

ι(x, y, z) =

 1 y t
0 1 x
0 0 1

 , t = z +
xy

2

is a Lie group isomorphism between Nil3 and H3. The homogeneous Sasakian metric on H3 induced by g is
written as

gH =
dx2 + dy2

4
+

1

4
(dt− ydx)2. (11.5)

The contact form η corresponds to

ηH =
1

2
(dt− ydx).

Hence the Sasakian manifold (H3, ηH, gH) coincides with the standard model of M3(−3) given as Example A in
[16, p. 29 and p. 81].

On the other hand, Tricerri and Vanhecke [222, Chapter 7] used the following model:

(R3(x̄, ȳ, z̄), ḡ), ḡ = dx̄2 + dz̄2 + (dȳ − x̄dx̄)2.

This model is homothetic to our Nil3. Indeed, (x, y, z) = (x̄, z̄, ȳ − z̄x̄/2) is an isometry from (R3(x̄, ȳ, z̄), ḡ) to
(Nil3, 4g).

For more information on Nil3, we refer to [105, 106].

11.2. The homogeneous Riemannian structures on Nil3

In [222, Chapter 9], homogeneous Riemannian structures on (Nil3, 4g) are classified. Their classification result
is adjusted to our setting in the following way:

Theorem 11.1. ([222, Theorem 7.1]) All the homogeneous Riemannian structures on M3(−3) = Nil3 are given by the
following (0, 3)-tensor fields:

Sµ
♭ = 4µϑ3 ⊗ (ϑ1 ∧ ϑ2)− 2ϑ1 ⊗ (ϑ2 ∧ ϑ3)− 2ϑ2 ⊗ (ϑ3 ∧ ϑ1), µ ∈ R.

The homogeneous Riemannian structure Sµ is of type T2 ⊕ T3. In particular,

• Sµ is of type T2 if and only if µ = 1
• Sµ is of type T3 if and only if µ = −1/2.

The corresponding coset space representations of Sµ are

Nil3 =

{
Nil3 ⋉ SO(2)/SO(2) µ ̸= 1/2

Nil3/{e} µ = 1/2.

Comparing this result with Proposition 9.7, we conclude that Ar
♭ = S

−r/2
♭ . Hence we obtain the following

result.

Theorem 11.2. The set S of all homogeneous Riemannian structures on Nil3 is given by {Ar | r ∈ R}. Moreover S
coincides with the set of all homogeneous almost contact Riemannian structures on Nil3.

From this classification, we have the following characterizations of Tanaka-Webster connection.

Theorem 11.3. The coset space representations of Nil3 are given by

• Nil3/{e} with respect to the Tanaka-Webster connection ∇̂ = ∇−1.
• Nil3 ⋉ SO(2)/SO(2) for other connection ∇r (r ̸= −1).

Namely, Tanaka-Webster connection is the only Ambrose-Singer connection on Nil3 which has the representation
Nil3/{e}.

One can check that Tanaka-Webster connection coincides with Cartan-Schouten’s (−)-connection of Nil3.
Theorem 11.1 motivates us to describe explicitly the homogeneous Riemannian structures on Sasakian space
forms M3(c) with c ̸= −3. The universal covering group of Nil3⋉SO(2) is the so-called oscillator group, see [119].
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12. Elliptic Sasakian space form

In this section, we recall an explicit matrix group model of a simply connected elliptic Sasakian space form
M3(c) ([10, 112]).

12.1. The unit 3-sphere

As is well known, the unit 3-sphere (S3, φ1, ξ1, η1, g1) is identified with the special unitary group SU(2) with
bi-invariant metric. In this section we give an SU(2)-model of M3(c).

The bi-invariant metric g1 of constant curvature 1 on SU(2) is induced by the following inner product ⟨·, ·⟩1
on su(2):

⟨X,Y ⟩1 = −1

2
tr(XY ), X, Y ∈ su(2).

We take a quaternionic basis of su(2):

i =

(
0

√
−1√

−1 0

)
, j =

(
0 −1
1 0

)
, k =

( √
−1 0
0 −

√
−1

)
.

By using this basis, the Lie group SU(2) is described as

SU(2) =

{ (
x0 +

√
−1x3 −x2 +

√
−1x1

x2 +
√
−1x1 x0 −

√
−1x3

) ∣∣∣∣ x20 + x21 + x22 + x23 = 1

}
.

We identify su(2) with Euclidean 3-space E3 via the correspondence

(x1, x2, x3)←→ x1i+ x2j + x3k.

Denote the left translated vector fields of {i, j,k} by {E1, E2, E3}. Then a left invariant Sasakian structure of G
is given by

ξ1 := E3, η1 = g1(E3, ·),

φ1(E1) = E2, φ1(E2) = −E1, φ1(E3) = 0.

Note that the commutation relations of {E1, E2, E3} are

[E1, E2] = 2E3, [E2, E3] = 2E1, [E3, E1] = 2E2.

The Lie group SU(2) acts isometrically on the Lie algebra su(2) by the Ad-action.

Ad : SU(2)× su(2)→ su(2); Ad(a)X = aXa−1, a ∈ SU(2), X ∈ su(2).

It should be remarked that Ad is regarded as a Lie group homomorphism from SU(2) to SO(3). The kernel of
the Lie group homomorphism Ad : SU(2)→ SO(3) is {±1} ∼= Z2. Thus SU(2) is a double covering of SO(3).

The Ad-orbit of k/2 is a sphere S2(4) of radius 1/2 in the Euclidean 3-space E3 = su(2). The Ad-action of SU(2)
on S2(4) is isometric and transitive. The isotropy subgroup of SU(2) at k/2 is

U(1) =

{(
e
√
−1t 0

0 e−
√
−1t

) ∣∣∣∣ t ∈ R
}
.

Hence S2(4) is represented by SU(2)/U(1) as a homogeneous Riemannian space. The natural projection

π1 : S3 → S2(4), π1(a) = Ad(a)(k/2)

is a Riemannian submersion and defines a principal U(1)-bundle over S2(4). The tangent space Tk/2S
2(4) of

S2(4) at the origin k/2 is identified with the linear subspace m = Ri⊕Rj of su(2). Thus we have the reductive
decomposition su(2) = u(1)⊕m. Since [m,m] ⊂ u(1), S2(4) = SU(2)/U(1) is a Riemannian symmetric space.

The product Lie group SU(2)× SU(2) acts on S3 = SU(2) via the action (3.2). As we saw in Section 3.5, the
isotropy subgroup at 1 is the diagonal subgroup ∆SU(2). The inner product ⟨·, ·⟩ on su(2)⊕ su(2) induced from
the product metric of SU(2)× SU(2) is

⟨(X,Y ), (V,W )⟩ = ⟨X,V ⟩+ ⟨Y,W ⟩.
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The orthogonal complement ∆su(2)⊥ of ∆su(2) in su(2)⊕ su(2) is m0 given in Section 3.5. The reductive
decomposition su(2)⊕ su(2) = ∆su(2)⊕m0 satisfies [m0,m0] ⊂ ∆su(2). Thus S3 = (SU(2)× SU(2))/∆SU(2) is a
Riemannian symmetric space. Hereafter we denote this Riemannian symmetric space as (SU(2)× SU(2))/SU(2)
for simplicity. However it should be remarked that dim Iso(S3) = dim(SU(2)× SU(2)) = 6. But dimAut(S3) =
4. Thus the Riemannian symmetric space representation S3 = (SU(2)× SU(2))/SU(2) = SO(4)/SO(3) is not
homogeneous contact. As we will see in the next subsection, S3 is represented as S3 = (SU(2)×U(1))/U(1) as a
homogeneous contact Riemannian manifold. This representation is not Riemannian symmetric, but naturally
reductive.

12.2. The Berger sphere

Since the Sasakian structure (η1, ξ1, φ1, g1) is left invariant, itsD-homothetic deformation is also left invariant.
Hence the elliptic Sasakian space form M3(c) is identified with SU(2) with the left invariant contact Riemannian
structure (φ, ξ, η, g) defined by (5.5). The Reeb vector field ξ generates a one parameter group of transformations
on M3(c) isomorphic to U(1). Since ξ is a Killing vector field, the one parameter group U(1) acts isometrically
on M3(c). The factor space M3(c)/U(1) is nothing but the 2-sphere S2(c+ 3).

The Sasakian metric g is not only left SU(2)-invariant but also right U(1)-invariant. Hence the elliptic Sasakian
space form M3(c) is represented by M3(c) = (SU(2)×U(1) )/U(1) as a reductive homogeneous space. For c ̸= 1,
M3(c) has 4-dimensional isometry group.

In particular g is bi-invariant if and only if c = 1. In this case M3(1) is represented by (SU(2)× SU(2) )/SU(2)
as a Riemannian symmetric space. Note that M3(1) has 6-dimensional isometry group as we mentioned before.

In this article, we call the Sasakian 3-manifold M3(c) with c ̸= 1 by the name Berger sphere (see also [159]).
Precisely speaking, the original one due to Berger [12] is (S3, (c+ 3)g/4) with c > 1. Under the limit c→∞ in
Gromov-Hausdorff sense, (S3, (c+ 3)g/4) converges to S3 equipped with the Carnot-Carathéodory metric. On
the other hand, under the limit c→ 1, (S3, (c+ 3)g/4) collapses to S2(4). Another geometric property of M3(c) is
a relation to the geometry of isoparametric hypersurfaces. One can see that M3(−2) is isometric to the universal
covering of the minimal Cartan hypersurface of the unit 4-sphere (see [68]). The minimal Cartan hypersurface
is realized as SO(3)/Z2 × Z2 = M3(−2)/Γ, where Γ = {±1,±i,±j,±k}.

Now we take an orthonormal frame field {e1, e2, e3} of M3(c) by

e1 :=

√
c+ 3

2
E1, e2 :=

√
c+ 3

2
E2, e3 :=

c+ 3

4
ξ1.

Then the commutation relations of this basis are

[e1, e2] = 2e3, [e2, e3] =
c+ 3

2
e1, [e3, e1] =

c+ 3

2
e2. (12.1)

Note that if we take the limit c→ −3, then (12.1) converges to (11.3).
The Levi-Civita connection ∇ of (M3(c), g) is described by

∇e1e1 = 0, ∇e1e2 = e3, ∇e1e3 = −e2,

∇e2e1 = −e3, ∇e2e2 = 0, ∇e2e3 = e1, (12.2)

∇e3e1 =
c+ 1

2
e2, ∇e3e2 = −c+ 1

2
e1, ∇e3e3 = 0.

The Riemannian curvature tensor field R of (M3(c), g,∇) is described by

R1212 = c, R1313 = R2323 = 1 (12.3)

and the sectional curvatures are:
K12 = c, K13 = K23 = 1. (12.4)

The Ricci tensor Ric and the scalar curvature s are computed to be

R11 = R22 = c+ 1, R33 = 2, s = 2(c+ 2).

The Ricci tensor field has the form
Ric = (c+ 1)g + (1− c)η ⊗ η. (12.5)
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The Sasakian space form M3(c) = (SU(2)×U(1))/U(1) is naturally reductive. The product Lie group SU(2)×
U(1) acts on M3(c) via the action

(SU(2)×U(1))×M3(c)→M3(c); (a, k) · x = a x k−1, a ∈ SU(2), k ∈ U(2), x ∈M3(c).

The isotropy subgroup at 1 is ∆U(1) = {(k, k) | k ∈ U(1)} with Lie algebra ∆u(1) = {(V, V ) | V ∈ u(1)}. The
Berger sphere M3(c) admits a Lie subspace

m =

{(
V +W,

1− c
4

W

) ∣∣∣∣ V ∈ m, W ∈ u(1)

}
of su(2)⊕ u(1). Thus (SU(2)×U(1))/U(1) is a naturally reductive homogeneous space. Note that if we choose
c = 1, then we obtain a reductive decomposition

su(2)⊕ u(1) = ∆u(1)⊕m, m = {(X, 0) |X ∈ su(2)}.

Every element (X,Y ) ∈ su(2)⊕ u(1) is decomposed as (X,Y ) = (Y, Y ) + (X − Y, 0) along this reductive
decomposition. The corresponding reductive homogeneous space is the homogeneous contact Riemannian
manifold representation of the unit 3-sphere S3.

12.3. The normal metric

In case, c > 1, the Berger sphere M3(c) is represented as M3(c) = U(2)/U(1). The Riemannian metric of M3(c)
is derived from the following inner product on the Lie algebra u(2):

⟨X,Y ⟩ = 4

c+ 3

(
−1

2
tr(xy) +

1√
c− 1

tr(X) tr(Y )

)
, X, Y ∈ u(2),

where
x = X − tr(X)

2
1, x = X − tr(X)

2
1 ∈ su(2).

In particular when c = 5, we have

⟨X,Y ⟩ = −1

4
tr(XY ), X, Y ∈ u(2).

One can confirm that this inner product induces a bi-invariant Riemannian metric on U(2). Hence M3(c) =
U(2)/U(1) is a normal homogeneous space. For more detailed discussion, see [118].

Remark 12.1. As we mentioned before M3(−2)/Γ is isometrically immersed in the unit 4-sphere S4 as an
isoparametric hypersurface. Kim and Tsunero Takahashi proved the following results.

Proposition 12.1 ([140]). A hypersurface M of a space form Mn+1(ε c2) of constant curvature ε c2 is isoparametric if
and only if there exits a metric connection D such that the shape operator is parallel with respect to D.

Proposition 12.2 ([140]). If a hypersurface M of a space form Mn+1(ε c2) admits a homogeneous Riemannian structure
S and the type number of M is not equal to 1 and 2, then the shape operator is parallel with respect to the Ambrose-Singer
connection ∇+ S and M is isoparametric.

13. The SU(1, 1)-model of the hyperbolic Sasakian space forms

13.1. The Poincaré disc model

Let us start with recalling the Poincaré disc model of the hyperbolic 2-space H2(−c2) of curvature κ = −c2 <
0:

H2(−c2) = ({z = x+
√
−1y ∈ C | |z|2 = x2 + y2 < 4/c2}, ḡ),

where the Poincaré metric ḡ is defined by

ḡ =
dx2 + dy2{

1− c2

4 (x
2 + y2)

}2 .
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The indefinite special unitary group

SU(1, 1) =

{ (
x0 +

√
−1x1 x3 −

√
−1x2

x3 +
√
−1x2 x0 −

√
−1x1

) ∣∣∣∣ x20 + x21 − x22 − x23 = 1

}
.

acts isometrically and transitively on H2(−c2) via the linear fractional transformation:

T : SU(1, 1)×H2(−c2)→ H2(−c2); (A, z) 7→ TA(z),

where TA(z) is defined by

TA(z) =
az + b

cz + d
, A =

(
a b
c d

)
as before. The isotropy subgroup of SU(1, 1) at the origin 0 is the unitary group

U(1) =

{(
e
√
−1θ 0

0 e−
√
−1θ

) ∣∣∣∣ 0 ≤ θ < 2π

}
.

Thus H2(−c2) is represented by SU(1, 1)/U(1) as a homogeneous Riemannian space. The Lie algebra su(1, 1) is
spanned by the split-quaternionic basis (see [75]):

i =

( √
−1 0
0 −

√
−1

)
, j′ =

(
0 −

√
−1√

−1 0

)
, k′ =

(
0 1
1 0

)
.

Take a scalar product ⟨·, ·⟩(−) of su(1, 1) by

⟨X,Y ⟩(−) = − 2

c2
tr(XY ), X, Y ∈ su(1, 1).

Then ⟨·, ·⟩(−) induces a bi-invariant Lorentz metric on SU(1, 1). Thus SU(1, 1) is identified with the anti de
Sitter spacetime AdS3(−c2 + 3) of constant curvature −c2 + 3. The projection AdS3(−c2 + 3)→ H2(−c2) defines
a principal circle bundle. This fibering is called the hyperbolic Hopf fibering.

Denote the left-translated vector fields of j′,k′, i by E1, E2, E3. Note that the commutation relations of
{E1, E2, E3} are

[E1, E2] = −2E3, [E2, E3] = 2E1, [E3, E1] = 2E2.

We can take an orthonormal frame field {e1, e2, e3} by

e−1 =
c

2
E1, e−2 =

c

2
E2, e−3 =

c

2
E3.

Note that e−3 is timelike. On the other hand e−1 and e−2 are spacelike. The isotropy algebra u(1) is spanned by
e3. The tangent space m = T0H2(−c2) is spanned by e1 and e2 and hence it is spacelike. The decomposition
su(1, 1) = u(1) +m is reductive and orthogonal. Moreover [m,m] ⊂ u(1) holds. Thus H2(−c2) = SU(1, 1)/U(1) is
a Riemannian symmetric space.

13.2. The unit tangent sphere bundle

The tangent bundle TH2(κ) and the unit tangent bundle UH2(−c2) are given explicitly by

TH2(−c2) =H2(−c2)×R2 = {(z,v) | z ∈ H2(κ), v = (v1, v2) ∈ R2},
UH2(−c2) ={(z,v) ∈ TH2(−c2) | (v1)2 + (v2)

2 = 1− c2|z|2/4}.

This action of SU(1, 1) on H2(κ) induces a transitive action on UH2(−c2). The isotropy subgroup of SU(1, 1)
of the induced action on UH2(−c2) at (0, (1, 0)) is Z2 = {±1}. Hence UH2(−c2) is represented by UH2(−c2) =
SU(1, 1)/Z2 = PSU(1, 1) as a homogeneous space.

Let us define a Riemannian metric on UH2(−c2). Take a curve γ(t) = (z(t),v(t)) in UH2(−c2). Then we define
a Riemannian metric g on UH2(−c2) by

g(γ′(t0), γ
′(t0)) := ḡt0(z

′(t0), z
′(t0)) +

(
2τ

−c2

)2

ḡ
(
∇z′(t)v(t),∇z′(t)v(t)

)
|t=t0 .

dergipark.org.tr/en/pub/iejg 618

https://dergipark.org.tr/en/pub/iejg


J. Inoguchi

Here τ is a non-zero constant. In particular, when τ = ±c/2, g coincides with the Sasaki lift metric of UH2(−c2).
Now let us introduce a global coordinate system (x, y, θ) on UH2(−c2):

H2(−c2)× S1 → UH2(−c2);

((x, y), θ) 7−→
(
(x, y), (1 +

κ

4
(x2 + y2))

{
cos

(
−c2 θ
2τ

)
∂

∂x
+ sin

(
−c2 θ
2τ

)
∂

∂y

})
.

