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Abstract— This paper focuses on an artificial intelligence based worn tire detection system proposed to detect cracks in 

the tires of vehicle drivers. Although drivers are generally aware of the importance of tire tread depth and air pressure, 

they are not aware of the risks associated with tire oxidation. However, tire oxidation and cracks can cause significant 

problems affecting driving safety. In this paper, we propose a new hybrid architecture for tire crack detection, 

CTLDF+EnC (Cascaded Transfer Learning Deep Features + Ensemble Classifiers), which uses deep features from pre-

trained transfer learning methods in combination with ensemble learning methods. The proposed hybrid model utilizes 

features from nine transfer learning methods and classifiers including Stacking, Soft and Hard voting ensemble learning 

methods. Unlike X-Ray image-based applications for industrial use, the model proposed in this study can work with 

images obtained from any digital imaging device. Among the models proposed in the study, the highest test accuracy 

value was obtained as 76.92% with the CTLDF+EnC (Stacking) hybrid model. With CTLDF+EnC (Soft) and 

CTLDF+EnC (Solid) models, 74.15% and 72.92% accuracy values were obtained respectively. The results of the study 

show that the proposed hybrid models are effective in detecting tire problems. In addition, a low-cost and feasible 

structure is presented. 

 

Keywords— transfer learning, deep features, ensemble learning, tire cracks. 

 

Lastik Kusurlarının Tespiti için Yapay Zeka Destekli Yeni 

Bir Hibrit Model: CTLDF+EnC 

 
Özet— Bu çalışma, araç sürücülerinin lastiklerindeki çatlakları tespit etmek için önerilen yapay zeka tabanlı bir aşınmış 

lastik tespit sistemine odaklanmaktadır. Sürücüler genellikle lastik diş derinliği ve hava basıncının öneminin farkında 

olsalar da, lastik oksidasyonu ile ilişkili risklerin farkında değillerdir. Ancak, lastik oksidasyonu ve çatlakları sürüş 

güvenliğini etkileyen önemli sorunlara neden olabilir. Bu makalede, lastik çatlağı tespiti için, önceden eğitilmiş transfer 

öğrenme yöntemlerinden elde edilen derin özellikleri topluluk öğrenme yöntemleriyle birleştirerek kullanan yeni bir hibrit 

mimari olan CTLDF+EnC (Basamaklandırılmış Transfer Öğrenme Derin Özellikler + Ensemble Sınıflandırıcılar) 

önerilmektedir. Önerilen hibrit model, dokuz transfer öğrenme yönteminden gelen özellikleri ve İstifleme, Yumuşak ve 

Katı oylama topluluk öğrenme yöntemlerini içeren sınıflandırıcıları kullanmaktadır. Endüstriyel kullanıma yönelik X-

Ray görüntü tabanlı uygulamalardan farklı olarak bu çalışmada önerilen model herhangi bir dijital görüntüleme 

cihazından elde edilen görüntülerle çalışabilmektedir. Çalışmada önerilen modeller arasında en yüksek test doğruluk 

değeri %76,92 olarak CTLDF+EnC ( İstifleme) hibrit modeli ile elde edilmiştir. CTLDF+EnC ( Yumuşak) ve 

CTLDF+EnC (Katı) modelleri ile sırasıyla %74,15 ve %72,92 doğruluk değerleri elde edilmiştir. Çalışmanın sonuçları, 

önerilen hibrit modellerin lastik sorunlarını tespit etmede etkili olduğunu göstermektedir. Ayrıca, düşük maliyetli ve 

uygulanabilir bir yapı sunulmuştur. 
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1. INTRODUCTION  

 

Tire problems are a difficult to detect issue that can cause 

serious risks when traveling at high speeds. The tire is one 

of the vehicle's key safety elements and even simple 

defects can affect safe driving and cause accidents. 

Therefore, tire quality is critical to the safe and smooth 

movement of the vehicle. Drivers often overlook 

problems such as tire aging, oxidation and cracking and 

do not carry out regular checks [1]. 

Contamination of tire components on the production line 

can lead to the production of defective tires, which can 

cause explosions at high speeds and risks to life. As 

traditional methods are not efficient, computer-aided 

systems are important to improve tire quality. In these 

systems, traditional visual detection [2,3] methods as well 

as deep learning [4,5] techniques can also be used. Tires 

may have cracks that can affect the safety of the vehicle 

while driving. Tire problems pose significant risks to 

drivers, especially at high speeds. However, while drivers 

are often aware of risks such as tire pressure and tread 

depth, they are not aware of problems related to tire life. 