With respect to this coordinate system, the metric g is computed as

g =
dx2 + dy2

(1 + κ
4 (x

2 + y2))2
+

(
dθ +

τ(ydx− xdy)
1 + κ

4 (x
2 + y2)

)2

, κ = −c2 < 0.

This formula shows that (UH2(−c2), g) is isometric to the Bianchi-Cartan-Vrănceanu space of base curvature
κ = −c2 and bundle curvature τ (see Example 5.3).

Now we equip a Sasakian structure compatible to (UH2(κ), g). Choose τ = 1. Then we have a Sasakian
structure (η, ξ, φ, g) as follows (see Example 5.3).

Define a contact form η by

η = dθ +
ydx− xdy

1− c2

4 (x
2 + y2)

.

Then the Reeb vector field is ∂/∂θ. Choose an orthonormal frame field

u1 =

(
1− c2

4
(x2 + y2)

)
∂

∂x
− y ∂

∂θ
, u2 =

(
1− c2

4
(x2 + y2)

)
∂

∂x
+ x

∂

∂θ
, u3 = ξ.

Define an endomorphism field φ by

φu1 = u2, φu2 = −u1, φu3 = 0.

Then we have dη(X,Y ) = g(X,φY ) for all vector fields X and Y on UH2(−c2). The resulting contact
Riemannian manifold (UH2(κ), g) is a Sasakian manifold of constant holomorphic sectional curvature −3− c2.

As we saw before the Sasaki lift metric is determined by the condition τ = ±c2/2. Under this choice, the
almost contact structure satisfies

(∇Xφ)Y = τ{g(X,Y )− η(Y )X}.

Thus under the normalization (see Example 5.3)

η̃ = τ η, ξ̃ =
1

τ
ξ, φ̃ = φ, g̃ = τ2 g.

Then (UH2(κ), η̂, ξ̂, φ̂, ĝ) is a Sasakian manifold of constant holomorphic sectional curvature −3 + 4κ.
In particular, if κ = −1, then metric g̃ is g/4. Thus the metric g̃ coincides with the associated metric of the

standard contact Riemannian structure (5.14).

13.3. Homogeneous space representation

In the hyperbolic Hopf fibering SU(1, 1)→ H2(κ), we equipped a Lorentz metric on SU(1, 1). The hyperbolic
Hopf fibering is a homothetic submersion.

In this subsection we equip a Riemannian metric on SU(1, 1) so that the hyperbolic Hopf fibering is still a
homothetic submersion.

Choose non-zero real constants λ1, λ2, λ3 and define

e+1 = − 1

λ2λ3
E1, e+2 =

1

λ3λ1
E2, e+3 =

1

λ1λ2
E3.

Then we have
[e+1 , e

+
2 ] = c3e

+
3 , [e+2 , e

+
3 ] = c1e

+
1 , [e+3 , e

+
1 ] = c2e

+
2 ,

with
c1 = − 2

λ21
< 0, c2 = − 2

λ22
< 0, c3 =

2

λ23
> 0.
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The left-invariant metric g(c1,c2,c3), defined by the condition that {e+1 , e
+
2 , e

+
3 } is an orthonormal basis, is

g(c1,c2,c3) = 4

{
− 1

c2c3
ω2
1 −

1

c3c1
ω2
2 +

1

c1c2
ω2
3

}
,

where {ω1, ω2, ω3} is the dual coframe field of {E1, E2, E3}.

Proposition 13.1 ([188]). Any left-invariant Riemannian metric on SU(1, 1) is isometric to one of the metrics g(c1,c2,c3)
with c1 ≤ c2 < 0 < c3. Moreover, this metric gives rise to an isometry group of dimension 4 if and only if c1 = c2.

Since {e+1 , e
+
2 , e

+
3 } is a unimodular basis, the Levi-Civita connection ∇ of SU(1, 1) is described as follows:

Proposition 13.2. The Levi-Civita connection is given by

∇e+1
e+1 = 0, ∇e+2

e+1 = µ1e
+
3 , ∇e+1

e+3 = −µ1e
+
2 ,

∇e+2
e+1 = −µ2e

+
3 , ∇e+2

e+2 = 0, ∇e+2
e+3 = µ2e

+
1 ,

∇e+3
e+1 = µ3e

+
2 , ∇e+3

e+2 = −µ3e
+
1 ∇e+3

e+3 = 0,

where the constants {µ1, µ2, µ3} are given by (4.17).
The Riemannian curvature tensor R is determined by the following sectional curvatures:

K12 = ⟨R(e+1 , e
+
2 )e

+
2 , e

+
1 ⟩ =c3µ3 − µ1µ2,

K23 = ⟨R(e+2 , e
+
3 )e

+
3 , e

+
2 ⟩ =c1µ1 − µ2µ3,

K13 = ⟨R(e+1 , e
+
3 )e

+
3 , e

+
1 ⟩ =c2µ2 − µ1µ3.

Now we choose c1 = c2 = κ/2 < 0 and c3 = 2 (equivalently |λ1| = |λ2| = 2/
√
−κ and |λ3| = 1). Note that τ = 1.

Then the metric g(κ/2, κ/2, 2) is a Sasakian metric of constant holomorphic sectional curvature −3 + κ. The
associated contact metric structure is given by

φe+1 = e+2 , φe
+
2 = −e+1 , φξ = 0, ξ = e+3 .

Note that in this case,

e+1 = −
√
−κ
2

E1, e+2 =

√
−κ
2

E2, e+3 =
−κ
4
E3.

If we set c := −3 + κ, then the commutation relations are rewritten as

[e+1 , e
+
2 ] = 2e+3 , [e+2 , e

+
3 ] =

c+ 3

2
e+1 , [e+3 , e

+
1 ] =

c+ 3

2
e+2 .

This is the same form to (12.1). The Sasakian space form (SU(1, 1), η, ξ, φ, g) is isomorphic to the BCV-space
with base curvature κ and bundle curvature τ = 1. Under this choice the table of Levi-Civita connection given
in Proposition 13.2 coincides with (12.2). Thus we can study homogeneous contact Riemannian structures on
3-dimensional Sasakian space forms in a unified way. We will carry out the classification in Section 15.

Remark 13.1 (κ = −4). In the case of κ = −4, we have

e+1 = −E1, e+2 = E2, e+3 = E3.

The inner product ⟨·, ·⟩ at the identity has a simple formula (see [96]):

⟨X,Y ⟩ = 1

2
tr (tXY ), X, Y ∈ su(1, 1).

As we saw before the bi-invariant Lorentzian metric ⟨·, ·⟩(−) of constant curvature −1 on SU(1, 1) is given by

⟨X,Y ⟩(−) =
1

2
tr (XY ), X, Y ∈ su(1, 1).

With respect to this bi-invariant metric, SU(1, 1) is identified with the anti de Sitter spacetime AdS3 of curvature
−1. Compare with the case SU(2) = S3.
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14. The SL2R-model

In Section 4.6, we mentioned the upper half plane model of the hyperbolic plane

H2(−c2) = ({z = x+ yi ∈ C | y > 0}, ḡ) , ḡ =
dx2 + dy2

c2y2

of curvature −c2. In this section we exhibit SL2R-model of the hyperbolic Sasakian space form (see [94, 96, 107,
108, 114, 117]). Note that we have already given a model H2(−c2)×R in Example 5.4.

14.1. Iwasawa decomposition, revisited

The Iwasawa decomposition SL2R = NAK of SL2R exhibited in Section 4.6 allows to introduce the following
global coordinate system (x, y, θ) of SL2R:

(x, y, ϕ) 7−→
(

1 x
0 1

)( √
y 0
0 1/

√
y

)(
cosϕ sinϕ
− sinϕ cosϕ

)
. (14.1)

The mapping (14.1) is a diffeomorphism onto SL2R. Hereafter, we refer (x, y, ϕ) as a global coordinate system
of SL2R. Hence SL2R is diffeomorphic to R×R+ × S1 and hence diffeomorphic to R3 \R. Since R×R+ is
diffeomorphic to open unit disk D, then SL2R is diffeomorphic to open solid torus D× S1.

14.2. The standard Riemannian metric

We remark that every Sasakian space form M3(c) of constant holomorphic sectional curvature c < −3 is
transversally homothetic to M3(−7).

On the Lie algebra sl2R of SL2R, we can take the following basis:

E =

(
0 1
0 0

)
, F =

(
0 0
1 0

)
, H =

(
1 0
0 −1

)
.

This basis satisfies the commutation relations:

[E,F] = H, [F,H] = 2F, [H,E] = 2E.

The Lie algebra n, a and k of the closed subgroups N , A and K are given by

n = RE, a = RH, k = R(E− F).

The Lie algebra h is the Cartan subalgebra of sl2R. Moreover n and RF are root spaces with respect to h. The
decomposition sl2R = h⊕ n⊕RF is the root space decomposition of sl2R.

The split-quaternionic basis (4.8) is related to {E,F,H} by

i =

(
0 −1
1 0

)
= −E+ F, j′ = E+ F =

(
0 1
1 0

)
, k′ =

(
−1 0
0 1

)
= −H.

The split-quaternionic basis satisfies

[i, j′] = 2k′, [j′,k′] = −2i, [k′, i] = 2j′.

The split-quaternionic basis {i, j′,k′} is an orthonormal basis with respect to the Lorentz scalar product

⟨X,Y ⟩(−) =
1

2
tr(XY ), X, Y ∈ sl2R.

Note that i is timelike. On the other hand, j′ and k′ are spacelike. The Lorentz scalar product ⟨·, ·⟩(−) induces a
bi-invariant Lorentz metric of constant curvature −1. Hence we have again an identification SL2R = AdS3. But
our interest is the Riemannian metric which makes S̃L2R to be a model space of Thurston geometry.

Hereafter we use the left invariant frame field

e1 = E+ F = j′, e2 = H = −k′, e3 = E− F = −i.
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These left invariant vector fields are given explicitly by

e1 =cos(2ϕ)

(
2y

∂

∂x
− ∂

∂ϕ

)
+ sin(2ϕ)

(
2y

∂

∂y

)
,

e2 =− sin(2θ)

(
2y

∂

∂x
− ∂

∂ϕ

)
+ cos(2θ)

(
2y

∂

∂y

)
,

e3 =
∂

∂ϕ
.

Define an inner product ⟨·, ·⟩ so that {e1, e2, e3} is orthonormal with respect to ⟨·, ·⟩. By left-translating this inner
product, we equip a left invariant Riemannian metric

g =
dx2 + dy2

4y2
+

(
dϕ+

dx

2y

)2

.

The 1-form
η = dϕ+

dx

2y

is a globally defined contact form on SL2R with Reeb vector field ξ = e3.
The universal covering space of (SL2R, g) is one of the model space of Thurston geometry [220].

14.3. The hyperbolic Hopf fibering

As we saw in Section 4.6, SL2R acts isometrically and transitively on the upper half plane model H2(−4) via
the linear fractional action. The isotropy subgroup of SL2R at ō = (0, 1) is K = SO(2). The natural projection
π : (SL2R, g)→ SL2R/SO(2) = H2(−4) is given explicitly by

π(x, y, ϕ) = (x, y) ∈ H2(−4)

in terms of the global coordinate system (14.1). The projection is a Riemannian submersion with totally geodesic
fibres and called the hyperbolic Hopf fibering of H2(−4).

The tangent space TōH2(−4) at the origin ō = (0, 1) is identified with the linear subspace m0 of sl2R spanned
by {j′,k′}. The Lie subspace m0 is rewritten as

m0 = {X ∈ sl2R | tX = X}.

The splitting g = k⊕m0 is orthogonal direct sum. This splitting can be carried out explicitly as

X = Xk +Xm, Xk =
1

2
(X − tX), Xm =

1

2
(X + tX).

Under the identification k ∼= R, the contact form η is regarded as a connection form of the principal circle bundle
SL2R→ H2(−4).

14.4. The naturally reductive structure

On the Lie algebra sl2R, the inner product ⟨·, ·⟩ at the identity induced from g is written as

⟨X,Y ⟩ = 1

2
tr (tXY ), X, Y ∈ sl2R.

One can see that the metric g is not only invariant by SL2R-left translation but also right translations by SO(2).
Hence the Lie group G = SL2R× SO(2) with multiplication:

(a, b)(a′, b′) = (aa′, bb′)

acts isometrically on SL2R via the action:

(SL2R× SO(2))× SL2R→ SL2R; (a, b) ·X = aXb−1.
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Furthermore, this action of SL2R× SO(2) on SL2R is transitive, hence SL2R is a homogeneous Riemannian
space of SL2R× SO(2). The isotropy subgroup H of SL2R× SO(2) at the identity matrix 1 is the diagonal
subgroup

∆K = {(k, k) | k ∈ K} ∼= K

of K ×K. The coset space (SL2R× SO(2))/SO(2) is a reductive homogeneous space. The Lie algebra of the
product group SL2R× SO(2) is sl2R⊕ k. On the other hand the Lie algebra of ∆K is

∆k = {(W,W ) |W ∈ k} ∼= k.

The tangent space T1SL2R of (SL2R× SO(2))/∆K is the Lie algebra g = sl2R. This tangent space is identified
with the linear subspace m of sl2R⊕ k defined by (see [87]):

m = {(V +W, 2W ) | V ∈ m0, W ∈ k}.

The Lie algebra g⊕ k is decomposed as g⊕ k = ∆k⊕m. One can see that this decomposition is reductive. Every
(X,Y ) ∈ g⊕ k is decomposed as

(X,Y ) = (2Xk − Y, 2Xk − Y ) + (Xm + (Y −Xk), 2(Y −Xk)).

One can see that (SL2R× SO(2))/SO(2) is naturally reductive with respect to the decomposition sl2 ⊕ k =
∆k⊕m.

14.5. Curvatures

The commutation relations of {e1, e2, e3} are

[e1, e2] = −2e3, [e2, e3] = 2e1, [e3, e1] = 2e2.

The Levi-Civita connection ∇ of is given by

∇e1e1 = 0, ∇e1e2 = −e3, ∇e1e3 = e2
∇e2e1 = e3, ∇e2e2 = 0, ∇e2e3 = −e1
∇e3e1 = 3e2, ∇e3e2 = −3e1 ∇e3e3 = 0.

The Riemannian curvature R is given by

R(e1, e2)e1 = 7e2, R(e1, e2)e2 = −7e1,

R(e2, e3)e2 = e3, R(e2, e3)e3 = −e2,

R(e1, e3)e1 = −e3, R(e1, e3)e3 = e1.

The basis {e1, e2, e3} diagonalizes the Ricci tensor field. The principal Ricci curvatures are given by

ρ1 = ρ2 = −6, ρ3 = 2.

The bilinear form U defined by (4.2) is given by

U(e1, e3) = 2e2, U(e2, e3) = −2e1. (14.2)

All the other components are zero.
From these we obtain

U(X,Y ) = [Xk, Ym] + [Yk, Xm], X, Y ∈ g.

The Levi-Civita connection is rewritten as

∇XY =
1

2
[X,Y ] + U(X,Y ) =

1

2
[X,Y ] + [Xk, Ym] + [Yk, Xm], X, Y ∈ g. (14.3)
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14.6. The canonical Sasakian structure

The almost contact structure associated to η and compatible to the metric g is determined by the
endomorphism field φ defined by

φe1 = e2, φe2 = −e1, φe3 = 0.

One can see that ∇ξ = −φ. Hence (SL2R, φ, ξ, η, g) is a Sasakian space form of constant holomorphic sectional
curvature −7. The left invariant Sasakian structure (φ, ξ, η) is called the canonical Sasakian structure of SL2R.

By performing transversally homothetic change of the structure:

g 7−→ gc := −
4

c+ 3
g +

4(c+ 7)

(c+ 3)2
η ⊗ η, ξ 7−→ ξc := −

c+ 3

4
ξ, η 7−→ ηc := −

4

c+ 3
η

we obtain a left invariant Sasakian structure of constant holomorphic sectional curvature c < −3 on SL2R.
The Sasakian space form SL2R with c < −3 admits a Lie subspace

m =

{(
V +W,

1− c
4

W

) ∣∣∣∣ V ∈ m0, W ∈ u(1)

}
of sl2R⊕ so(2). Thus (SL2R× SO(2))/SO(2) is a naturally reductive homogeneous space. For more discussion
of the homogeneous geometry of SL2R, see [116].

14.7. The double covering SL2R→ UH2(−c2)

Let us consider the unit tangent sphere bundle UH2(−c2), where we realize H2(−c2) as the upper half plane.
Then the tangent bundle TH2(−c2) is realized as

TH2(−c2) = {(x, y, u, v) ∈ H2(−c2)×R2 | u, v ∈ R }.

The unit tangent sphere bundle UH2(−c2) is realized as

TH2(−c2) = {(x, y, u, v) ∈ TH2(−c2) | u2 + v2 = c2y2 }.

Introducing the fiberwise polar coordinates (r, θ) of TH2(−c2), UH2(−c2) is expressed as

UH2(−c2) = {(x, y, cy cos θ, cy sin θ) | (x, y) ∈ H2(−c2), 0 ≤ θ < 2π}.

The Sasaki lift metric gs is expressed as

gs =
dx2 + dy2

c2y2
+

(
dθ +

dx

y

)2

. (14.4)

Let us take the following orthonormal frame field on UH2(−c2):

ϵ1 = cy
δ

δx
, ϵ2 = cy

δ

δy
, ϵ3 =

∂

∂θ
,

where
δ

δx
=

∂

∂x
− 1

y

∂

∂θ
,

δ

δy
=

∂

∂y
.

Then the Levi-Civita connection ∇ of UH2(−c2) is computed as

∇ϵ1ϵ1 = cϵ2, ∇ϵ1ϵ2 = −cϵ1 −
c2

2
ϵ3, ∇ϵ1ϵ3 =

c2

2
ϵ2,

∇ϵ2ϵ1 =
c2

2
ϵ3, ∇ϵ2ϵ2 = 0, ∇ϵ2ϵ3 = −c

2

2
ϵ1,

∇ϵ3ϵ1 =
c2

2
ϵ2, ∇ϵ3ϵ2 = −c

2

2
ϵ1, ∇ϵ3ϵ3 = 0.

The geodesic spray ξs is given by
ξs = cos θ ϵ1 + sin θ ϵ2. (14.5)

Let us relate the fiberwise angle function θ of UH2(−c2) and the angle function ϕ of SL2R. To this end we need
to fix the origin of UH2(−c2).
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1. Take a unit tangent vector

W = c
∂

∂x

∣∣∣∣
i

∈ TiH2(−c2)

and choose it as the origin of UH2(−c2). Then the projection π : SL2R→ UH2(−c2) is described as

π(A) = (TA(i); c(a21TA(i)− a11)2).

Here we identified W with the real scalar c ∈ R. Let us choose

A =

(
cosϕ sinϕ
− sinϕ cosϕ

)
∈ K,

then we get

π

(
cosϕ sinϕ
− sinϕ cosϕ

)
=
(
i; e2ϕic

)
= (i; c cos(2ϕ), c sin(2ϕ)).

Thus we obtain the formula (cf. [88, Proposition 2.1]):

θ = 2ϕ.

This relation implies that the geodesis spray ξs is derived from the left invariant vector field c
2 (E + F ) on

SL2R. The geodesic spray generates ξs the 1-parameter transformation group

G = {exp(tξ)}t∈R =

{(
cosh(ct/2) sinh(ct/2)
sinh(ct/2) cosh(ct/2)

) ∣∣∣∣ t ∈ R
}

= SO+(1, 1). (14.6)

2. Take a unit tangent vector

W = c
∂

∂y

∣∣∣∣
i

∈ TiH2(−c2)

and choose it as the origin of UH2(−c2). Then the projection π : SL2R→ UH2(−c2) is described as

π(A) = (TA(i); ci(a21TA(i)− a11)2).

Here we identified W with the pure imaginary scalar ci ∈ iR. The projection π is described as

π

(
cosϕ sinϕ
− sinϕ cosϕ

)
=
(
i; ie2ϕic

)
= (i;−c sin(2ϕ), c cos(2ϕ)).

Thus we obtain the formula
θ = 2ϕ+

π

2
.

Hence the geodesic spray ξs is derived from the left invariant vector field c
2H on SL2R. The geodesic

spray generates the 1-parameter transformation group

{exp(tξ2)}t∈R =

{(
ect/2 0
0 e−ct/2

) ∣∣∣∣ t ∈ R
}

(14.7)

which is the abelian part A of SL2R (see [6, pp. 26–27]). One can see that the abelian part A ⊂ SL2R is
conjugate with SO+(1, 1).

Here we describe the almost contact structure (φs, ξs, ηs) of UH2(−c2) compatible to the metric g explicitly. The
contact form ηs dual to the geodesic spray ξs is

ηs =
cos θ dx+ sin θ dy

cy
.

The associated endomorphism field φs is given by

φϵ1 = − sin θϵ3, φϵ2 = cos θϵ3, φϵ3 = sin θϵ1 − cos θϵ2.
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If one wishes to work in the contact Riemannian context, the following normalization for the structure tensors
on UH2(−c2):

η̃ =
1

2
ηs, ξ̃ = 2ξs, φ̃ = φs, g̃ =

1

4
gs.

Then (UH2(−c2), φ̃, ξ̃, η̃, g̃) is a homogeneous contact (κ, µ)-space with κ = −c2(c2 + 2) < 0 and µ = 2c2 > 0.
In both cases θ = 2ϕ or θ = 2ϕ+ π/2, the metric on the double covering SL2R of UH2(−c2) induced from the

Sasaki lift metric is
dx2 + dy2

cy2
+ 4

(
dϕ+

dx

2y

)2

with respect to the coordinate system (x, y, ϕ). In particular, the metric g1 on SL2R induced from UH2(−c2) is

g1 =
dx2 + dy2

y2
+ 4

(
dϕ+

dx

2y

)2

.

Comparing this with the Sasakian metric of constant holomorphic sectional curvature −4 on SL2R, we obtain
the following result (see also [196, 197, 198]).

Proposition 14.1. Let g̃ be the Riemannian metric of the standard contact Riemannian structure of UH2(−1). Then
the Riemannian metric on SL2R induced from g̃ coincides with the Sasakian metric of constant holomorphic sectional
curvature −7 on SL2R.

In this article we study homogeneous Riemannian spaces. Thus we consider homogeneous Riemannian
metrics on UH2(−c2). From homogeneity viewpoint, it is natural to induce an indefinite metric on UH2(−c2)
induced from the Killing form of SL2C. The resulting homogeneous space UH2(−c2) = SL2C/U(1) is an
indefinit normal homogeneous space. For more detail, see [59].

15. The homogeneous contact Riemannian structures on Sasakian space forms

15.1. Sasakian space forms of constant holomorphic sectional curvature c ≥ −3 and c ̸= 1

Tricerri-Vanhecke classified 3-dimensional naturally reductive homogeneous spaces ([222, Theorem 6.5]):

Theorem 15.1. Let (M, g) be a simply connected and complete Riemannian 3-manifold. If M admits a non-trivial
homogeneous Riemannian structure of type T3, then M is isometric to one of the following naturally reductive
homogeneous spaces:

• S3(c2) = SO(4)/SO(3), S3(c2) = SU(2)/{1}, E3 = SE(3)/SO(3), H3(−c2) = SO+(1, 3)/SO(3),
• Nil3 = (Nil3 ⋉ SO(2))/SO(2).
• (SU(2)×U(1))/U(1).
• S̃L2R = (S̃L2R× SO(2))/SO(2).

As we saw before, Sasakian space forms are naturally reductive homogeneous spaces. In 1983, Tricerri and
Vanhecke classified homogeneous Riemannian structures on the Heisenberg group Nil3 in [222, Theorem 7.1].
In 2009 (September), the present author noticed that the one-parameter family of Ambrose-Singer connections
on Nil3 explicitly given by Tricerri and Vanhecke coincides with the Okumura’s 1-parameter family of almost
contact connections. In 2010, Gadea and Oubiña classified homogeneous Riemannian structure on the Berger
sphere [79]. Motivated by [222, 79], the present author confirmed that the one-parameter family of Ambrose-
Singer connections on the Berger sphere oincides with the Okumura’s 1-parameter family of almost contact
connections (December, 2012).

Let us represent M3(c) as M3(c) = (G⋉K)/K, where

G =


SU(2), c > −3
Nil3, c = 3,

S̃L2R, c < −3
K = SO(2) ∼= U(1).

Precisely speaking, when c ̸= −3, G⋉K is just a direct product G×K.
Note that the set of all the homogeneous Riemannian structures on the 3-sphere S3 was determined by Abe

[1] (see section 15.3), we concentrate our attention to Sasakian space forms of constant holomorphic sectional
curvature c ̸= 1. First we consider the case c ≥ −3 and c ̸= 1.
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Theorem 15.2 ([124]). The set S of all homogeneous Riemannian structures on a Sasakian space form M3(c) =
(G⋉K)/K with c ≥ −3 and c ̸= 1 is given by {Ar | r ∈ R}. Namely the set of all the Ambrose-Singer connections
coincides with the one-parameter family of linear connections due to Okumura.

Moreover S coincides with the set of all homogeneous almost contact Riemannian structures on M3(c). The
corresponding coset space representations are given as follows:

M3(c) =

{
(G⋉K)/K r ̸= (c+ 1)/2
G/{e} r = (c+ 1)/2.

When r = (c+ 1)/2, the Ambrose-Singer connection ∇r = ∇+Ar is the Cartan-Schouten’s (−)-connection. Every
homogeneous Riemannian structure is of type T2 ⊕ T3.

The homogeneous Riemannian structure Ar is of type T2 if and only if r = −2. On the other hand, Ar is of type T3 if
and only if r = 1. In this case A1 = −dV .

15.2. Sasakian space forms of constant holomorphic sectional curvature c < −3

Here we exhibit an explicit model of the simply connected non-unimodular Lie group equipped with a
left invariant Sasakian structure appeared in Theorem 8.2 (see also [99, 122]). Let G̃(c) be a 3-dimensional
simply connected non-unimodular Lie group equipped with a left invariant Sasakian structure (η, φ, ξ, g). Set
c = −3− α2 for some non-zero constant α, then there exits an orthonormal basis {e1, e2, e3} of the Lie algebra
g(c) of G̃(c) satisfying (see e.g. [190]):

[e1, e2] = αe2 + 2e3, [e2, e3] = [e3, e1] = 0. (15.1)

The left invariant Sasakian structure is described as

φe1 = e2, φe2 = −e1, φe3 = 0, ξ = e3. (15.2)

One can see that G̃(c) is isomorphic to the following solvable linear Lie group (cf. [122, 163]):


1 0 0 x
0 eαx 0 y
0 2

α (e
αx − 1) 1 z

0 0 0 1


∣∣∣∣∣∣∣∣ x, y, z ∈ R

 (15.3)

The orthonormal basis {e1, e2, e3} defines a left invariant vector fields:

e1 =
∂

∂x
, e2 = eαx

∂

∂y
, e3 =

2

α
(eαx − 1)

∂

∂y
+

∂

∂z
.

Generally speaking, generic non-symmetric 3-dimensional Riemannian Lie group G = (G, ⟨·, ·⟩) (Lie group
equipped with left invariant metrics) has unique expression. Here the uniqueness means that if a 3-dimensional
Riemannian Lie group (G′, ⟨·, ·⟩′) is isometric to (G, ⟨·, ·⟩) as a Riemannian 3-manifold, then G′ is isomorphic to
G as a Lie group. However as like S̃L2R and G̃(c), non-isomorphic 3-dimensional Lie groups might admit left
invariant metrics which make them isometric as Riemannian 3-manifolds. In 3-dimensional Lie group theory,
other than S̃L2R and G̃(c), Euclidean 3-space E3 and hyperbolic 3-space H3 does not satisfy the uniqueness. For
more detail, see [162].

Now we can state our classification on homogeneous contact Riemannian structures on a Sasakian space
form M3(c) of constant holomorphic sectional curvature c < −3 obtained a recent work with Ohno.

Theorem 15.3 ([124]). The set S of all homogeneous Riemannian structures on a Sasakian space form M3(c) =
(G⋉K)/K with c < −3 is given by S = {Ar | r ∈ R} ∪ {∇(−)}, where ∇(−) is the Cartan-Schouten’s (−)-connection
of the non-unimodular Sasakian Lie group G(c) diffeomorphic to G corresponding to the Lie algebra g. The set S
coincides with the set of all homogeneous almost contact Riemannian structures on M3(c). The corresponding coset
space representations are given as follows:

M3(c) =

 (G⋉K)/K ∇+Ar, r ̸= (c+ 1)/2
G/{e} ∇+Ar, r = (c+ 1)/2
G(c)/{e} ∇(−).

When r = (c+ 1)/2, the Ambrose-Singer connection ∇r = ∇+Ar is the Cartan-Schouten’s (−)-connection for G.
Every homogeneous Riemannian structure Ar is of type T2 ⊕ T3. The homogeneous Riemannian structure Ar is of
type T2 if and only if r = −2. On the other hand, Ar is of type T3 if and only if r = 1. In this case A1 = −dV . The
Cartan-Schouten’s (−)-connection for G̃(c) is of type T1 ⊕ T2 ⊕ T3.
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15.3. The unit 3-sphere

Finally we discuss the homogeneous Riemannian structures of the unit 3-sphere S3. In our setting and
notation, Abe’s classification is reformulated in the following manner (see also [79]):

Theorem 15.4 ([1]). The homogeneous Riemannian structures on the unit 3-sphere are classified as follows:

1. S(X)Y = rA1
XY = −r dV (X,Y ) for some constant r ≥ 0, r ̸= 1. The corresponding coset space representation is

S3 = SO(4)/SO(3) = (SU(2)× SU(2))/SU(2).

The homogeneous Riemannian structure is of type T3.

2. S(X)Y = Ar
XY for some r ∈ R with r ̸= 1. The homogeneous Riemannian structure is of type T2 ⊕ T3. It is of type

T2 if and only if r = −2. The corresponding coset space representation is

S3 = (SU(2)×U(1))/U(1) = U(2)/U(1).

3. S(X)Y = A1
XY = −dV (X,Y ). The homogeneous Riemannian structure is of type T3. The corresponding coset

space representation is
S3 = SU(2)/{1}.

Remark 15.1. The set of all SU(2)-invariant metric linear connections with totally skew-symmetric torsion on
S3 = SU(2)/{1} is given by {∇+ r A1}r∈R [62, Theorem 7.1].

Although the homogeneous Riemannian structure Ar is a homogeneous contact Riemannian structure for
any r ∈ R, the homogeneous Riemannian structure −rdV is a homogeneous contact Riemannian structure
when and only when r = 1. Note that dimSO(4) = dim(SU(2)× SU(2)) = 6. On the other hand, dimAut(S3) = 4
[217]. Now we retrive the following classification [79, Theorem 5.3] due to Gadea and Oubiña.

Corollary 15.1 ([79]). The set of all homogeneous contact Riemannian structures on the unit 3-sphere S3 is given by
{Ar | r ∈ R}.

Combining this classification with our main theorem, we obtain the following corollary.

Corollary 15.2. The set of all homogeneous contact Riemannian structures on the 3-dimensional Sasakian space form
M3(c) is given by {Ar | r ∈ R} if c ≥ −3. In case c < −3, S is given by S = {Ar | r ∈ R} ∪ {∇(−)}. Here ∇(−) is the
Cartan-Schouten’s (−)-connection of the non-unimodular Sasakian Lie group (15.3).

The corresponding coset space representations are given as follows:

M3(c) =


(G⋉K)/K ∇+Ar, r ̸= (c+ 1)/2
G/{e} ∇+Ar, r = (c+ 1)/2

G̃(c)/{e} ∇(−), c < −3.

Every homogeneous Riemannian structure other than ∇(−) of G̃(c) is of type T2 ⊕ T3.
The homogeneous Riemannian structure Ar is of type T2 if and only if r = −2. On the other hand, Ar is of type T3 if

and only if r = 1. In this case A1 = −dV . The Cartan-Schoutren’s (−)-connection of G̃(c) is of type T1 ⊕ T2 ⊕ T3 and
can not be of type T1, T2 and T3.

15.4. Non-umimodular Lie groups

The hyperbolic Sasakian space form M3(c) of constant holomorphic sectional curvature c < −3 admits
another homogeneous space representation. Indeed M3(c) is realized as a non-unimodular Lie groups. In
this subsection we discuss this homogeneous space representation. Now let us consider 3-dimensional non-
unimodular Lie groups equipped with left invariant contact Riemannian structure. Here we recall Perrone’s
construction [190].

Let G be a Lie group of arbitrary dimension with Lie algebra g. Denote by ad the adjoint representation of g,

ad : g→ End(g); ad(X)Y = [X,Y ].
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Then one can see that tr ad;

X 7−→ tr ad(X)

is a Lie algebra homomorphism into the commutative Lie algebra R. The kernel

u = {X ∈ g | tr ad(X) = 0}

of tr ad is an ideal of g which contains the ideal [g, g].
Now we equip a left invariant Riemannian metric ⟨·, ·⟩ onG. Denote by u the orthogonal complement of u in g

with respect to ⟨·, ·⟩. Then the homomorphism theorem implies that dim u⊥ = dim g/u ≤ 1. Moreover, Milnor’s
criterion impolies that G is unimodular if and only if u = g. Based on this criterion, the ideal u is called the
unimodular kernel of g. In particular, for a 3-dimensional non-unimodular Lie group G, its unimodular kernel u
is commutative and of 2-dimension.

Now let G be a 3-dimensional non-unimodular Lie group equipped with a left invariant contact Riemannian
structure (φ, ξ, η, g). Then one can easily check that ξ ∈ u. We take an orthonormal basis {e2, e3 = ξ} of u. Then
e1 = −φe2 ∈ u⊥ and hence ad(e1) preserves u. Express ad(e1) as

[e1, e2] = αe2 + βe3, [e1, e3] = γe2 + δe3

over u. The compatibility condition dη = Φ implies that β = 2. Next, ∇ξξ = 0 implies that δ = 0. Moreover one
can deduce that [e2, e3] = 0 from the Jacobi identity.

Remark 15.2. Milnor [163] chose the following orthonormal basis {u1, u2, u3} for a non-unimodular Lie group
G with left invariant Riemannian metric.

u1 ∈ u⊥, ⟨ad(u1)u2, ad(u1)u3⟩ = 0. (15.4)

This orthonormal basis {u1, u2, u3} satisfies

[u1, u2] = αu2 + βu3, [u2, u3] = 0, [u1, u3] = γu2 + δu3

with α+ δ ̸= 0 and αγ + βδ = 0. Moreover {u1, u2, u3} diagonalizes the Ricci tensor field. On the other hand,
the basis {e1, e2, e3} constructed for a non-unimodular homogeneous contact Riemannian 3-manifold G does
not satisfy the orthogonality condition ⟨ad(u1)u2, ad(u1)u3⟩ = 0. In fact, {e1, e2, e3} satisfies this orthogonality
condition if and only if γ = 0.

Theorem 15.5 ([190]). Let G be a 3-dimensional non-unimodular Lie group equipped with a left invariant contact
Riemannian structure. Then the Lie algebra g satisfies the commutation relations

[e1, e2] = αe2 + 2e3, [e2, e3] = 0, [e3, e1] = −γe2,

with e3 = ξ, e1 = −φe2 ∈ u⊥ and α ̸= 0. The Webster scalar curvature and the torsion invariant satisfy the relation:

4
√
2W < |τ |.