Therefore, computer and AI-assisted applications using 

digital images are useful tools when manual checks are not 

safe [1]. 

Deep learning methods are used as a successful tool in 

many fields thanks to their ability to extract features [6–

15]. However, they usually require large amounts of data 

and long training times. To overcome this problem, pre-

trained Transfer Learning (TL) methods are used to speed 

up the training process of deep networks and provide 

effective learning with less data. In this study, the 

methods Xception [16], VGG16 [17], NASNet [18], 

ResNet50 [19], DenseNet [20], InceptionV3 [21] and 

MobileNet [22] advanced deep networks, such as the one 

used in this study. 

In this study, a hybrid model is proposed to detect cracks 

on the tire surface and distinguish normal/cracked tires. 

The proposed model is a modified version of Özaydın and 

Tekin's DeepFeat-E model [9] In this model, deep 

features from pre-trained TL models are reduced and then 

cascaded and applied to stacking [23] and voting [24] 

ensemble classifiers. This approach enables more stable 

and accurate detection of oxidation-related problems in 

tires. Thus, it can enable drivers to detect tire problems in 

advance and minimize risks by taking preventive 

measures. Furthermore, the proposed system has the 

potential to save time and labor and increase efficiency 

for organizations with a large number of vehicles, such as 

fleets, logistics companies and public transport providers. 

 

2. LITERATURE REVIEW 

 

Defective tire detection methods are generally divided 

into two main categories based on the type of defect 

detection algorithm: traditional visual detection and deep 

learning-based methods. Traditional visual detection 

techniques can be classified as statistical, frequency and 

model-based methods. In the literature, there are several 

methods that use X-Ray images to detect tire defects 

during production. In a study by Zhao and Qin [3], tire 

texture images obtained by non-destructive X-Ray were 

used for the detection of internal structural tire defects on 

the production line. The researchers extracted the features 

of these images with the local inverse difference moment 

(LIDM) method, calculated the Hausdorff distance using 

the LIDM features to obtain a defect feature map (DFM) 

and proposed a pixel-level defect detection algorithm 

with high accuracy. Similarly, in another study by Guo et 

al. [2], an effective defect detection method that exploits 

the feature similarity of tire X-Ray images to detect tire 

surface abnormalities that may occur during production 

for the production of quality tires is proposed. In this 

method, the feature vectors of the tire images are obtained 

using a local kernel regression (LKR) descriptor to 

evaluate the feature dissimilarity of pixels and an 

abnormality map is generated. A simple thresholding 

process on the abnormality map was used to successfully 

locate the defects. It is reported that this method gives 

successful results for both cheek images and back images. 

Another area of research is the studies in which 

convolutional neural network (CNN) models, which are 

deep learning methods, are included in the literature, as 

well as methods that directly use tire images. Wang et al. 

[5] successfully detected tire faults that occurred during 

production using X-Ray images of tires produced in an 

industrial area with a fully convolutional neural network 

(FCN) structure. The network architecture includes the 

first stage, where a traditional deep network method is 

applied to extract tire image features. In the second stage, 

a sampling layer is added to obtain outputs of the same 

size as the original images. In the last stage, the scaled 

feature map is added to the outputs and the correct defects 

are obtained as a result. In this study, the basic 

architecture of VGG16 was used using a total of 914 

images and the results obtained were validated by 

comparing with AlexNet, VGG11, VGG13 and VGG16. 

Another study by Zheng et al. [4] aimed to perform tire 

defect detection from X-Ray images to detect invisible 

defects in the internal structure of tires. In this research, a 

Concise Semantic Segmentation Network (Concise-SSN) 

model based on VGG16 is proposed for automatic tire 

visual inspection. This model performs purely pixel-

based defect detection. The model combines the 

capabilities of an optimized semantic segmentation 

network and an integrated convolutional neural network. 

Experimental results show that the proposed model 

outperforms FCN, Mask R-CNN, Faster R-CNN, SegNet 

and U-net networks in segmentation and classification. 

The accuracy of the Concise-SSN model in detecting 

defective tires is reported to be 96.5%. 

Another study by Zhang et al. [25] proposes a 

segmentation method based on wavelet transform using 

X-Ray images to detect tire surface defects. In this 

method, the edge information utilizes wavelet transform 

features that can be represented by larger coefficients in 

the high frequency band. The larger curve coefficients 
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corresponding to the edge information are selected by 

thresholding. Comparisons show that the proposed 

method outperforms traditional edge detection methods 

(such as Canny, Sobel and LoG). 