The Levi-Civita connection of G is given by the following table:

Proposition 15.1 ([190]).

∇e1e1 = 0, ∇e1e2 = − 1
2 (γ − 2)e3, ∇e1e3 = 1

2 (γ − 2)e2
∇e2e1 = −αe2 − 1

2 (γ + 2)e3, ∇e2e2 = αe1, ∇e2e3 = 1
2 (γ + 2)e1

∇e3e1 = − 1
2 (γ + 2)e2, ∇e3e2 = 1

2 (γ + 2)e1 ∇e3e3 = 0.

The endomorphism field h = (£ξφ)/2 is given by

he1 = −1

2
γe1, he2 =

1

2
γe2.
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The Riemannian curvature R is given by

R(e1, e2)e1 =−
{
1

4
(γ2 − 4γ − 12)− α2

}
e2 + αγe3,

R(e1, e2)e2 =

{
1

4
(γ2 − 4γ − 12)− α2

}
e1,

R(e1, e3)e1 =αγe2 +
1

4
(3γ2 + 4γ − 4)e3,

R(e1, e3)e3 =− 1

4
(3γ2 + 4γ − 4)e1,

R(e2, e3)e2 =− 1

4
(γ + 2)2e3,

R(e2, e3)e3 =
1

4
(γ + 2)2e2,

R(e1, e2)e3 =− αγe1.

K12 =
1

4
(γ2 − 4γ − 12)− α2, K13 = −1

4
(3γ2 + 4γ − 4), K23 =

1

4
(γ + 2)2.

The Ricci tensor field has non-trivial components

R11 = −α2 − 2− 2γ − γ2

2
, R22 = −α2 − 2 +

γ2

2
, R33 = 2− γ2

2
, R23 = −αγ.

The bilinear form U is given by

U(e1, e2) = −
1

2
(αe2 + γe3), U(e1, e3) = −e2, U(e2, e2) = αe1, U(e2, e3) =

1

2
(γ + 2)e1.

The Lie algebra g is classified by the Milnor invariant D = −8γ/α2.

As we can see in [190],G satisfies γ = 0 if and only if it is isometric to a Sasakian space form M3(c) of constant
holomorphic sectional curvature c = −3− α2 < −3. More precisely G is (locally) isomorphic to G̃(c) given by
(15.3).

On the other hand, homogeneous Riemannian structures on 3-dimensional non-unimodular Lie group are
classified in [39] under the left invariance and the orthogonality assumption (15.4) (see Remark 15.2). The
classification due to [39] is improved by Ohno and the present author [125].

Let us concentrate on Sasakian space forms. In this case we have γ = δ = 0 and hence {e1, e2, e3} satisfies the
orthogonality condition (15.4). Thus we can apply the classification due to [39, Theorem 1.3] (see also [124]).

Proposition 15.2. The homogeneous Riemannian structures on the non-unimodular Lie group G equipped with a left
invariant Sasakian structure of constant holomorphic sectional curvature c = −3− α2 < −3 are given by

• S = Ar or
• S is associated with the Cartan-Schouten (−)-connection:

S = dη(X,Y )ξ + η(Y )φX + (αg(X, e2) + η(X))φY.

The homogeneous Riemannian structure S = ∇(−) −∇ is of type T1 ⊕ T2 ⊕ T3.

15.5. The reduction of the homogeneous structures

Let M = (M,φ, ξ, η, g) be a regular Sasakian manifold fibered over a Kähler manifold M = (M, ḡ, J). The
complex structure J on M is related to φ by the fundamental relation (5.13). Motivated by this fundamental
relation we may introduce a tensor field S̄ on M by ([36, 42]):

S̄(X)Y = π∗(S(X
h
)Y

h
), X, Y ∈ Γ (TM). (15.5)

Here the superscript h means the horizontal lift operations of tangent vectors as well as vector fields.
Every complete Sasakian space form M3(c) is a regular Sasakian manifold fibered over a space form M(c+ 3).

We know that homogeneous Sasakian structures are exhausted by the 1-parameter family {Ar}r∈R. However
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one can see that the induced homogeneous Riemannian structure on M(c+ 3) are trivial ones for every r ∈ R.
On the other hand, the Lie algebra g(c) of the non-unimodular Sasakian Lie group (15.3) is a 1-dimensional
solvable extension of the Lie algebra of the solvable Lie group model of H2(−α2). Indeed, the solvable Lie
group model S of H2(−α2) is isomorphic and isometric to the Lie groupM given in (4.9). The Lie algebra m̄ of
M is spanned by the basis

ē1 =

(
0 α
0 0

)
, ē1 =

(
α 0
0 0

)
.

Then we may set
e1 = ē2, e2 = ē1

and consider the linear space m̄⊕Re3 and define a Lie bracket by (15.1). Then the resulting Lie algebra
is nothing but g(c). The Ambrose-Singer connection of the homogeneous Kähler structure of type T1 on
H2(−α2) =M/{E2} is the Cartan-Schouten’s (−)-connection of M. The Cartan-Scouten’s (−)-connection of
G̃(c) is understood as the extension of that of H2(−α2) =M to G̃(c). Thus the difference of c ≥ −3 and c < −3
in the classification of homogeneous Riemannian structures on M3(c) is caused by Proposition 4.6.

16. Solvable Lie groups

16.1. Some fundamental facts in solvable Lie groups

In this section we give explicit formulas for homogeneous Riemannian structures on certain homogeneous
Riemannian 3-spaces. In particular we give explicit formulas for homogeneous structures on hyperbolic 3-
space and Euclidean 3-space in terms of almost contact structures. First we recall the following theorem due to
Heintze.

Theorem 16.1 ([91]). Let M be a connected homogeneous Riemannian space of non-positive sectional curvature, then
M admits a solvable Lie group structure equipped with a left invariant metric.

Note that Kobayashi [144] proved that a connected homogeneous Riemannian space of non-positive
sectional curvature and negative definite Ricci operator is simply connected.

Azencott and Wilson proved the following fact.

Theorem 16.2 ([7]). Let M be a simply connected homogeneous Riemannian space of non-positive curvature and G a
connected Lie subgroup of Iso◦(M) acting transitively on M . Then there exits a solvable Lie subgroup S of G acting
simply transitively on M .

Here we collect some notions given in [8, pp. 41–48] (see also [1]).

Definition 16.1. Let (M, g) be a simply connected homogeneous Riemannian space of non-positive curvature
satisfying the assumption of Theorem 16.2. Assume that M has no Euclidean factor in its de Rham
decomposition. Then a connected Lie subgroup S ′ of Iso◦(M) is said to be a modification of S if S′ acts simple
transitively on M and the Lie algebra s′ of S ′ is in the normalizer n(s). Here s is the Lie algebra of S.

Definition 16.2. Let (M, g) be a simply connected homogeneous Riemannian space of non-positive curvature
satisfying the assumption of Theorem 16.2. A solvable Lie subgroup S of Iso◦(M) is said to be in standard
position if for some point o ∈M , B(V,U) = 0 for all V ∈ [s, s]⊥ and U ∈ h, where B is the Killing form of iso(M)
and h is the isotropy algebra at o. The linear subspace [s, s]⊥ is the orthogonal complement of [s, s] in s with
respect to the inner product on s induced from the metric g. The Lie algebra s is also called in standard position.

Theorem 16.3. Let (M, g) be a simply connected homogeneous Riemannian space of non-positive curvature satisfying
the assumption of Theorem 16.2 and has no Euclidean factor in its de Rham decomposition. The for any connected Lie
subgroup S ′ of Iso◦(M) acting simple transitively on M , there exits a unique modification S of S ′ which is in standard
position.

Theorem 16.4. Let (M, g) be a simply connected homogeneous Riemannian space of non-positive curvature satisfying
the assumption of Theorem 16.2 and has no Euclidean factor in its de Rham decomposition. The for any connected Lie
subgroups S and S ′ of Isocirc(M) acting simple transitively on M and are in standard position. Then there exits an
element a ∈ Iso◦(M) such that aSa−1 = S ′.

Conversely, if S is in standard position, then for any a ∈ Iso◦(M), aSa−1 is in standard position.
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Let M be a simply connected homogeneous Riemannian space of non-positive curvature satisfying the
assumption of Theorem 16.2 and has no Euclidean factor in its de Rham decomposition. Take a (solvable)
Lie subgroup S ⊂ Iso◦(M) which is in standard position. Then for any a ∈ Iso◦(M), The Lie algebra of aSa−1

is Ad(a)s and isomorphic to s as a Lie algebra. Moreover s and Ad(a)s are isometric relative to the inner
product induced from (ToM, go) and (Ta·oM, ga·o). The homogeneous Riemannian structures S determined
by S = S/{e} and S′ determined by S ′ = (Ad(a)S)/{e} are isomorphic.

16.2. The 2-parameter family G(γ1, γ2)

Let us define a 2-parameter family {G(γ1, γ2)}γ1,γ2∈R of linear Lie groups by

G(γ1, γ2) =


 1 0 0 z

0 eγ1z 0 x
0 0 eγ2z y
0 0 0 1


∣∣∣∣∣∣∣ x, y, z ∈ R

 .

This 2-parameter family can be seen in [222, p. 85] (see also [60, 95, 97, 111]). The Lie groupG(γ1, γ2) is identical
to G2(γ1, γ2) in [76, 77].

The Lie algebra g(γ1, γ2) of each G(γ1, γ2) is spanned by the basis

E1 =

 0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

 , E2 =

 0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 , E3 =

 0 0 0 1
0 γ1 0 0
0 0 γ2 0
0 0 0 0


with commutation relations

[E1, E2] = 0, [E2, E3] = −γ2E2, [E3, E1] = γ1E1.

These relations show that G(γ1, γ2) is solvable. Moreover G(γ1, γ2) is non-unimodular unless γ1 + γ2 = 0.
The left translated vector fields of E1, E2 and E3 are

e1 = eγ1z
∂

∂x
, e2 = eγ2z

∂

∂x
, e3 =

∂

∂z
.

We equip an inner product ⟨·, ·⟩ on g(γ1, γ2) so that {E1, E2, E3} is orthonormal. Then the left translated
Riemannian metric g = g(γ1, γ2) is

g(γ1, γ2) = e−2γ1zdx2 + e−2γ2zdy2 + dz2.

The Levi-Civita connection ∇ of g is computed as

∇e1e1 = γ1 e3 ∇e1e2 = 0, ∇e1e3 = −γ1 e1,
∇e2e1 = 0 ∇e2e2 = γ2e3, ∇e2e3 = −γ2e2,
∇e3e1 = 0 ∇e3e2 = 0, ∇e3e3 = 0.

Let us compute the connection form and curvature form. The orthonormal coframe field Θ = {ϑ1, ϑ2, ϑ3}
metrically dual to E = {e1, e2, e3} is given by

ϑ1 = e−γ1z dx, ϑ2 = e−γ2z dy, ϑ3 = dz.

Since
dϑ1 = γ1 e

−γ1zdx ∧ dz, dϑ2 = γ2 e
−γ2zdy ∧ dz, dϑ3 = 0,

we get

ω =

 0 0 −γ1 ϑ1
0 0 −γ2 ϑ2

γ1 ϑ
1 γ2 ϑ

2 0

 .

The curvature form is computed as

Ω =

 0 −γ1γ2 ϑ1 ∧ ϑ2 −γ21 ϑ1 ∧ ϑ3
γ1γ2 ϑ

1 ∧ ϑ2 0 −γ22 ϑ2 ∧ ϑ3
γ21 ϑ

1 ∧ ϑ3 γ22 ϑ
2 ∧ ϑ3 0

 .
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The sectional curvature of G(γ1, γ2) is given by

K12 = −γ1γ2 K13 = γ21 , K23 = γ22 .

The Ricci tensor field and scalar curvature are given by

R11 = −γ1(γ1 + γ2), R22 = −γ2(γ1 + γ2), R33 = −(γ21 + γ22), s = −2(γ21 + γ22 + γ1γ2).

Now we introduce an almost contact structure (φ, ξ, η) compatible to g by

φe1 = e2, φe2 = −e1, φe3 = 0, ξ = e3, η = g(ξ, ·).

Then we obtain a 2-parameter family of homogeneous almost contact metric manifolds. The almost contact
metric manifold G(α, β) has constant holomorphic sectional curvature −γ1γ2. Then we have

∇ξ = −γ1 ϑ1 ⊗ e1 − γ2 ϑ2 ⊗ e2.

(∇Xφ)Y = {−γ2ϑ2 ⊗ η ⊗ e1 + γ1ϑ
1 ⊗ η ⊗ e2 + (−γ1ϑ1 ⊗ ϑ2 + γ2ϑ

2 ⊗ ϑ2)⊗ ξ}(X,Y ).

From these we have
α =

1

2
tr(φ∇ξ) = 0, β = div ξ = −(γ1 + γ2).

One can see that G(γ1, γ2) is normal when and only when γ1 = γ2.
Let ∇r = ∇+Ar the almost contact connections. Then the covariant form Ar

♭ of Ar is computed as

Ar
♭ = 2γ1 ϑ

1 ⊗ (ϑ3 ∧ ϑ1)− 2γ2 ϑ
2 ⊗ (ϑ2 ∧ ϑ3)− 2r ϑ3 ⊗ (ϑ1 ∧ ϑ2). (16.1)

Thus we obtain
Ar

XY = −η(Y )∇Xξ + g(∇Xξ, Y )ξ − r η(X)φY. (16.2)

Example 16.1 (γ1 = γ2 = 0). The Lie group G(0, 0) is isometric and isomorphic to the Euclidean 3-space
E3 = (R3,+). The almost contact Riemannian structure is coKähler. In this case, the almost contact connection
∇r is given by

∇r
XY = ∇XY +Ar

XY, Ar
XY = −rη(X)φY. (16.3)

Example 16.2 (γ1 = γ2 = c ̸= 0). Let us take γ1 = γ2 = c ̸= 0. ThenG(c, c) is a warped product model (also called
the solvable Lie group model) of hyperbolic 3-space H3(−c2) of constant curvature −c2 < 0:

H3(−c2) = (R3(x, y, z), e−2cz(dx2 + dy2) + dz2).

In this case, we have

∇Xξ = −c{X − η(X)ξ}, (∇Xφ)Y = c{η(Y )φX + g(X,φY )ξ}.

These formulae imply that G(c, c) = H3(−c2) is a (−c)-Kenmotsu manifold. In particular G(−1,−1) = H3(−1)
is a Kenmotsu manifold. In this case, the almost contact connection ∇r is given by

∇r
XY = ∇XY +Ar

XY, Ar
XY = g(X,Y )ξ − η(Y )X − rη(X)φY. (16.4)

Example 16.3 (γ1 = −γ2 = −1). In case γ1 = −γ2 = −1,

G(−1, 1) = (R3(x, y, z), e2zdx2 + e−2zdy2 + dz2).

is the model space Sol3 of solvgeometry [220]. Note thatG(−1, 1) is isomorphic to the Minkowski motion group
SE(1, 1) discussed in Section 8.3.5. The left invariant almost contact Riemannian structure is non-normal almost
coKähler. This structure is referred as to the class C9 in [45].

Example 16.4 (γ1 = 0, γ2 ̸= 0). Take (γ1, γ2) = (0, c) with c ̸= 0. Then G(0, c) is the Riemannian product of R1(x)
and hyperbolic 2-space

H2(−c2) = (R2(y, z), e−2cz dy2 + dz2).

Under the coordinate change:
x̄ = cy, ȳ = ecz, z̄ = x,

the metric g is transformed to
dx̄2 + dȳ2

cȳ2
+ dz2.

The left invariant almost contact Riemannian structure is non-normal (−c/2)-almost Kenmotsu. In particular,
G(0,−2) = R×H2(−4) is an almost Kenmotsu manifold.
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Example 16.5 (γ1 ̸= 0, γ2 = 0). Take (γ1, γ2) = (c, 0) with c ̸= 0. Then G(c, 0) is the Riemannian product of R1(y)
and hyperbolic 2-space

H2(−c2) = (R2(x, z), e−2cz dx2 + dz2).

Under the coordinate change:
x̄ = cx, ȳ = ccz, z̄ = y,

the metric g is transformed to
dx̄2 + dȳ2

cȳ2
+ dz2.

The left invariant almost contact Riemannian structure is non-normal (−c/2)-almost Kenmotsu. In particular,
G(−2, 0) = R×H2(−4) is an almost Kenmotsu manifold.

16.3. The homogeneous Riemannian structures

Now let us classify the homogeneous Riemannian structures on G(γ1, γ2). Let S♭ be a tensor field of type
(0, 3) satisfying (4.11). Then S♭ is expressed as the form of (4.12). Denote by S the (1, 2)-tensor field associated
to S♭.

Assume that S is a homogeneous Riemannian structure, then the linear connection ∇̃ = ∇+ S satisfies
∇̃R = 0. Since G(γ1, γ2) is 3-dimensional, this condition is equivalent to (4.14). Since the Ricci tensor field of
G(γ1, γ2) is given by

−γ1(γ1 + γ2)ϑ
1 ⊗ ϑ1 − β(γ1 + γ2)ϑ

2 ⊗ ϑ2 − (γ21 + γ22)ϑ
3 ⊗ ϑ3,

we obtain the system  (γ1 − γ2)(γ1 + γ2)S♭(X, e1, e2) = 0,
γ2(γ1 − γ2)(S♭(X, e1, e3) + γ1ϑ(X)) = 0,
γ1(γ1 − γ2)(S♭(X, e2, e3) + γ2ϑ(X)) = 0.

Let us assume that γ1 ̸= 0, γ2 ̸= 0 and γ1 ̸= γ2. Then we get

S♭ = 2{−γ2ϑ2 ⊗ (θ2 ∧ θ3) + γ1ϑ
1 ⊗ (θ3 ∧ θ1) + σ)⊗ (ϑ1 ∧ ϑ2)},

where σ(X) = S♭(X, e1, e2). The homogeneous Riemannian structure S is expressed as

S(X)Y = −η(Y )∇Xξ + g(∇Xξ, Y )ξ + σ(X)φY.