The TireNet method developed by Li et al. [26] uses X-

Ray images of tires to reduce the high rate of tire returns 

due to manufacturing defects. In this method, a Siamese 

network is used for image feature extraction and then the 

model is built by adding the structure of the Siamese 

network to the Fast R-CNN classifier. Using 120,000 

labeled tire images, the TireNet model outperformed 

expectations by reducing the error rate to 0.17% 

compared to Faster R-CNN, SSD and YOLO models. 

Finally, Lin [1] proposed a ShuffleNet model with a deep 

learning architecture for the detection of tire defects 

caused by oxidation. The proposed ShuffleNet model is 

able to effectively detect defects on normal tire images 

and outperforms the GoogLeNet, traditional ShuffleNet, 

VGGNet and ResNet models. 

3. MATERIAL and METHOD  

 

In this paper, we propose a hybrid system, CTLDF+EnC, 

which aims to detect cracked and normal tires. This hybrid 

system combines deep features extracted from the outputs 

of a set of TL models, where traditional machine learning 

(ML) methods are evaluated in an ensemble classifier. 

 

3.1. General Structure of the System 

 

The hybrid architecture proposed in this study aims to 

detect cracked and normal tires. Figure 3.1 shows the 

general structure of the proposed system including four 

basic stages. The dataset used in the study contains 1028 

images. These images include digital camera images of 

oxidized (cracked) and non- oxidized (normal) tires. 

 

 

Figure 3.1. Stages of the proposed hybrid system. 

 

Phase 1 (Preprocessing): This stage includes the data 

preprocessing step. All visual data are scaled to a size 

(224x224x3) suitable for the TL models. Then, image 

manipulation operations such as horizontal/vertical 

translation, size scaling, horizontal/vertical rotation, 

angular rotation, and brightness adjustment are applied 

for data enhancement. These operations are applied to 

make the model more robust to various conditions. Then, 

the dataset is divided into training and test subsets and 

analyzed, and the next step is taken. 

Phase 2 (Features and Reduction): In this stage, the 

deep features obtained from each pre-trained TL model 

used are reduced. Each TL model is applied 

independently of the others to extract and then reduce the 

deep features of the training and test datasets. 

Phase 3 (Cascading and Model Selection): In this stage, 

the deep features of the reduced training and test datasets 

obtained from each ML method are combined 

(cascading). Then, the five most successful ML methods 

are selected using the training set. The selection of the five 

best models is performed using 10 cross-validations and 

the AUC scale. The top five ML models are selected to 

be used in the next stage, the ensemble classifier stage. 

Phase 4 (Ensemble Classifier): In this final stage, 

normal and cracked tires are predicted by stacking and 

voting based ensemble classifiers using the top five ML 

models identified in the previous stages and the resulting 

cascaded deep features. 

All applications using the hybrid system proposed in this 

study and direct TL models are implemented in Python 

programming language using Tensorflow, Keras and 

scikit-learn libraries. The models and analyses were 

performed in a personal computer environment with an 

AMD Ryzen 7 (5800H) processor with 16 CPUs at 

3.2GHz, 4GB GDDR6 memory / Nvidia GeForce RTX 

3050 GPU at 1.5GHz and 16 GB RAM. 

 

3.2. Data Set 

 

In this study, we use a publicly available tire image dataset 

that includes cracked (oxidized) and normal (non-

oxidized) tires. The dataset consists of a total of 1028 

images, including tire sidewall and tread images [27]. The 

dataset used in this study has not undergone any 

augmentation or preprocessing, and the training and test 

sets are shared separately. The dataset is publicly 

available and can be downloaded from Harvard's 

dataverse webpage [27]. The current dataset contains 491 

normal (non-oxidized) and 537 cracked (oxidized) tire 

images. Table 3.1 details the distribution of cracked and 

normal tire images between the training and test datasets. 
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Table 3.1. Data set image distributions. 

 Normal Cracked Total 

Train 376 327 703 

Test 115 210 325 

Total 491 537 1028 

As seen in the table, since there are 703 samples in the 

training set and 325 samples in the test data set, the 

training-test data set ratios are approximately 68% and 

32% respectively. The resolutions of the images in the 

dataset are not standardized and are composed of images 

with different resolutions. For this reason, the images 

were adjusted to standard sizes in the preprocessing stage 

and data augmentation methods such as 

horizontal/vertical shifting, horizontal rotation, scaling, 

rotation, etc. were applied to prevent overlearning. 

Examples of normal and cracked images are shown in 

Figure 3.2. 

 

Figure 3.2. Sample tire images, a) Cracked and b) Normal. 

 

3.3. Proposed Hybrid System 

 

In this study, two main applications were carried out. In 

the first application group, pre-trained TL models were 

directly used to predict tire conditions. In the second 

application group, the proposed hybrid model named 

CTLDF+EnC (Cascaded Transfer Learning Deep 

Features + Ensemble Classifiers) is used. This model has 

a structure in which deep features obtained from TL 

models are cascaded and applied to ensemble classifiers.  

Figure 3.3 shows the block diagram of the CTLDF+EnC 

hybrid system proposed in this study. In the figure, the 

Deep Features Generator (DFG) block extracts the deep 

features of a given TL model and the Reduced Features 

Set (RFS) is generated by the feature reduction process. 

This process is performed separately for the 9 TL models 

used in this study. Since the highest performance values 

were obtained with the Extra Tree Classifier (ETC), ETC 

was used as the feature reduction method and IDSs were 

created. The number of features before and after 

reduction for each TL is presented in Table 3.2. 

 

 

Table 3.2. Number of features before and after reduction 

for each TL model. 

 

TL Models Before 

Reduction 

After 

Reduction 

Xception 2,048 527 

NASNet 4,032 1,119 

MobileNet 1,024 232 

DenseNet169 1,664 360 

DenseNet201 1,920 381 

VGG16 512 139 

InceptionV3 2,048 573 

ResNet50V2 2,048 497 

ResNet101V2 2,048 526 

Total 35,714 4,354 
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In the Cascading and Ensemble Classification (CEC) 

block, the RFSs of each TL model are cascaded. The 

Model Selector evaluates 14 different ML methods after 

10 cross-validations with these cascaded features, and the 

first 𝑘 chooses the ML model (𝑘 = 5). Although the 

selected ML methods vary for each TL, RF (Random 

Forest), LDA (Linear Discriminant Analysis), LGBM 

(Light Gradient Boosting Machine), LR (Logistic 

Regression), ETC (Extra Trees Classifier), GB (Gradient 

Boosting) and KNN (K Neighbors Classifier) ML models 

were generally used. When the features obtained from TL 

models were cascaded, LDA, ETC, LR, GB and LGBM 

were selected as the best 𝑘 = 5 ML models (ranked 

according to the top 5 AUC metric). Table 3.3 presents 

the performance metrics of the ML Models ranked 

according to the AUC value. 

 

Table 3.3. Best ML models ranked by AUC value. 

Model Accuracy AUC Recall Prec. F1 

Linear Discriminant Analysis 0.9474 0.9863 0.976 0.9311 0.9522 

Extra Trees Classifier 0.9361 0.9836 0.9841 0.9074 0.9433 

Logistic Regression 0.9517 0.9828 0.9814 0.9337 0.9564 

Gradient Boosting Classifier 0.9531 0.981 0.9894 0.9293 0.9579 

Light Gradient Boosting Machine 0.9503 0.9805 0.9841 0.9288 0.9552 

Random Forest Classifier 0.9375 0.9798 0.9841 0.9092 0.9444 

K Neighbors Classifier 0.9488 0.9705 0.9706 0.9369 0.953 

Ada Boost Classifier 0.9317 0.9684 0.9496 0.9261 0.9372 

Naive Bayes 0.9261 0.9372 0.9733 0.8998 0.934 

Decision Tree Classifier 0.8734 0.8727 0.8859 0.8791 0.882 

Quadratic Discriminant Analysis 0.5065 0.5087 0.4814 0.5466 0.5086 

Dummy Classifier 0.5348 0.5 1.0 0.5348 0.6969 

SVM - Linear Kernel 0.9531 0.0 0.9788 0.9377 0.9574 

Ridge Classifier 0.9559 0.0 0.9787 0.9428 0.9599 

The best 𝑘 ML models selected in the Ensemble Learning 

Model (EnsLM) block are used in the Ensemble 

Classifier sub-block. This sub-block predicts tire state 

(Cracked and Normal) using three different ensemble 

classifiers, one based on Stacking and the other two based 

on voting, using selected ML models. 

 

 

Figure 3.3. Schematic representation of the proposed hybrid system 
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3.4. Pre-Trained Transfer Learning Models 

 

Transfer learning methods are a technique that enables the 

use of pre-trained models in a new problem or application 

and provides an effective solution in ML processes. This 

methodology is not considered as a different type of ML 

algorithm, but rather as a strategy or method used to train 

models. It involves applying the parameters and weights 

obtained from previous training to a new problem. The 

reused pre-trained model must have a high level of 

generality in order to be used in different problems. TL 

models can be applied to new or different problems 

without training, saving time and resources for training. 

Through reuse, problems such as resource shortages and 

long training times are minimized. With these advantages, 

TL offers more effective and efficient solutions in ML 

processes. 