In case γ1 + γ2 ̸= 0, we have σ = 0.
Next, we determine the 1-form σ for the case γ1 + γ2 = 0. The 1-form σ is determined by the parallelism

∇̃S = 0, where ∇̃ = ∇+ S. The connection forms of ∇̃ are computed as

ω̃ 2
1 = σ, ω̃ 3

1 = ω̃ 3
2 = 0.

Hence
∇̃Xϑ

1 = σ ⊗ ϑ2, ∇̃Xϑ
2 = −σ ⊗ ϑ1.

Hence
(∇̃XS♭) = 2(γ2 − γ1)σ ⊗ {ϑ1 ⊗ (ϑ2 ∧ ϑ3)− ϑ2 ⊗ (ϑ3 ∧ ϑ1)}+ 2(∇̃Xσ)⊗ (ϑ1 ∧ ϑ2).

Since γ1 + γ2 = 0, ∇̃S♭ = 0 if and only if σ = 0. Hence we get

S(X)Y = A0
XY = −η(Y )∇Xξ + g(∇Xξ, Y )ξ.

One can confirm that this S is really a homogeneous Riemannian structure, especially a homogeneous almost
contact Riemannian structure. Even if the cases, γ1γ2 = 0 or γ1 = γ2, S = A0 is still a homogeneous almost
contact Riemannian structure of G(γ1, γ2).

The following result is a reformulation (and an improvement) of a result due to Tricerri and Vanhecke given
in [222, p. 85, pp. 88-89].

Theorem 16.5. For any γ1, γ2 ∈ R, the tensor field

S(X)Y = A0
XY = −η(Y )∇Xξ + g(∇Xξ, Y )ξ

is a homogeneous almost contact Riemannian structure on the solvable Lie group G(γ1, γ2).
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• S is of type T1 ⊕ T2.
• S is of type T2 if and only if γ1 + γ2 = 0.
• S is of type T1 if and only if γ1 = γ2 ̸= 0.

In all the cases, the corresponding coset space representation of G(γ1, γ2) is G(γ1, γ2)/{e}. Moreover the Ambrose-Singer
connection ∇+ S coincides with the Cartan-Schouten’s (−)-connection and Sasaki-Hatakeyama’s (φ, ξ, η)-connection.
In case γ1 ̸= 0, γ2 ̸= 0 and γ1 ̸= ±γ2, all the homogeneous Riemannian structures is given by the single point set {A0}.
This coincides with the set of all the homogeneous almost contact Riemannian structures.

In case Sol3, we retrieve the following uniqueness theorem (see also Section 8.3.5).

Corollary 16.1 ([222]). The model space Sol3 has the only homogeneous Riemannian structure A0. The canonical
connection is the Cartan-Schouten’s (−)-connection. The homogeneous Riemannian structure A0 is a homogeneous
almost coKähler structure.

Next we consider hyperbolic 3-space H3(−c2) = G(c, c). In this case,

S(X)Y = −c{g(X,Y )ξ − η(Y )X}.

This formula shows that S is a homogeneous Riemannian structure of type T1 on the hyperbolic 3-space
H3(−c2) for c ̸= 0. Note that in case G(0, 0), S = 0 (see Proposition 16.3).

The existence of homogeneous Riemannian structure of type T1 characterizes hyperbolic spaces as follows:

Theorem 16.6. ([222, p. 49]) If a Riemannian manifold (M, g) admits a homogeneous Riemannian structure S ̸= 0 of
type T1, then M is of constant negative curvature.

The classifications of homogeneous Riemannian structures on H3, E3 and H2(−4)× E1 will be discussed in
Section 16.4, Section 16.5 and Section 18, respectively. To close this subsection we quote the following result.

Theorem 16.7 ([152, 77]). Let M be a simply connected and complete homogeneous Riemannian 3-manifold.

1. IfM admits a non trivial homogeneous Riemannian structure of type T2, thenM is isometric to one of the following
Lie groups:

• The universal covering S̃L2R of SL2R equipped with a left invariant Riemannian metric satisfying c1, c3 > 0
and c2 = −(c1 + c3). Note that these metrics have 3-dimensional isometry group and hence these are not the
metrics of Thurston geometry.

• The Minkowski motion group SE(1, 1) with c1 + c2 = 0. Thus the model space Sol3 has a homogeneous
Riemannian structure of type T2.

• The universal covering S̃L2R of SL2R equipped with a left invariant Riemannian metric satisfying c1 = c2 <
0 < c3 or c2 < 0 < c1 = c3.

• The Heisenberg group equipped with a left invariant Riemannian metric satisfying c1 = c2 = 0 and c3 ̸= 0.
• The special unitary group SU(2) equipped with a left invariant Riemannian metric satisfying c1 = c2 ̸= c3.

2. If M admits a homogeneous Riemannian structure of type T1 ⊕ T2 but not of type T2, then M is isometric to
G(γ1, γ2) with γ1 + γ2 ̸= 0.

It should be remarked that if a non-symmetric homogeneous Riemannian 3-space M admits a homogeneous
Riemannian structure of type T3, then it also admits a homogeneous Riemannian structure of type T2 [222].

16.4. The hyperbolic 3-space

First we recall the Riemannian symmetric space representation of H3.

16.4.1. Riemannian symmetric space representation To investigate Ambrose-Singer connection on H3(−c2), here
we recall the following model (see [59]). For simplicity we normalize the sectional curvature as −1.

Example 16.6 (Hermitian matrix model). Let us denote by Her2C the space of all Hermitian 2 by 2 matrices.
Then Her2C is parametrized explicitly as follows:

Her2C =

{
X =

(
x0 + x1 x3 −

√
−1x2

x3 +
√
−1x2 x0 − x1

) ∣∣∣∣ x0, x1, x2, x3 ∈ R
}
.
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We denote by {e0, e1, e2, e3} the natural basis of Her2C, i.e.,

e0 =

(
1 0
0 1

)
, e1 =

(
1 0
0 −1

)
, e2 =

(
0 −

√
−1√

−1 0

)
, e3 =

(
0 1
1 0

)
.

This basis is related to the quaternionic basis with

e0 = 1 e1 = −
√
−1k, e2 =

√
−1j, e3 =

√
−1i.

One can see that −detX = −x20 + x21 + x22 + x23. Let us introduce a scalar product on Her2C by

⟨X,X⟩ = −detX.

Then Her2C is identified with Minkowski 4-space E1,3 with Lorentzian metric −dx20 + dx21 + dx22 + dx23. The
hyperbolic 3-space H3 is realized as a hyperquadric

{X ∈ Her2C | detX = 1, trX > 0}.

The special linear group SL2C acts isometrically on Her2C via the action

SL2C×Her2C→ Her2C; (g,X) 7−→ gXg∗.

This action induces a Lie group homomorphism from SL2C onto SO+(1, 3) with kernel {±1} ∼= Z2. Thus we get
the isomorphism SL2C/Z2

∼= SO+(1, 3). In other words, SL2C is the double covering of SO+(1, 3).
The special linear group SL2C acts isometrically and transitively on H3 via the above action. The

isotropy subgroup of this action at the identity matrix is SU(2). The isotropy algebra is spanned by
{
√
−1e1,

√
−1e2,

√
−1e3}. The tangent space Te0

H3 is identified with the Lie subspace

m0 = Her2C ∩ sl2C = Re1 ⊕Re2 ⊕Re3.

The representation SL2C/SU(2) is a Riemannian symmetric space with Lie subspace m0. Note that the Lie
algebra sl2C is represented by

sl2C = mC
0 = m0 ⊕

√
−1m0, su(2) =

√
−1m0.

Remark 16.1 (Killing form). The Killing form B of sl2C is given by

B(X,Y ) = 4tr(XY ).

By using the Killing form, we introduce a normalized Killing metric

⟨X,Y ⟩K =
1

2
tr(XY )

on sl2C. Then the basis {
√
−1e1,

√
−1e2,

√
−1e3, e1, e2, e3, } is orthonormal with respect to the normalized

Killing metric with signature (−,−,−,+,+,+). Thus m0 is spacelike. The normalized Killing metric is negative
definite on su(2). On the other hand, the restriction of the Lorentz metric of Her2C on m0 is positive definite
and coincides with that of the normalized Killing metric.

The Lie subspace m0 is expressed as

m0 =

{(
t w
w −t

) ∣∣∣∣ t ∈ R, w ∈ C
}
. (16.5)

Remark 16.2 (Quaternionic basis). By using the quaternionic basis {i, j,k} of su(2), m0 is spanned by
{
√
−1i,

√
−1j,

√
−1k} and hence it is rewritten as

√
−1su(2).

16.4.2. The stereographic projection The stereographic projection from H3 ⊂ E1,3 onto the upper half space
model

H3 = ({(x, y, z) ∈ R3 z > 0}, g), g =
dx2 + dy2 + dz2

z2
.

is given by

(x0, x1, x2, x3) 7−→
1

x0 − x1
(x2, x3, 1).
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16.4.3. The polar decomposition The Iwasawa decomposition of SL2C is given by

SL2C = NA · SU(2),

where

N =

{(
1 x+ yi
0 1

) ∣∣∣∣ x, y ∈ R
}
, A =

{( √
z 0
0 1/

√
z

) ∣∣∣∣ z > 0

}
.

The Iwasawa decomposition induces the polar decomposition SL2C = B+
2 C · SU(2) of SL2C. The solvable part

B+
2 C = NA is parametrized as

B+
2 C =

{( √
z (x+ yi)/

√
z

0 1/
√
z

) ∣∣∣∣ x, y ∈ R, z > 0

}
.

The multiplication law is described as

(x1, y1, z1)(x2, y2, z2) = (x1 + z1x2, y1 + z1y2, z1z2).

The Maurer-Cartan form of B+
2 C is computed as

dx

z

(
0 1
0 0

)
+
dy

z

(
0
√
−1

0 0

)
+
dz

z

(
1/2 0
0 −1/2

)
.

Thus the Lie algebra b+2 C of B+
2 C is spanned by{(

0 1
0 0

)
,

(
0
√
−1

0 0

)
,

(
1/2 0
0 −1/2

)}
.

Let us introduce a left invariant metric so that this basis is orthonormal with respect to it. Then B+
2 C is isometric

to the upper half space model of H3. It should be remarked that inner product of b2C is different from the one
induced from the normalized Killing metric. Indeed, with respect to the normalized Killing metric,〈(

0 1
0 0

)
,

(
0 1
0 0

)〉
=

〈(
0
√
−1

0 0

)
,

(
0
√
−1

0 0

)〉
= 0,〈(

1/2 0
0 −1/2

)
,

(
1/2 0
0 −1/2

)〉
=

1

4
.

The possible dimension d of the connected isometry group G acting transitively on H3 are 3, 4 and 6. More
precisely

1. d = 6.

2. d = 4 and dim(G ∩K) = 1.

3. d = 3 and dim(G ∩K) = 0.

Here K is a Lie group whose Lie algebra is isomorphic to su(2) (see [1, p. 180]).

16.4.4. The case d = 6 From the reductivity [su(2),m] ⊂ m, the possible Lie subspaces are (see [1])

mλ := (1 + λ
√
−1)m0, λ ∈ R.

In other words, mλ is spanned by e1 + λ(
√
−1e1), e2 + λ(

√
−1e2) and e3 + λ(

√
−1e3). According to Abe [1], the

corresponding homogeneous Riemannian structure is

Sλ
3 (X)Y = −λdV (X,Y ).

By using the Kenmotsu structure (φ, ξ, η, g) of H3, Sλ
3 is expressed as

Sλ
3 (X)Y = λ{g(X,φY )ξ − η(X)φY + η(Y )φX.

These homogeneous Riemannian structures are of type T3. Thus H3 admits one-parameter family of naturally
reductive homogeneous Riemannian structures. Thus we obtain an alternative proof for the existence of one-
parameter family of naturally reductive homogeneous representation of H3 pointed out by Olmos and Reggiani
[177, Remark 2.1].
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16.4.5. The case d = 3 Theorem 16.2 implies that the isometry group G is a solvable Lie subgroup of SL2C. The
solvable Lie algebra g satisfies dim g = 3 and g ∩ su(2) = {0}. The Lie algebra b2C is in standard position. For
any constant λ, the Lie subalgebra sλ of sl2C spanned by{(

0 1
0 0

)
,

(
0
√
−1

0 0

)
,

(
(1 + λ

√
−1)/2 0

0 −(1 + λ
√
−1)/2

)}
is a modification of b2C. Note that s0 = b2C. Abe [1] proved that for two modifications sλ and sµ, there exists
an isometric Lie algebra isomorphism if and only if µ = ±λ. Let us parametrize sλ as

sλ =

{(
t(1 + λ

√
−1)/2 ζ

0 −t(1 + λ
√
−1)/2

) ∣∣∣∣ t ∈ R, ζ ∈ C
}
.

Then the corresponding Lie group is given by

Sλ = exp sλ =

{(
exp{t(1 +

√
−1λ)/2} w

0 exp{−t(1 +
√
−1λ)/2}

) ∣∣∣∣ t ∈ R, w ∈ C
}
.

The exponential map exp : sλ → Sλ is given by

exp

(
t(1 +

√
−1λ)/2 w
0 −t(1 +

√
−1λ)/2

)
=

(
exp{t(1 +

√
−1λ)/2} w(et(1+

√
−1λ)/2 − e−t(1+

√
−1λ)/2)/{t(1 +

√
−1λ)}

0 exp{−t(1 +
√
−1λ)/2}

)
for t ̸= 0. One can see that

lim
t→0

exp

(
t(1 +

√
−1λ)/2 ζ
0 −t(1 +

√
−1λ)/2

)
=

(
1 v
0 1

)
= exp

(
0 ζ
0 0

)
, ζ ∈ C.

The hyperbolic 3-space is represented as H3 = Sλ/{E2}. The corresponding Ambrose-Singer connection is
∇+ Sλ

123, where
Sλ
1,2,3(X)Y = −g(X,Y )ξ + η(Y )X + λη(X)φY.

The Ambrose-Singer connection is ∇+ Sλ
123 is the Cartan-Schouten’s (−)-connection of Sλ.

16.4.6. The case d = 4 Abe proved the following useful fact.

Proposition 16.1. Let G be a 4-dimensional connected subgroup of SL2C acting transitively on H3, then there exists a
solvable subgroup S of G acting transitively on H3 and G is the normalizer N(S) of S.

Now let us consider the following 4-dimensional Lie group G

G =

{(
exp{t(1 +

√
−1λ)/2} w

0 exp{−t(1 +
√
−1λ)/2}

) ∣∣∣∣ t ∈ R, w ∈ C, λ ∈ R
}
.

Let us take an element (
et(1+

√
−1λ)/2 w

0 e−t(1+
√
−1λ)/2

)
of G, then one can see that(

et(1+
√
−1λ)/2 w

0 e−t(1+
√
−1λ)/2

)
=

(
et/2 w(et/2e

√
−1λt − e−t/2)/(t(1 + λ

√
−1))

0 e−t/2

)(
e
√
−1λ/2 w

0 e−
√
−1λ/2

)
.

Thus we obtain a decomposition G = B2
+C ·U(1). From the Iwasawa decomposition SL2C = NASU(2), we

know that NA = B+
2 C, thus we have NAU(1).

Abe proved that
G = N(AB2

+CA−1), A ∈ SL2C.
Compare with [41, p. 567]. Thus we obtain a homogeneous space representation H3 = (B2

+C ·U(1))/U(1) =
(NAU(1))/U(1). Abe proved that the homogeneous Riemannian structure corresponding to H3 = (B2

+C ·
U(1))/U(1) is Sλ

123.
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Proposition 16.2. Up to isomorphisms, the hyperbolic 3-space H3 admits two types of homogeneous Riemannian
structures up to isomorphims:

1. The homogeneous Riemannian structures Sλ
3 of type T3 given by

Sλ
3 (X)Y = −λdV (X,Y ) = λ{g(X,φY )ξ − η(X)φY + η(Y )φX}, λ ≥ 0.

The corresponding coset space representation of H3 is SL2C/SU(2) with Lie subspace

mλ =

{
(1 + λ

√
−1)

(
t w̄
w −t

) ∣∣∣∣ t ∈ R, w ∈ C
}
.

In particular, S0
3 = 0 defines a Riemannian symmetric space SL2C/SU(2) with Lie subspace m0 = sl2C ∩Her2C

(see Remark 16.6 below).

2. Sλ
1,2,3(X)Y = −g(X,Y )ξ + η(Y )X + λη(X)φY , λ ≥ 0. The corresponding coset space representations of H3

are Sλ/{E2} or (B2
+C ·U(1))/U(1). This homogeneous Riemannian structure is of type T1 ⊕ T2 ⊕ T3. The

homogeneous Riemannian structure Sλ
1,2,3 is of type T1 if and only if λ = 0. Note that the the Ambrose-Singer

connection ∇+ Sλ
1,2,3 coincides with the Cartan-Schouten’s (−)-connection of sλ.

Proof. Let us consider the homogeneous structure Sλ(X)Y = −g(X,Y )ξ + η(Y )X + λη(X)φY . Then we have

c12(S
λ
♭ )(Z) = −η(Z),

S
X,Y,Z

Sλ
♭ (X,Y, Z) = λ {η(X)g(φY,Z) + η(Y )g(φZ,X) + η(Z)g(φX, Y )} ,

and
Sλ
♭ (X,Y, Z) + Sλ

♭ (Y,X,Z) = λ{η(X)g(φY,Z) + η(Y )g(φX,Z)}.

Hence for λ ̸= 0, Sλ ̸∈ T2 ⊕ T3, Sλ ̸∈ T1 ⊕ T2 and Sλ ̸∈ T1 ⊕ T3.