TL also offers a solution to the time-consuming process 

of accurately labeling large datasets [28]. This is a 

significant advantage, especially when considering the 

large datasets required to train a ML algorithm. Transfer 

methods are often preferred when large resources are 

required for the training phase in a system. Since the pre-

trained structures of these models can be used directly, 

they can be used directly for similar problems related to 

the model. These aspects of transfer models make them 

general- purpose. TL allows for the development of more 

generalizable models rather than models being strictly 

bound to a training dataset. In this way, the models 

developed can be used under varying conditions and with 

different data sets. 

 

3.5. Feature Selection with Extra Tree Classifier  

 

Feature selection is an important step in ML models to 

improve prediction accuracy and reduce computational 

cost. For this purpose, the Extra Tree Classifier (ETC) 

method is used in this study to identify the most 

appropriate deep features obtained from ML models [29]. 

ETC is a decision-based method similar to the Random 

Forest classifier and provides a common framework 

between feature selection and classification. The method 

has the ability to generate many sub-trees and randomly 

select subsets. For feature selection, features are 

evaluated using the Gini metric and the most important 

features are identified. In this way, redundant or low-

contributing features are eliminated and the complexity 

of the model is reduced, reducing computational cost and 

increasing success. 

𝐺𝑖𝑛𝑖 = 1 − ∑ 𝑝𝑖(𝑡)2

𝑐−1

𝑖=0

 (3.1) 

 

where 𝑐 is the number of unique classes at this node and 

𝑝𝑖(𝑡) is the frequency of class 𝑖 at node 𝑡. 

 

 

3.6. Ensemble Classification Methods 

 

Ensemble classification methods are approaches that use 

multiple decision makers instead of a single decision 

maker in order to reduce the number of incorrect 

predictions and to increase the achievement. In this study, 

the best five models are selected among traditional ML 

models and the best five models are selected among 14 

models based on the AUC metric after 10 cross-validation 

procedures. In the applications, the features obtained 

from the pre-trained TL models were reduced and 

cascaded, and then applied to ensemble classifiers using 

these selected models. The common decision of the 

ensemble classifiers was determined by Stacking and 

Voting based ensemble learning methods. Voting 

strategies include two main approaches, Hard Voting and 

Soft Voting; Hard Voting is based on the majority 

decision, while Soft Voting uses the average of the 

prediction probabilities of the available classifiers. These 

strategies aim to achieve more efficient and reliable 

classification results. 

 

3.6.1. Voting Based Ensemble Classifiers 

 

Voting-based ensemble classifiers aim to obtain a 

common ensemble prediction by combining the 

classification predictions of various ML techniques. The 

most commonly used methods are called Hard Voting and 

Soft Voting. In Hard Voting, the prediction of the majority 

of classifiers in the ensemble is taken and this prediction 

is considered as the collective prediction of the ensemble. 

In Soft Voting, the ensemble prediction is formed by 

averaging the probabilistic weights of the classifiers' 

predictions. The contribution of each classifier is 

calculated with a specific weight and the final prediction 

is based on this weighted sum. These methods aim to 

achieve a more reliable and efficient classification result 

by combining the power of different classifiers in the 

ensemble. In this way, more accurate predictions can be 

made, avoiding the potential mispredictions that can arise 

from a single model. For example, these ensemble 

classifiers, when predicting the class of a sample 𝑥, allow 

to choose between 𝑘 class {𝑠1, 𝑠2, 𝑠3, … , 𝑠𝑘} predictions 

of n different classifiers {ℎ1, ℎ2, ℎ3, … , ℎ𝑛} according to 

certain criteria [24].  

The Hard Voting method accepts the prediction of the 

majority of classifiers in the ensemble as the final 

prediction of the ensemble. In this method, the 

predictions of the classifiers in the ensemble are equally 

weighted and only the decision of the majority is taken 

into account. In this case, in the Hard Voting approach, 

the class of any instance x in the dataset is predicted as 

follows [24], 

𝐻(𝑥) = 𝑠
∑ ℎ𝑖

𝑗
(𝑥)𝑛

𝑖=1  
 (3.2) 
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The Soft Voting method makes class prediction by 

averaging the probabilistic weights of the predictions of 

the classifiers in the ensemble. This method aims to 

achieve a more accurate classification result by weighting 

the predictions of different classifiers in the ensemble 

according to their reliability. In this case, in the Soft 

Voting approach, the class of any instance 𝑥 in the dataset 

is estimated as follows [24]: 

𝐻(𝑥) = 𝑠
∑ 𝑤𝑖ℎ𝑖

𝑗
(𝑥)𝑛

𝑖=1  
 (3.3) 

The weight of the prediction of each classifier ℎ𝑖 among 

the other predictions in the ensemble is denoted by 𝑤𝑖 .  