Remark 16.3. Every X = (xij) ∈ sl2C is decomposed as X = Xsλ +Xsu(2) where

Xsλ =

(
(1 +

√
−1λ)Re x11 x12 + x21
0 −(1 +

√
−1λ)Re x11

)
,

Xsu(2) =

( √
−1(Im x11 − λRe x11) −x21

x21 −
√
−1(Im x11 − λRe x11)

)
along the splitting sl2C = sλ + su(2).

Remark 16.4. Hassani and Ahmadi [89, Corollary 3.1] stated that connected Lie groups acting transitively and
isometrically on H3 are (locally) isomorphic to one of the following Lie groups:

PSL2C, B+
2 C, Sλ.

Let us investigate the almost contact homogeneity. Since H3 is a Kenmotsu 3-manifold, we have

(∇Xφ)Y = −η(Y )φX − g(X,φY )ξ.

Next we have
Sλ
3 (X)φY − φSλ

3 (X)Y = −λ{g(X,Y )ξ − η(Y )X}.

Thus the covariant derivative ∇̃φ of φ with respect to ∇̃ = ∇+ Sλ
3 is given by

(∇̃Xφ)Y = −η(Y )φX − g(X,φY )ξ − λ{g(X,Y )ξ − η(Y )X}.

Hence Sλ
3 is not a homogeneous almost contact Riemannian structure. This conclusion is consistent with the

fact dimAut(H3) = 4. Indeed, the homogeneous structure Sλ
3 corresponds to SL2C/SU(2) = SO+(3, 1)/SO(3).

On the other hand for Sλ
1,2,3, φ is parallel with respect to the connection ∇+ Sλ

1,2,3 for all λ.
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Remark 16.5. Rastrepina and Surina [195] considered a linear connection ∇̃ = ∇+ S on H3 with

S(X)Y = −g(X,Y )ξ + η(Y )ξ + g(ae1 + be2 + λξ,X)φY,

where a, b and λ are constants ([195, Theorem 2]). They showed that ∇̃ satisfies

∇̃φ = 0, ∇̃ξ = 0, ∇̃η = 0, ∇̃g = 0.

In case a = b = 0, the tensor field S coincides with Sλ
1,2,3. It should be remarked that this tensor field S is a

homogeneous Riemannian structure if and only if a = b = 0. Moreover they studied Sλ
3 from the viewpoint of

linear connections with skew symmetric torsion (see [195, Remark 3, Theorem 3]).

Remark 16.6 (Flow symmetry). Boeckx, Bueken and Vanhecke [25] introduced the notion of flow-symmetry for
Riemannian manifolds. According to [25], a Riemannian manifold (M, g) is said to be locally flow-symmetric if
there exists a non-vanishing vector field ξ such that the local reflections around the integral curves are local
isometries. Under this assumption by virtue of a theorem due to Chen and Vanhecke [43], the integral curves
are geodesics. If the vector field ξ of a locally flow symmetric Riemannian manifold M is a unit vector field,
then ξ is an eigenvector field of the Ricci operator. The corresponding eigenvalue λ satisfies dλ = 0 on the
distribution defined by g(ξ, ·) = 0. Obviously locally φ-symmetric spaces are locally flow-symmetric spaces
such that ξ is the Reeb vector field. Boeckx, Bueken and Vanhecke proved that a warped product E1 ×f M
with ξ = ∂/∂t is locally flow-symmetric with respect to ξ if and only if M is locally symmetric. Now we recall
Example 5.5. Let M be a Hermitian symmetric space and equip a Kenmotsu structure (φ, ξ, η, g) on the warped
product M = E1 ×cet M . Then M is locally flow-symmetric with respect to ξ. The hyperbolic (2n+ 1)-space
H2n+1 is a typical example of locally flow-symmetric Kenmotsu manifold.

16.5. Euclidean 3-space

The possible dimension d of the connected isometry group G of E3 = (R3(x, y, z),dx2 + dy2 + dz2) are 3, 4 or
6. More precisely there are three possibilities ([1, p. 186]):

1. d = 6.

2. d = 4 and dim(G ∩ SO(3)) = 1.

3. d = 3 and dim(G ∩ SO(3)) = 0.

16.5.1. The case d = 6 We start our investigation with the case d = 6.
As we saw in Example 4.8, the Cartesian 3-space R3 is isomorphic to so(3) as a Lie algebra via the

isomorphism ι : R3 → so(3) given by (4.7). The Euclidean motion group SE(3)⋉R3 has the Lie algebra

se(3) =


 0 −w v x

w 0 −u y
−v u 0 z
0 0 0 0


∣∣∣∣∣∣∣ x, y, z, u, v, w ∈ R

 .

The isotropy subgroup of SE(3) at the origin o = (0, 0, 0) is isomorphic to the rotation group SO(3). The isotropy
algebra h is

h =


 0 −w v 0

w 0 −u 0
−v u 0 0
0 0 0 0


∣∣∣∣∣∣∣ u, v, w ∈ R

 ∼= so(3).

Take a basis {E1, E2, E3, e1, e2, e3} of se(3) by

E1 = E32 − E23, E2 = E13 − E31, E3 = E21 − E12, e1 = E14, e2 = E24, e3 = E34.

Then we have the commutation relations:

[E1, E2] = E3, [E2, E3] = E1, [E3, E1] = E2, [Ei, ei] = 0, [ei, ej ] = 0,

[E1, e2] = e3, [E1, e3] = −e2,
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[E2, e3] = e1, [E2, e1] = −e3,

[E3, e1] = e2, [E3, e2] = −e1.

We identify R3 with Re1 ⊕Re2 ⊕Re3 through the linear isomorphism (x1, x2, x3) 7−→ x1e1 + x2e2 + x3e3.
The Lie algebra isomorphism ι : (R3,×)→ so(3) is extended to a Lie algebra homomorphism (x1, x2, x3) 7−→
x1E1 + x2E2 + x3E3. Thus se(3) is the direct sum R3 ⊕R3 (as a linear space) equipped with the above Lie
bracket. More precisely, se(3) is the direct sum of (R3,×) and abelian Lie algebra R3 as a Lie algebra. Here we
compute the Lie algebra i(E3) of Killing vector fields. Direct computation show that

exp(tE1) =

 1 0 0 0
0 cos t − sin t 0
0 sin t cos t 0
0 0 0 1

 , exp(tE2) =

 cos t 0 sin t 0
0 1 0 0

− sin t 0 cos t 0
0 0 0 1

 ,

exp(tE3) =

 cos t − sin t 0 0
sin t cos t 0 0

0 0 1 0
0 0 0 1

 ,

we get

E♯
1 = −z ∂

∂y
+ y

∂

∂z
, E♯

2 = z
∂

∂x
− x ∂

∂z
, E♯

3 = −y ∂
∂x

+ x
∂

∂y
,

e♯1 =
∂

∂x
, e♯2 =

∂

∂y
, e♯3 =

∂

∂z
.

Introduce an inner product on se(3)⊕R3 so that {E1, E2, E3, e1, e2, e3} is orthonormal with respect to it. Then
the orthogonal complement m := h⊥ is m = RE1 ⊕RE2 ⊕RE3. The tangent space ToE3 is identified with m.
Then one can see that SE(3)/SO(3) with Lie subspace m is a Riemannian symmetric space.

Let us look for Lie subspaces complementary to h. By the reductivity [h,m] ⊂ m, the possible Lie subspaces
are

mλ
3 = R(e1 + λE1)⊕R(e2 + λE2)⊕R(e2 + λE3)

for some λ ∈ R. Note that m0
3 = m. The corresponding homogeneous Riemannian structure is

Sλ
3 (X)Y = −λ dV (X,Y ).

One can see that Sλ1
3 is isomorphic to Sλ2

3 if and only if λ2 = ±λ1. Thus we retrieve Theorem 4.7 in case of ε = 0.
Since dimAut(E3) = 4, the representation E3 = SE(3)/SO(3) is not homogeneous coKähler.

16.5.2. The case d = 3 Next we consider the case d = 3. Theorem 16.2 implies that the isometry group G is a
solvable Lie subgroup of SE(3). The solvable Lie algebra g satisfies dim g = 3 and g ∩ so(3) = {0}. According to
Abe [1], g is isomorphic to

gλ2,3 := Re1 ⊕Re2 ⊕R(e3 + λE3) =


 0 −λz 0 x

λz 0 0 y
0 0 0 z
0 0 0 0


∣∣∣∣∣∣∣ x, y, z ∈ R


for some λ ∈ R. The corresponding simply connected Lie group is

Gλ
2,3 =


 cos(λz) − sin(λz) 0 x

sin(λz) cos(λz) 0 y
0 0 1 z
0 0 0 1


∣∣∣∣∣∣∣ x, y, z ∈ R

 .

The Lie group Gλ
2,3 is solvable. In particular, G0

2,3 is abelian. Thus E3 is understood as R3 with multiplication

(x1, y1, z1) ∗ (x2, y2, z2) = (x1 + x2 cos(λz1)− y2 sin(λz1), y1 + x2 sin(λz1) + y2 cos(λz1), z1 + z2).
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The Lie group Gλ
2,3 acts on Gλ

2,3 as left translations. The isotropy subgroup at (x, y, z) = (0, 0, 0) is {E4}. Thus
we obtain the coset space representation E3 = Gλ

2,3/{E4}. The tangent space at o = E4 is the Lie algebra of Gλ
2,3.

One can see that the coKähler structure of E3 is a left invariant coKähler structure on Gλ
2,3.

Indeed, take a basis

e1 =

 0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

 , e2 =

 0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

 ,

 0 −λ 0 0
λ 0 0 0
0 0 0 1
0 0 0 0


of gλ2,3, then we get

[e1, e2] = 0, [e2, e3] = λ e1, [e3, e1] = λ e2.

Thus in case λ ̸= 0, gλ2,3 is isomorphic to se(2) as a Lie algebra. Thus Gλ
2,3 is isomorphic to S̃E(2) when λ ̸= 0.

The left invariant metric on Gλ
2,3 determined by the condition that the basis {e1, e2, e3} is orthonormal is

dx2 + dy2 + dz2. Let us introduce a left invariant endomorphism field φ on gλ2,3 by

φe1 = e2, φe2 = −e1, φe3 = 0

and set ξ = e3 and η = g(ξ, ·). Then (φ, ξ, η, g) is a flat left invariant coKähler structure on Gλ
2,3. One can see that

φ
∂

∂x
=

∂

∂y
, φ

∂

∂y
= − ∂

∂x
, φ

∂

∂z
= 0.

Hence Gλ
2,3 is isomorphic to E2 × E1 as a coKähler manifold (not isomomorphic as a Lie group).

By using the coKähler structure (φ, ξ, η, g) of E3 = E2 × E1 = Gλ
2,3, the corresponding homogeneous

Riemannian structure discovered by Abe [1] is described as

Sλ
2,3(X)Y = −λ η(X)φY.

On the coKähler E3 = E2 × E1, the almost contact connections are given by

∇r
XY = ∇XY − rη(X)φY.

Thus we get Sλ
2,3(X)Y = Aλ and hence Sλ is a homogeneous almost contact Riemannian structure. Obviously

Sλ1
2,3 is isomorphic to Sλ2

2,3 if and only if λ2 = ±λ1. Note that S0
2,3 corresponds to the abelian Lie group

E3 = E3/{0}. Moreover ∇+ Sλ
2,3 is the (−)-connection of Gλ

2,3. The non-trivial connection coefficients of the
(−)-connection of Gλ

2,3 are given by the following formulas:

∇(−)
∂z
∂x = −λ∂y, ∇(−)

∂z
∂y = λ∂x. (16.6)

Comparing (16.6) with (8.8) we notice that the (−)-connection of S̃E(2) and that of G1
2,3 coincide.

16.5.3. The case d = 4 Here we observe the product manifold E2 × E1. More precisely we consider the
Riemannian product of Euclidean plane E2(x, y) = SE(2)/SO(2) and the Euclidean line E1(z) = (R(z),dz2).
Here we regard E2(x, y) as a Hermitian symmetric space and E2(x, y)× E1(z) as a coKähler manifold.

We identify it with the Lie group

E2 × E1 =


 x

y
1
ez


∣∣∣∣∣∣∣ x, y, z ∈ R

 .

Then the product Lie group

SE(2)×R =


 cos θ − sin θ u 0

sin θ cos θ v 0
0 0 1 0
0 0 0 et


∣∣∣∣∣∣∣ u, v, t ∈ R, 0 ≤ θ < 2π


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acts isometrically and transitively on E2 × E1 via the usual matrix multiplication action. More explicitly the
action is described as

(eiθ, (u, v), t) · (x, y, z) = (x cos θ − y sin θ + u, x sin θ + y cos θ + v, z + t).

The Lie algebra se(2)⊕R is 
 0 −w u 0

w 0 v 0
0 0 0 0
0 0 0 t


∣∣∣∣∣∣∣ u, v, w, t ∈ R

 .

Thus we can take a basis

E3 = E21 − E12, ē1 := E13, ē2 := E23, ē3 := E44.

The non-trivial commutation relations are

[E3, ē1] = ē2, [E3, ē2] = −ē1.

The isotropy subgroup at the origin o = ((0, 0), 0) ∈ E2 × E is
 cos θ − sin θ 0 0

sin θ cos θ 0 0
0 0 1 0
0 0 0 1


∣∣∣∣∣∣∣ 0 ≤ θ < 2π

 ∼= SO(2).

The isotropy algebra is h = RE3
∼= so(2). We introduce an inner product ⟨·, ·⟩ so that {E3, e1, e2, e3} is

orthonormal. Then the orthogonal complement of h is m := Rē1 ⊕Rē2 ⊕Rē3. Then se(3)⊕R = h⊕m is
reductive. Abe [1] proved that other Lie subspaces are isomorphic to

mλ = Rē1 ⊕Rē2 ⊕R(ē3 + λE3) =


 0 −wλ u 0

wλ 0 v 0
0 0 0 0
0 0 0 w


∣∣∣∣∣∣∣ u, v, w ∈ R

 .

One can see that mλ is a Lie subalgebra and m0 = m. The corresponding simply connected Lie group is

Gλ
3 =


 cos(λz) − sin(λz) x 0

sin(λz) cos(λz) y 0
0 0 1 0
0 0 0 ez


∣∣∣∣∣∣∣ x, y, z ∈ R

 .

Obviously Gλ
3 is isomorphic to Gλ

2,3 and hence this Lie groups is isomorphic to S̃E(2) if λ ̸= 0. Thus the
homogeneous Riemannian space (SE(2)×R)/SO(2) is isometric to Gλ

2,3 = Gλ
2,3/{E4}.

Now we obtain the following classification which is a reformulation of [1]:

Proposition 16.3. Up to isomorphisms, the Euclidean 3-space E3(x, y, z) admits two types of homogeneous Riemannian
structures up to isomorphisms:

1. The homogeneous Riemannian structures Sλ of type T3

Sλ
3 (X)Y = −λdV (X,Y ), λ ≥ 0.

The corresponding coset space representation of E3 is SE(3)/SO(3) with Lie subspace

mλ
3 =


 0 −λz λy x

λz 0 −λx y
−λy λx 0 z
0 0 0 0


∣∣∣∣∣∣∣ x, y, z ∈ R

 .

In particular, S0
3 = 0 defines a Riemannian symmetric space SE(3)/SO(3) with Lie subspace m0

3. The homogeneous
Riemannian structures Sλ

3 are not homogeneous almost contact Riemannian structures.
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2. The homogeneous Riemannian structure Sλ
2,3(X)Y = Aλ

XY = −λη(X)φY of type T2 ⊕ T3 with λ ≥ 0. These
homogeneous Riemannian structures are homogeneous almost contact Riemannian structures. The coset space
representations of E3 corresponding to each Sλ

2,3 is

Gλ
2,3/{E4},

where Gλ
2,3 is a solvable Lie group

Gλ
2,3 =


 cos(λz) − sin(λz) 0 x

sin(λz) cos(λz) 0 y
0 0 1 z
0 0 0 1


∣∣∣∣∣∣∣ x, y, z ∈ R

 .

In case λ > 0, Gλ
2,3 is isomorphic to S̃E(2). In particular G1

2,3 is isometric to S̃E(2). Hence we have the coset space
representation:

(SE(2)×R)/SO(2) = Gλ
2,3/{E4}.

Moreover, the Ambrose-Singer connection ∇+ Sλ
2,3 coincides with the (−)-connection of Gλ

2,3 when λ > 0.

Up to isomorphisms, all the homogeneous almost coKähler structures is parametrized as {Sλ
2,3}λ≥0 = {Aλ}λ≥0.

Proof. The homogeneous structure Sλ(X)Y = −λη(X)φY satisfies c12(Sλ
♭ )(Z) = 0 and

S
X,Y,Z

Sλ
♭ (X,Y, Z) = −λ{η(X)g(φY,Z) + η(Y )g(φZ,X) + η(Z)g(φX, Y )}.

Hence for λ ̸= 0, Sλ ∈ T2 ⊕ T3 but neither Sλ ∈ T2 nor Sλ ∈ T3.
Analogous to H3-case, Sλ

3 are not homogeneous almost contact Riemannian structures. On the other hand all
Sλ
1,2,3 are so.

The trivial homogeneous Riemannian structure S = 0 corresponds to both the Riemannian symmetric space
SE(3)/SO(3) and the abelian Lie group G0

2,3 = G0
2,3/{E4}.

17. The product space S2 × E1

The model space S2(c2)× E1 is a coKähler space form. In this section we study homogeneous coKähler
structures of S2(c2)× E1. One can see that it suffices to study S2 × E1. As we saw in Example 4.8, S2 has
only trivial homogeneous Riemannian structure, we may restrict our attention to Hermitian symmetric space
S2 = SO(3)/SO(2). The connected component of the isometry group of S2 × E1 is SO(3)×R.

Here we point out the following fundamental fact. (see [222, §8.D]):

Proposition 17.1. Let (M1, g1, S1) and (M2, g2, S2) be Riemannian manifolds equipped with homogeneous Riemannian
structures. Then S1 + S2 gives a homogeneous Riemannian structure on a Riemannian product (M1 ×M2, g1 + g2). The
homogeneous Riemannian structure S1 + S2 is called the direct sum of S1 and S2.