 

3.6.2.  Stacking Based Community Classifier 

 

The Stacking Based Ensemble Classifier is a method 

proposed by Wolpert [23] and basically consists of two 

stages. In the first stage, the predictions of the different 

methods used in ensemble classifiers are obtained. Then, 

these predictions are processed by a meta-classifier to 

produce the final prediction of the ensemble. The aim of 

this approach is to improve the accuracy by balancing the 

incorrect predictions of a single classifier with the 

predictions of other classifiers. In this way, more reliable 

predictions are obtained through ensemble classifiers 

[23]. 

 

3.7. Performance Evaluation Metrics 

 

In this study, a confusion matrix is used to analyze the 

performance of the proposed hybrid models and the TL 

methods used for comparison. The confusion matrix is 

presented in the form of a table as in Table 3.4, which 

shows the number of correct and incorrect classifications 

between the actual class labels of the examples in the 

dataset and the prediction labels of the models used.  

Table 3.4. Confusion matrix 

Actual/ 

Estimated 
Cracked Normal 

Cracked True Positive (TP) False Positive (FP) 

Normal False Negative (FN) True Negative (TN) 

 

Where, TP (True Positive) refers to how many images 

with cracked true class labels are correctly predicted by 

the model used. TN (True Negative) refers to how many 

images with normal true class labels are correctly 

predicted by the model used. FP (False Positive) refers to 

how many images with real class labels cracked are 

incorrectly predicted as normal by the model used, while 

FN (False Negative) refers to how many images with real 

class labels normal are incorrectly predicted as cracked 

by the model used. 

TP (True Positive): R efers to how many images with 

true class labels "Cracked" were correctly predicted by 

the model. 

TN (True Negative): Refers to how many of the images 

with true class labels "Normal" were correctly predicted 

by the model. 

FP (False Positive): Refers to how many of the images 

with true class labels "Normal" are predicted as 

"Cracked" by the model. 

FN (False Negative): Refers to how many images with 

real class labels "Cracked" are predicted as "Normal" by 

the model. 

The following four metrics were used to analyze and 

evaluate the performance of the models used in the study 

[30]. 

Accuracy: Refers to the ratio of correctly estimated 

samples to the total number of samples and is calculated 

by the formula below, 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑁 + 𝐹𝑃
 (3.4) 

 

Precision: Refers to the probability that samples predicted 

as Cracked are actually Cracked and is calculated by the 

following formula, 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (3.5) 

Recall: Refers to the proportion of samples whose true 

class is Cracked that are correctly predicted to be Cracked 

and is calculated by the formula below, 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3.6) 

f1-score: Provides a balanced measure of performance by 

taking the harmonic mean of precision and recall and is 

calculated by the following formula,  

𝑓1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

(3.7) 

 

 

 

4. EXPERIMENTAL ANALYSIS 

 

In order to compare the performance of the hybrid model 

proposed in this study, firstly, a set of applications were 

performed in which each of the Transfer Learning (TL) 

models was used as a direct classifier separately. In 

another set of applications, within the proposed method, 

after the features of all TC models are obtained and 

reduced, they are combined together and Stacking, Soft 

and Hard Voting ensemble classifiers are used separately. 

In all the applications, the classifiers used were aimed to 

classify oxidized (Cracked) and non-oxidized (Normal) 

tires. Table 3.5 presents the values of the performance 

metrics obtained on the training and test datasets for the 
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first applications where the TL models were used directly. 

In these applications, the highest training and test 

accuracies were obtained with the ResNet50V2 TL model 

with 91.89% and 70.77%, respectively. The lowest 

accuracy values were observed for the VGG16 TL model 

with 72.69% and 56.31%, respectively. 

 

Table 3.5. Training and test success criterion values of the TL models. 

 Train (%) Test (%) 

Model Name Acc. Prec. Rec. f1-scr. Acc. Prec. Rec. f1-scr. 

Xception 89.05 90.41 88.43 88.79 61.23 71.65 69.21 61.04 

NASNet 91.18 91.4 90.94 91.09 66.15 71.79 72.04 66.15 

MobileNet 87.2 88.41 86.58 86.91 57.54 67.1 65.18 57.32 

DenseNet169 86.91 89.11 86.09 86.49 59.38 71.45 67.98 59.01 

DenseNet201 90.9 91.2 90.61 90.8 68.92 74.24 74.77 68.91 

VGG16 72.69 74.03 73.41 72.61 56.31 54.79 55.18 54.49 

InceptionV3 88.19 88.39 87.93 88.08 65.54 71.48 71.56 65.54 

ResNet50V2 91.89 92.11 91.66 91.82 70.77 74.22 75.61 70.68 

ResNet101V2 90.9 91.8 90.41 90.73 63.08 71.07 70.05 63.03 

 

Figure 3.4 shows the training and test confusion matrices 

of the most successful TL model, ResNet50V2. In the 

Confusion matrix for the training dataset in Figure 3.4.(a), 

out of 327 cracked tire images, 289 were correctly 

classified and 38 were incorrectly predicted. Of the 

normal tire images, 357 were correctly classified and 19 

were incorrectly predicted. In total, there are 376 normal 

tire images. In the complexity matrix for the test dataset 

in Figure 3.4.(b), 124 out of 210 cracked tire images are 

correctly classified and 86 are incorrectly predicted. Of 

the normal tire images, 106 were correctly classified and 

9 were incorrectly predicted. In total, there are 115 

normal tire images. 

 

Figure 3.4 ResNet50V2 TL training and test confusion matrices. 

Table 3.6 shows the performance of the CTLDF+EnC 

based ensemble classifiers on the test dataset. The table 

shows the performance of all TL models when deep 

features are applied to the ensemble classifiers. The 

highest success rate is obtained with the hybrid model 

with Stacking ensemble classifier 

(CTLDF+EnC(Stacking)), which has an accuracy of 

76.92% and precision, sensitivity and f1-score of 79.10%, 

81.36% and 76.75% respectively. The hybrid models of 

Soft CTLDF+EnC(Soft) and Hard CTLDF+EnC(Hard) 

voting methods have an accuracy of 74.15% and 72.92% 

respectively. The precision, sensitivity and f1-score values 

of these models are given in Table 3.6. It was observed that 

all ensemble classifiers achieved 100% success rate on 

the training dataset. The reason for this difference 

between the accuracy values for the training and test 

datasets is considered to be overfitting. In the case of 

overfitting, while the model learns each sample in the 

training set very well, it loses its generalization capability 

and classifies the samples in the test data set, which it has 

never seen, with low accuracy.
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Table 3.6. CTLDF+EnC based ensemble classifier performance values. 

 Train (%) Test (%) 

Model Acc. Prec. Rec. f1-scr. Acc. Prec. Rec. f1-scr. 

CTLDF+EnC(Stacking) 100 100 100 100 76,92 79,1 81,36 76,75 

CTLDF+EnC(Soft) 100 100 100 100 74,15 77,26 79,02 74,05 

CTLDF+EnC(Solid) 100 100 100 100 72,92 76,6 78,06 72,85 

 

Figure 3.5 shows the test data set confusion matrices for 

each ensemble classifier. Since the training dataset 

achievements are 100%, they are not presented 

separately. In Figure 3.5(a), the CTLDF+EnC (Stacking) 

model predicts 135 correct and 75 incorrect images of 

cracked tires. For normal tire images, 111 were correctly 

predicted and 4 were incorrectly predicted. In Figure 

3.5(b) and Figure 3.5(c), the correct/incorrect prediction 

values of the cracked tire images for the 

CTLDF+EnC(Soft) and CTLDF+EnC(Solid) models are 

134/76 and 128/82, respectively. The true/false prediction 

values for normal tire images are 111/4 and 110/5, 

respectively. These matrices show the ability of each 

hybrid model to correctly and incorrectly predict cracked 

and normal tire images. 

 

Figure 3.5. Ensemble classifier test confusion matrices 

Within the scope of the study, Table 3.7 was created to 

determine the classification performance of hybrid 

models using the deep features of the proposed TL 

models and to more clearly demonstrate the advantages 

of deep feature-based models. In this table, the first 

column, TL Model (TLM), contains the success metrics 

obtained directly with the TL models, while the other 

columns show the test accuracies and improvement 

amounts obtained with ensemble classifiers such as 

Stacking Hybrid Model (SHM), Soft Voting Hybrid 

Model (SVHM) and Hard Voting Hybrid Model 

(HVHM), which are built using all the features obtained 

from the TL models. From Table 3.7, it can be seen that 

the proposed SHM, SVHM and HVHM ensemble 

classifiers all exceed the performance measures of the TL 

models and provide more accurate predictions. This table 

clearly shows that the proposed deep feature-based hybrid 

models provide higher classification performance 

compared to the direct TL models.  

Table 3.7. Comparison of the quantities of improvement 

in the test performance of the hybrid models. 