In case M1 = S2 and M2 = E1, both homogeneous Riemannian strutures are trivial. Thus the direct sum
S1 + S2 is also trivial.

Let us realize the Riemannian product S2 × E1 as a hyperquadric

S2 × E1 = {(x, t) = (x1, x2, x3, t) ∈ E4 | x21 + x22 + x23 = 1}

of the Euclidean 4-space E4. Then Iso◦(S2 × E1) = SO(3)×R acts isometrically and transitively on S2 × E1. To
view this isometric action, we identify S2 × E1 with

 x1
x2
x3
et


∣∣∣∣∣∣∣ x1, x2, x3, t ∈ R

 .
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Then Iso◦(S2 × E1) is identified with{
(A, s) =

(
A 0
0 es

) ∣∣∣∣ A ∈ SO(3), s ∈ R
}

acts isometrically and transitively on S2 × E1 via the usual matrix multiplication action. The action is simply
described as

(A, s) · (x, t) = (Ax, t+ s).

Since there are no 2-dimensional closed subgroups of SO(3), the only connected Lie subgroup acting
transitively on S2 × E1 is SO(3)×R. The Lie algebra of SO(3)×R is given by

 0 −w v 0
w 0 −u 0
−v u 0 0
0 0 0 s


∣∣∣∣∣∣∣ u, v, w, s ∈ R


With respect to the inner product induced from the direct product metric, we can take an orthonormal basis
(cf. Example 4.8):

e0 = E21 − E12, e1 = E32 − E23, e2 = E13 − E31, e3 = E44.

The non-trivial commutation relations are

[e0, e1] = e2, [e1, e2] = e0, [e2, e0] = e1.

The isotropy subgroup at the origin (x1, x2, x3, t) = (0, 0, 1, 0) is SO(2) which is identified with
 cos θ − sin θ 0 0

sin θ cos θ 0 0
0 0 1 0
0 0 0 1


∣∣∣∣∣∣∣ 0 ≤ θ < 2π

 .

The isotropy algebra is h = Re0.
The tangent space To(S2 × E1) of S2 at the origin o is identified with the Lie subspace m = Re1 ⊕Re2 ⊕Re3.

The coKähler structure is determined by

φe1 = e2, φe2 = −e1, ξ = e3, η = g(ξ, ·).

Note that S2 × E1 is a coKähler space form and dimAut(S2 × E1) = 4. In particular the identity component of
Aut(S2 × E1) = 4 is SO(3)×R. One can see that

m = h⊥, [h, h] = {0}, [h,m] = m, [m,m] = h.

Thus (SO(3)×R)/SO(2) is a Riemannian symmetric space. The other Lie subspaces are isomorphic to mλ =
Re1 ⊕Re2 ⊕R(e3 + λe0) for some λ ∈ R.

The following classification is a reformulation of [174].

Theorem 17.1 ([174]). Up to isomorphisms, all the homogeneous Riemannian structures on S2 × E1 are given by

Sλ(X)Y = A
λ/2
X Y = −λ

2
η(X)φY, λ ≥ 0.

The corresponding Lie subspace mλ is

mλ =


 0 λw v 0
−λw 0 −u 0
−v u 0 0
0 0 0 w


∣∣∣∣∣∣∣ u, v, w ∈ R

 .

The corresponding coset space representations are (SO(3)×R)/SO(2) for any λ. Every Sλ is a homogeneous coKähler
structure. The homogeneous Riemannian structure is of type T2 ⊕ T3. In particular, Sλ is of type T3 if and only if λ = 0.
In this case m0 = m. For λ ̸= 0, Sλ is not of type T2.

The set of all homogeneous coKähler structures is identified with {Ar}r≥0.
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Remark 17.1. The reductive decomposition g⊕R = h+mλ satisfies [mλ,mλ] ⊂ h when and only when λ = 0.
Finally we investigate the projection π : S2 × E1 → S2.
Let M = (M, ḡ, J) be a Kähler manifold. Take a Riemannian product M =M × E1 and equip a regular

coKähler structure on M as we explained in Example 5.2. Assume that M admits a homogeneous coKähler
structure S. Then the tensor field S̄ defined by (15.5) induces a homogeneous Riemannian structure (see [36,
Proposition 6.3.6], [42]).

Now let us investigate the homogeneous Riemannian structure S̄ on S2. Since S(X)Y = −(λ/2)η(X)φ(Y ),
we have S(X

h
)Y

h
= 0. Thus S̄ = 0. This fact is consistent with the fact that S2 has only trivial homogeneous

Riemannian structure.

18. The product space H2 × E1

In this section we discuss the homogeneous Riemannian structures on H2(−c2)× E1. The Riemannian
product admits coKähler structure and almost Kenmotsu structures. There are two different classes of almost
Kenmotsu structures. One is defined for H2(−4) and the other is defined for H2(−c2) with c2 > 4. On this reason
we do not normalize the curvature of H2(−c2) to −1 in this section.

18.1. The product metric

Let us realize the homogeneous Riemannian space H2(−c2)× E1 as an open submanifold

H2(−c2)× E1 = ({(x, y, t) ∈ R3 y > 0}, g), g = ḡ + dt2, ḡ =
dx2 + dy2

c2y2

of R3. We can take a global orthonormal frame field E = {e1, e2, e3} of the form

e1 = (cy)
∂

∂x
, e2 = (cy)

∂

∂y
, e3 =

∂

∂t
.

The coframe field Θ = (ϑ1, ϑ2, ϑ3) metrically dual to E is given by

ϑ1 =
dx

cy
, ϑ2 =

dy

cy
, ϑ3 = dt,

Since
dϑ1 =

1

cy2
dx ∧ dy, dϑ2 = dϑ3 = 0,

we have

ω =

 0 −c ϑ1 0
c ϑ1 0 0
0 0 0

 , Ω =

 0 −c2 ϑ1 ∧ ϑ2 0
c2 ϑ1 ∧ ϑ2 0 0

0 0 0

 .

Thus the Levi-Civita connection is given by

∇e1e1 = ce2, ∇e1e2 = −ce1, ∇e1e3 = 0,

∇e2e1 = ∇e2e2 = ∇e2e3 = 0,

∇e3e1 = ∇e3e2 = ∇e3e3 = 0.

The sectional curvatures are given by

K(e1 ∧ e2) = −c2, K(e1 ∧ e3) = K(e2 ∧ e3) = 0.

The Ricci tensor field of H2(−c2)× E1 is given by

Ric = −c2g + c2 ϑ3 ⊗ ϑ3.

The product Lie group
SL2R×R = {((aij), s) | (aij) ∈ SL2R, s ∈ R}
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acts isometrically and transitively on H2(−c2)× E1 via the action:

((aij), s) (x+
√
−1y, t) =

(
a11(x+

√
−1y) + a12

a21(x+
√
−1y) + a22

, t+ s

)
.

The isotropy subgroup at the origin o = (
√
−1, 0) is SO(2)× {0}. We identify this isotropy subgroup with SO(2).

Hence we obtain a homogeneous Riemannian space representation (SL2R×R)/SO(2). We identify the product
Lie group SL2R×R with

 es 0 0
0 a11 a12
0 a21 a22

 ∣∣∣∣∣∣ a11, a12, a21, a22, s ∈ R, a11a22 − a12a21 = 1

 .

Then the Lie algebra of SL2R×R is identified with

sl2R⊕R =


 u3 0 0

0 −u2 −u4 + u1
0 u4 + u1 u2

 ∣∣∣∣∣∣ u1, u2, u3, u4 ∈ R

 .

We can take a basis

e1 =

(
0 0
0 j′

)
=

 0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0

 , e2 =

(
0 0
0 k′

)
=

 0 0 0 0
0 0 0 0
0 0 −1 0
0 0 0 1

 ,

e3 =

(
1 0
0 0

)
=

 1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 , e4 =

(
0 0
0 i

)
=

 0 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0

 .

The isotropy algebra h is spanned by e4. The tangent space To(H2(−c2)× E1) is identified with

m0 = Re1 ⊕Re2 ⊕Re3.

One can see that [m0,m0] ⊂ h. Thus (SL2R×R)/SO(2) is a Riemannian symmetric space.
Let us equip an almost contact structure (φ0, ξ0, η0) by

ξ0 = e3, η0 = g(e3, ·)

and
φ0e1 = e2, φ0e2 = −e1, φ0e3 = 0.

Then (φ0, ξ0, η0) is compatible to g and the resulting almost contact Riemannian manifold (H2(−c2)×
E1, φ0, ξ0, η0, g) is coKähler.

18.2. The solvable Lie group model

As we saw in Example 16.4 and Example 16.5, H2(−c2)× E1 admits a solvable Lie group structure. On the
other hand, we know the solvable Lie group model S of H2(−c2). We use the model H2(−c2) = S and consider
the product Lie group R× S. The product Lie group R× S is identified with

S =


 et 0 0

0
√
y x/

√
y

0 0 1/
√
y

 ∣∣∣∣∣∣ x, y, t ∈ R, y > 0

 .

The dressing action of SL2R on S is naturally extended to S. Here we replace S by the solvable Lie groupM
defined by (4.9). The solvable Lie group S is isomorphic to

M =


 et 0 0

0 y x
0 0 1

 ∣∣∣∣∣∣ x, y, t ∈ R, y > 0


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via the Lie group isomorphism  et 0 0
0
√
y x/

√
y

0 0 1/
√
y

 7−→
 et 0 0

0 y x
0 0 1

 .

The Lie algebra ofM is

m =


 w 0 0

0 v u
0 0 0

 ∣∣∣∣∣∣ u, v, w ∈ R

 .

The product metric g = ḡ + dt2 is a left invariant metric on M. Moreover {e1, e2, e3} is a global left invariant
orthonormal frame field onM. At the origin, we have

e1
∣∣
o
=

 0 0 0
0 0 c
0 0 0

 , e2
∣∣
o
=

 0 0 0
0 c 0
0 0 0

 , e3
∣∣
o
=

 1 0 0
0 0 0
0 0 0

 .

Homogeneous geometry, especially Grassmann geometry of H2(−c2)× E1, we refer to [123].

18.3. Homogeneous Riemannian structures

Now let us classify the homogeneous Riemannian structures on H2(−c2)× E1. Let S♭ be a tensor field of type
(0, 3) satisfying (4.11) then S♭ is represented as (4.12). Let S be a tensor field of type (1, 2) associated to S♭ and
set ∇̃ = ∇+ S. Then the parallelism condition (4.14) is computed as

(∇XRic)(ei, ej) =c
2{∇X(ϑ3 ⊗ ϑ3)}(ei, ej) = (∇Xη)(ei)η(ej) + η(ei)(∇Xη)(ej)

=g(∇Xe3, ei)η(ej) + η(ei)g(∇Xe3, ej) = c2(ω i
3 (X)η(ej) + ωæ

3 (X)η(ei)).

On the other hand we have

Ric(S(X)Y,Z) + Ric(Y, S(X)Z) = c2{S♭(X, ei, e3)η(ej) + S♭(X, ej , e3)η(ei).}

Hence we get
ω 3
i (X)η(ej) + ω 3

j (X)η(ei) = −S♭(X, ei, e3)η(ej)− S♭(X, ej , e3)η(ei).

From this system we get

S♭(X, e3, e1) = ω 3
1 (X) = 0, S♭(X, e3, e3) = ω 3

2 (X) = 0.

Thus S♭ is expressed as
S♭ = 2σ ⊗ (θ1 ∧ θ2),

where the 1-form σ =
∑3

i=1 σiϑ
i is defined by

σ(X) = S♭(X, e1, e2).

The connection 1-forms {ω̃ j
i } of ∇̃ relative to {e1, e2, e3} are computed as

ω̃ 2
1 (X) = ω 2

1 (X) + S♭(X, e1, e2) = cϑ1(X) + σ(X), ω̃ 3
1 (X) = ω̃ 3

2 (X) = 0.

Let us compute ∇̃S♭.
First we get

∇̃Xϑ
1 =ω̃ 2

1 (X)ϑ2 =
{
cϑ1(X) + σ(X)

}
ϑ2,

∇̃Xϑ
2 =ω̃ 1

2 (X)ϑ1 = −
{
cϑ1(X) + σ(X)

}
ϑ1, ∇̃Xϑ

3 = 0.

From these we get ∇̃X(ϑ1 ∧ ϑ2) = 0. Hence ∇̃XS♭ = 2(∇Xσ)⊗ (ϑ1 ∧ ϑ2). Thus ∇̃S♭ = 0 is equivalent to ∇̃σ = 0.
The covariant derivative ∇̃σ is computed as

∇̃Xσ =
{
(dσ1)(X)−

(
cϑ1(X) + σ(X)

)
σ2
}
ϑ1

+
{
(dσ2)(X) +

(
cϑ1(X) + σ(X)

)
σ1
}
ϑ2

+ (dσ3)(X)ϑ3.
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Thus the parallelism of S with respect to ∇̃ is equivalent to the system

dσ1 =
(
cϑ1 + σ

)
σ2, dσ2 = −

(
cϑ1 + σ

)
σ1, dσ3 = 0.

Thus σ3 is a constant, say λ.
From the integrability condition we deduce that (see [174] for detail):

1. σ1 = σ2 = 0 or

2. σ2 = σ3 = 0 and σ1 = −c.
In the former case, we have σ = λϑ3. Hence S♭ has the form

Sλ
♭ = 2λϑ3 ⊗ (ϑ1 ∧ ϑ2) = λη0 ⊗ dvḡ, λ ∈ R.

where dvḡ is the area element of H2(−c2). Note that Sλ1

♭ and Sλ2

♭ are isomorphic each other if and only if
λ2 = ±λ1.

Let us compare the canonical connections∇+ Sλ with the almost contact connections∇r. Since the structure
(φ0, ξ0, η0, g) is coKähler, we have Ar(X)Y = −rη0(X)φ0Y . On the other hand Sλ is rewritten as Sλ(X)Y =
λη0(X)φ0Y Hence we get Sλ = −Aλ = A−λ.

In the latter case, we have
S♭ = −2c ϑ1 ⊗ (ϑ1 ∧ ϑ2) = −c ϑ1 ⊗ dvḡ.

Obviously, we have
S(e3)Y = 0, S(X)e3 = 0.

Thus we conclude that S♭ is a extension of the homogeneous Riemannian structure S̄♭ of H2(−c2) = S to
H2(−c2)× E1. In other words, (H2(−c2)× E1, g, S) is the direct sum of (H2(−c2), ḡ, S̄) and (E1,dt2, 0). By using
the coKähler structure, S is rewritten as S(X)Y = −cg(X, e1)φ0Y . By using the solvable Lie group modelM,
one can confirm that ∇+ S coincides with the Cartan-Schouten’s (−)-connection.

The following theorem is a reformulation of Ohno’s result [174].

Theorem 18.1. Up to isomorphisms, the model space H2(−c2)× E1 admits two types of homogeneous Riemannian
structures

1. Sλ
2,3(X)Y = A−λ(X)Y = λ η(X)φY , λ ≥ 0. The corresponding coset space representation is SL2R/SO(2). The

homogeneous structure Sλ
2,3 is of type T2 ⊕ T3. The homogeneous Riemannian structure Sλ

2,3 is of type T3 if and
only if λ = 0. In this case SL2R/SO(2) is a Riemannian symmetric space. For λ ̸= 0, Sλ

2,3 /∈ T2. The homogeneous
Riemannian structure Sλ

2,3 is a homogeneous coKähler structure for any λ. The homogeneous Kähler structure on
H2(−c2) induced from Sλ

2,3 by reduction is the trivial one.

2. S(X)Y = −cg(X, e1)φ0Y . The corresponding coset space representation is the solvable Lie group model S =
S/{e}. The homogeneous Riemannian structure S is the extension of the homogeneous Riemannian structure S̄
of type T1 on H2(−c2) by the rule

S(e3)Y = S(X)e3 = 0.

In other words, (H2(−c2)× E1, g, S) is the direct sum of (H2(−c2), ḡ, S̄) and (E1,dt2, 0). As a left invariant
connection on the solvable Lie group S ∼=M, the canonical connection ∇+ S is the Cartan-Schouten’s (−)-
connection. The homogeneous Riemannian structure S is a homogeneous coKähler structure. The connection∇+ S
coincides with almost contact connection∇+A0, where A0 is derived from the (−c/2)-almost Kenmotsu structure
exhibited in Examples 16.4, 16.5.

Proof. The only task we need to check that ∇̃φ0 = 0 with respect to the homogeneous Riemannian structure
S = S̄ + 0. Since (φ0, ξ0, η0, g) is coKäher, we have ∇φ = 0. Thus the covariant derivative ∇̃φ0 with respect to
∇̃ = ∇+ S is

(∇̃Xφ0)Y = S(X)φ0Y − φ0S(X)Y = 0.

Thus S is a homogeneous coKäher structure.

The model space H2(−c2)× E1 admits compatible coKähler structure as well as (−c/2)-almost Kenmotsu
structure. From almost contact structure viewpoint, Sλ

2,3 fits with coKähler structure. Indeed we know that
H2(−c2)× E1 is a coKähler space form and it has 4-dimensional automorphism group.

On the other hand, the homogeneous structure S = S̄ +A0 fits with (−c/2)-almost Kenmotsu structure (see
Theorem 16.5 and next subsection). The automorphism group of H2(−c2)× E1 with respect to the (−c/2)-
almost Kenmotsu structure is 3-dimensional.
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18.4. Almost Kenmotsu structures

Here we mention almost b-Kenmotsu structures on H2(−c2)× E1.
Up to homothety we may restrict our attention to almost Kenmotsu structures on H2(−c2).
First we recall the following classification of locally symmetric almost Kenmotsu 3-manifolds.

Proposition 18.1 ([103]). Let M be a non-normal almost Kenmotsu 3-manifold. Then M is locally symmetric if and
only if M is locally isomorphic to one of the following spaces

1. If ξ is an eigenvector field of a Ricci operator, then M is Kenmotsu and of constant curvature−1 or locally isometric
to H2(−4)× E1.

2. If ξ is not an eigenvector field of a Ricci operator, thenM is locally isometric to H2(−c2)× E1 of constant curvature
−c2 < −4.

Note that the third example H2(−c2)× E1 was discovered in [192, Theorem 1.2 Case (IV)].
In Example 16.4 and Example 16.5 we exhibited almost (−c/2)-Kenmotsu structures on H2(−c2)× E1. We

recall those structure here. In Example 16.4, H2(−c2)× E1 is realized as

G(0, c) =


 1 0 0 w

0 1 0 u
0 0 ecw v
0 0 0 1


∣∣∣∣∣∣∣u, v, w ∈ R

 ∼=

 1 0 u

0 ecw v
0 0 1

 ∣∣∣∣∣∣u, v, w ∈ R


with a left invariant metric du2 + e−2cwdv2 + dw2. Then G(0, c) is isometric to H2(−c2)× E1 via the isometry:

x = cv, y = ecw, t = u.

The orthonormal frame field
∂

∂u
, ecw

∂

∂v
,

∂

∂w

corresponds to

e3 =
∂

∂t
, e1 = (cy)

∂

∂x
, e2 = (cy)

∂

∂y
.

Let (φc, ξc, ηc) be the almost contact structure introduced in Section 16, then

φce3 = e1, φce1 = −e2, φce2 = 0, ξc = e2, ηc = ϑ2 =
1

cy
dy.

Note ξc is an eigenvector field of the Ricci operator. Since we have ∇ξc = −cϑ1 ⊗ e1, the almost contact
connection ∇+A0,c with respect to the structure (φc, ξc, ηc, g) is given by

A0,c
X Y = −ηc∇Xξc + g(∇Xξc, Y )ξc = −cg(X, e1)φ0Y = S(X)Y.

Note that φ−2 is not parallel with respect to the connection ∇+ Sλ
2,3.

Corollary 18.1. Let H2(−4)× E1 be product manifold of the hyperbolic plane of curvature −4 and the real line equipped
with a homogeneous almost Kenmotsu structure (φ−2, ξ−2, η−2, g) such that ξ−2 is an eigenvector field of the Ricci
operator, then the only homogeneous Riemannian structure is given byA0. The homogeneous Riemannian structureA0 is
a homogeneous almost Kenmotsu structure and coincides with the Cartan-Schouten’s (−)-connection. The corresponding
coset space representation is the solvable Lie group model G(0,−2)/{e}.

Next we consider the almost Kenmotsu structure on H2(−c2)× E1 of constant curvature −c2 < −4. Set
c2 = 4 + γ2.

In Example 16.5, H2(−c2)× E1 is realized as

G(c, 0) =


 1 0 0 w

0 ecw 0 u
0 0 1 v
0 0 0 1


∣∣∣∣∣∣∣u, v, w ∈ R

 ∼=

 ecw 0 u

0 1 v
0 0 1

 ∣∣∣∣∣∣u, v, w ∈ R


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with a left invariant metric e−2cwdu2 + dv2 + dw2. Then G(c, 0) is isometric to H2(−c2)× E1 via the isometry:

x = cu, y = ecw, t = v.

The orthonormal frame field

ecw
∂

∂u
,

∂

∂v
,

∂

∂w

corresponds to

e1 = (cy)
∂

∂x
, e3 =

∂

∂t
, e2 = (cy)

∂

∂y
.

Take a nonzero constant γ and set c = −
√
γ2 + 4 < 0. Then G(−

√
γ2 + 4, 0) is isomorphic to

 y 0 −x/
√
γ2 + 4

0 1 t
0 0 1

 ∣∣∣∣∣∣ x, y, t ∈ R, y > 0

 .

Then the almost Kenmotsu structure (φ̃, ξ̃, η̃, g) on the model space H2(−4− γ2)× E1 mentioned in the case (2)
of Proposition 18.1 is given by (see [103]):

φ̃ẽ1 = ẽ2, φ̃ẽ2 = −ẽ1, φ̃ẽ3 = 0, ξ̃ = ẽ3, η̃ = g(ẽ3, ·),

where

ẽ1 =e1 = −
√
γ2 + 4y

∂

∂x
,

ẽ2 =
1√
γ2 + 4

(γe2 − 2e3) = −γy
∂

∂y
− 2√

γ2 + 4

∂

∂t
,

ẽ3 =
1√
γ2 + 4

(2e2 + γe3) = −2y
∂

∂y
+

γ√
γ2 + 4

∂

∂t
.

In terms of the original orthonormal frame field, φ̃ is expressed as

φ̃e1 =
γ√
γ2 + 4

e2 −
2√
γ2 + 4

e3, φ̃e2 =
γ√
γ2 + 4

e1, φ̃e3 = − 2√
γ2 + 4

e1.

One can see that φ̃ is not parallel with respect to ∇+ Sλ
2,3.

On the other hand, φ̃ is parallel with respect to the Cartan-Schouten’s (−)-connection. The difference tensor
field S = ∇(−) −∇ is described with the almost Kenmotsu structure (φ̃, ξ̃, η̃, g) by

S(X)Y = g(X, ẽ1)
{
γφ̃Y + 2(g(Y, ẽ1)ξ̃ − η̃(Y )ẽ1)

}
.

19. Further problems

19.1. Sasakian space forms

The set of homogeneous Riemannian structures on a 3-dimensional Sasakian space form is completely
determined.

Problem 1. Determine the homogeneous Riemannian structures on Sasakian space forms of dimension greater than 3.

Five-dimensional Sasakian φ-symmetric spaces are classified in [155]. Full classification was carried out in
[135].

Problem 2. Determine the homogeneous Riemannian structures on Sasakian φ-symmetric spaces of dimension greater
than 3.
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19.2. Three-dimensional Lie groups

In this article we concentrate our attention to eight model spaces of Thurston geometry and Berger
spheres. Other homogeneous Riemannian 3-spaces are realized as 3-dimensional Lie groups equipped with
left invariant metrics. Homogeneous Riemannian structures on those spaces are classified by Calviño-
Louzao, Ferreiro-Subrido, García-Río and Váazquez-Lorenzo [39] (under the left invariance assumption).
In Proposition 15.2 we give the formula for the homogeneous contact Riemannian structure of the non-
unimodular Sasakian Lie group G̃(c) by using the Sasakian structure. In [125] we improved the classification
due to [39]. More precisely we carried out the classification without left invariance assumption. Homogeneous
contact Riemannian structures on non-Sasakian 3-dimensional non-unimodular Lie groups are described by
using the structure (φ, ξ, η) in [125].

On the other hand, Perrone classified homogeneous contact Riemannian 3-manifolds [190] (see also [99]),
homogeneous almost coKähler 3-manifolds and homogeneous almost Kenmotsu 3-manifolds [191, 192, 193]
(see also [102, 103]). Here we propose the following problem:

Problem 3. Classify all the homogeneous almost coKähler structures and homogeneous almost Kenmotsu structures on
3-dimensional Riemannian manifolds.

19.3. Kenmotsu hyperbolic space

A simply connected and complete Kenmotsu manifold M has maximal dimensional automorphism group if
and only if it is isomorphic to the hyperbolic space H2n+1.

Let us discuss the Kenmotsu structure on the hyperbolic space H2n+1. As we have saw in Example 4.6, we
have a homogeneous representation H2n+1 = SO+(1, 2n+ 1)/SO(2n+ 1). We have the Iwasawa decomposition
SO+(1, 2n+ 1) = NAK, where K is the isotropy subgroup at o. The hyperbolic space H2n+1 is identified with
the solvable part S = NA. The isotropy subgroup of SO+(1, 2n+ 1) at o = (1, 0, . . . , 0) is

K =

{(
1 t0
0 A◦

) ∣∣∣∣ A◦ ∈ SO(2n+ 1)

}
∼= SO(2n+ 1).

The abelian part is isomorphic to R. Here we remark that

dimSO+(1, 2n+ 1) = 2n2 + 3n+ 1, dimSO(2n) = 2n2 + n, dimA = 1, dimN = 2n.

The maximal tori of K = SO(2n+ 1) are n-dimensional.
The hyperbolic space H2n+1 is represented as H2n+1 = SO+(1, n)/SO(2n) as a Riemannian symmetric space.

If n > 1, this is the unique naturally reductive representation.
On the other hand, for any Lie subgroup K of K, H2n+1 has a homogeneous space representation H2n+1 =

(S ×K)/K.
The maximum dimension of Aut(H2n+1) = (n+ 1)2. Thus as a Kenmotsu manifold with maximum

automorphism group, H2n+1 is represented as

H2n+1 = (S ×K)/K, dimK = n2.

For instance The subgroup

SO(n+ 1)× SO(n) =

{(
A1 O
O A2

) ∣∣∣∣ A1 ∈ SO(n+ 1), A2 ∈ SO(n)

}
is n2-dimensional. When n = 1, K = SO(2) and hence

H3 = (S × SO(2))/SO(2) = (B+
2 C×U(1))/U(1).

Problem 4. Determine the automorphism group of H2n+1 and give its nice expressions.

If a connected Lie group G acts transitively and isometrically on Hn then G\Hn is a point. It follows that
G\SO+(n, 1) is an orbit space of O(n), thus G is a non-discrete co-compact subgroup of SO+(n, 1). By Witte’s
structure theorem for co-compact Lie groups [229], the following result was obtained (see [40, 41]).

Theorem 19.1. The connected Lie groups acting transitively on Hn are SO+(n, 1) and G = NFr, where N is the
nilpotent part of the Iwasawa decomposition SO+(n, 1) = N ·A · SO(n) and Fr is a connected subgroup ofA · SO(n− 1)
with nontrivial projection to the abelian part A.

Remark 19.1. In the case of H3, N · Fr = N ·A · SO(2) which is isomorphic to B+
2 C×U(1) (see [41, p. 567]).
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19.4. Generalized symmetric Sasakian manifolds

The unit tangent sphere bundle USn(1) equipped with the standard contact Riemannian structure is a φ-
symmetric space fibered over the Grassmannian manifold G̃r2(E4) of oriented 2-planes in E4.

In particular, US3(1) is a Riemannian 4-symmetric space (see [104]). The only locally symmetric Sasakian
manifold is S2n+1. But the Riemannian symmetric space SO(2n+ 2)/SO(2n+ 1) is not homogeneous contact.
Thus there are no Sasakian symmetric space. However US3(1) is Sasakian 4-symmetric. According to Jiménez
[134] Riemannian 4-symmetric spaces are fiber bundles over Riemannian symmetric spaces whose standard
fibres are Riemannian symmetric. This fact motives us to study the following problem:

Problem 5. Are there compatible 4-symmetric structures on φ-symmetric spaces ?

For more information on Riemannian 4-symmetric spaces, we refer to [133, 156, 157].

19.5. Generalized φ-symmetric spaces

The notion of φ-geodesic symmetry in Definition 9.1 can be generalized to the following one:

Definition 19.1 ([128]). Let M = (M,φ, ξ, η, g) be an almost contact Riemannian manifold. Assume that ξ is a
Killing vector field. A local diffeomorphism sp is said to be an axial symmetry (or ξ-preserving symmetry) with
base point p ∈M if

1. sp fixes every point of the characteristic flow,

2. for each point q on the characteristic flow, sp sends any φ-geodesic through q to a φ-geodesic through q,

3. in a small neighborhood, of p, the points on the characteristic flow are the only fixed points of sp.

If there exists a least integer k ≥ 2 such that (sp)k is the identity map, then sp is said to be of order k.

A φ-geodesic symmetry in the sense of Takahashi is an axial symmetry of order 2 ifM is a contact Riemannian
manifold (K-contact). The terminology ξ-preserving symmetry was suggested by Tsukada and used in [128].

Analogous to the generalized Riemannian symmetric spaces in the sense of Kowalski [149], one can
introduce the notion of locally generalized φ-symmetric space in the following manner (due to Masami Sekizawa):

Definition 19.2. An almost contact Riemannian manifold M is said to be a locally generalized φ-symmetric space
if ξ is a Killing vector field and at each point p ∈M , there exists a globally defined axial symmetry sp and the
order of sp is the common value, say k ≥ 2 and called the order of M .

We know that globally φ-symmetric spaces are naturally reductive homogeneous spaces. What about
generalized φ-symmetric spaces ?

Problem 6. Construct explicit examples of generalized φ-symmetric spaces of order k > 2.

Let M be an almost contact Riemannian manifold with Killing ξ, then at each point p ∈M , we can take a
sufficiently small neighborhood U of p on which ξ is regular. We obtain a local fibering π : U → U/ξ. The K-
contact structure induces an almost Hermitian structure (ḡ, J) on the factor space U = U/ξ. In particular, if M
is contact Riemannian, then (ḡ, J) is almost Kähler.

Now let us assume that M is locally generalized φ-symmetric, then sp induces a local symmetry on U/ξ
around π(p). If sp is of order k, then the induced symmetry is also of order k. Hence U/ξ is an almost Hermitian
and locally k-symmetric.

Conversely, we know the following local construction.

Proposition 19.1 ([128, 127]). Let (M,φ, ξ, η, g) be an almost contact Riemannian manifold with Killing ξ, p a point of
M , U a sufficiently small normal neighborhood of p on which ξ is regular, π : U → U = U/ξ the local fibering and (J, ḡ)
the almost Hermitian structure of U induced from U . If there exits a family {s̄p̄} of isometric symmetries on U with base
point p̄ = π(p), then there exits a family of axial symmetries on U . Moreover if s̄p̄ is of order k, then so is sp.

Thus we are interested in almost contact Riemannian manifolds with Killing ξ which is fibered over almost
Hermitian k-symmetric spaces with k > 2.

Let M be a homogeneous Sasakian manifold, then M is regular, hence we have the Boothby-Wang fibering
π :M →M =M/ξ. The factor space is a homogeneous Kähler manifold (see [29, Theorem 8.3.5]). Moreover we
know the following fundamental fact ([29, Theorem 8.3.6]).
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Theorem 19.2. Let (M,η) be a compact homogeneous contact manifold. Then

1. M admits a homogeneous Sasakian structure,

2. M is a non-trivial circle bundle overe a generalized flag manifold, and

3. M has finite fundamental group, and the universal covering M̃ of M is compact with a homogeneous Sasakian
structure.

It is well known that every Kähler C-space, i.e., simply connected compact homogeneous Kähler manifold
is a generalized flag manifold. Jiménez constructed Hermitian k-symmetric spaces [132]. Moreover, Kähler
C-spaces admit compatible k-symmetric structures (see [34, 221]). These facts motivates the following problem.

Problem 7. Can we classify Sasakian generalized φ-symmetric spaces of order k > 2 ?

We expect that compact Sasakian generalized φ-symmetric spaces are homogeneous Sasakian manifolds
fibered over Kähler C-spaces equipped with k-symmetric structures.

Let us turn our attention to the case k = 3. Assume that the factor space U of the local fibering is a
Riemannian 3-symmetric space. As is well known, Riemannian 3-symmetric spaces admit compatible nearly
Kähler structure (almost Tachibana structure) [82]. An almost Hermitian manifold (M, ḡ, J) is said to be nearly
Kähler if it satisfies

(∇XJ)X = 0

for all vector field X on M . On the other hand, an almost contact manifold M is said to be nearly coKähler (or
nearly cosymplectic) if it satisfies

(∇Xφ)X = 0

for all vector field X on M [15, 19]. Typical example of strictly nearly cosymplectic manifold is the totally
geodesic unit 5-sphere of the nearly Kähler 6-sphere [15]. One can see that the Riemannian product M =
M × E1 or M =M × S1 of a nearly Kähler manifold M and the Euclidean line or the circle is nearly coKähler
and it is generalized φ-symmetric of order 3.

Blair and Showers studied nearly cosymplectic manifolds satisfying dη = 0. They showed that nearly
cosymplectic 5-manifolds satisfying dη = 0 are coKähler (cosymplectic). Note that the totally geodesic S5 ⊂ S6

does not satisfy dη = 0.
In [56] De Nicola, Dileo and Yudin proved that a strictly nearly Sasakian manifoldM of dimension 2n+ 1 > 5

is s locally isometric to one of the following Riemannian products: M
2n × E1 or M5

1 ×M2n−4
2 , where M

2n
is a

strictly nearly Kähler manifold, M2n−4
2 is a nearly Kähler manifold and M5

1 is a strictly nearly cosymplectic
5-manifold.

Problem 8. Are there irreducible strictly nearly cosymplectic generalized φ-symmetric spaces ?

Remark 19.2. The model space F4 = (SL2R⋉R2)/SO(2) of four dimensional geometry is an almost Kähler 3-
symmetric space discovered by Kowalski [149] (see also [64]). We may expect that the circle bundle SL2R⋉R2

admits a non-SasakianK-contact generalized φ-symmetric structure of order 3. Calvaruso and Fino proved that
the Lie algebra sl2R+R2 of SL2R⋉R2 does not admit any K-contact structure [37, Proposition 4.5]. Foreman
[72] also studied K-contact Lie groups.

19.6. Standard contact metric structure of the unit tangent sphere bundle

Let Mn(εc2) be an n-dimensional Riemannian space form of curvature εc2. Then its unit tangent bundle
UMn(εc2) equipped with standard contact Riemannian structure is a contact (κ, µ)-space with

κ = εc2(2− εc2), µ = −2εc2.

In particular, UHn(−1) is a contact (−3, 2)-space.

Problem 9. Classify homogeneous contact Riemannian structure on UH2(−c2). Are there any homogeneous contact
Riemannian structure other than Boeckx’s homogeneous Riemannian structure ?

19.7. Grassmann geometry

In our works [109, 120, 121, 122, 123, 158], we studied Grassmann geometry of surfaces of orbit type in
3-dimensional homogeneous Riemannian spaces.

Problem 10. Determine Grassmann geometry of submanifolds of orbit type in homogeneous contact manifolds.
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