 Imp. Dif. (%) 

Models TLM SHM SVHM HVHM 

Xception 61.23 15.69 12.92 11.69 

NASNet 66.15 10.77 8 6.77 
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MobileNet 57.54 19.38 16.61 15.38 

DenseNet169 59.38 17.54 14.77 13.54 

DenseNet201 68.92 8 5.23 4 

VGG16 56.31 20.61 17.84 16.61 

InceptionV3 65.54 11.38 8.61 7.38 

ResNet50V2 70.77 6.15 3.38 2.15 

ResNet101V2 63.08 13.84 11.07 9.84 

 

In Table 3.7, it is seen that the highest accuracy values 

obtained with the SHM, SVHM and HVHM are 76.92%, 

74.15% and 72.92%, respectively. When these values are 

compared with the accuracy values of the TL models, it 

is determined that the highest improvement differences 

are 20.61%, 17.84% and 16.61% for the VGG16 TL 

model, respectively. On the other hand, the lowest 

improvement differences were 6.15%, 3.38% and 2.15% 

for the ResNet50V2 TL model, respectively. It is 

expected that the improvement differences would be low 

considering that ResNet50V2 was the model with the 

highest success in the first group of applications. It is 

clear from Table 3.7 that the proposed hybrid models of 

SHM, SVHM and HVHM significantly improve the 

accuracy of ResNet50V2 in particular. 

 

5. DISCUSSION 

 

Vehicle drivers are often aware of the importance of tire 

tread depth and tire air pressure, but overlook the risks of 

tire oxidation. Tire oxidation and related cracks pose 

potential hazards that seriously affect driving safety. In 

this context, this study aims to detect cracks in tires based 

on the use of pre-trained TL methods and ensemble 

classifiers. 

According to the World Health Organization (WHO), a 

large number of fatal traffic accidents occur every year 

and the majority of these accidents are caused by tire 

defects [31]. While manual detection of such defects can 

be difficult and inaccurate, AI-enabled systems have 

significant potential in this area. Therefore, we propose 

an AI-assisted model for easy and fast detection of tire 

defects by vehicle users. In the proposed model, three 

different hybrid models based on the five best classical 

ML algorithms are proposed by combining the deep 

features of nine pre-trained ML models obtained from tire 

images with ensemble classifiers: 

CTLDF+EnC(Stacking), CTLDF+EnC(Soft) and 

CTLDF+EnC(Solid). This approach provides an effective 

solution for tire defect detection. 

The use of non-destructive testing techniques for the 

detection of tire defects is widespread. These techniques 

include laser shearing [32], ultrasonic methods [33] and 

electromagnetic pulse [34]. However, these methods are 

often expensive and difficult to implement and are not 

widely used. Moreover, most of the studies based on 

traditional visual detection [2,3] and deep learning [4,35] 

methods use X-Ray imaging and these studies usually 

focus on the production line. In this study, we aim to 

detect tire defects that are worn or oxidized due to usage. 

Furthermore, a more efficient structure is proposed by 

replacing the expensive and complex X-Ray images with 

more cost-effective and easily available digital camera 

images. This approach provides a more accessible and 

practical solution for tire defect detection. 

Although the use of digital images is almost non-existent 

in the literature, a similar approach was adopted in a study 

by Lin [1]. However, since the dataset of this study was 

not shared, the success of the hybrid models proposed 

here could not be tested on this dataset. This shows that 

each study has its own unique datasets and model success 

is dataset dependent. However, on the basis of the 

applications with TL models, it is seen that the hybrid 

models proposed in this study significantly increase the 

success. This shows that the study offers a new and 

effective approach. 

In this study, the proposed CTLDF+EnC (Stacking) 

hybrid model has the highest test accuracy of 76.92%. 

The other hybrid models, CTLDF+EnC (Soft) and 

CTLDF+EnC (Hard) architectures have 74.15% and 

72.92% accuracy respectively. According to these results, 

it is concluded that the proposed hybrid model performs 

at an acceptable level in general and can be an effective 

tool for tire defect detection. 

When the performance of the proposed hybrid models is 

compared to the performance of the directly used TL 

models, it is seen that they are more successful. For 

example, in Table 3.5, the highest test accuracy rate is 

70.77% with ResNet50V2 when the TL models are used 

directly. On the other hand, the test accuracy rate obtained 

with the proposed CTLDF+EnC (Stacking) method is 

6.15% higher than ResNet50V2. As can be seen in Table 

3.5 and Table 3.7, all of the ensemble TL models have 

lower accuracy values than the proposed hybrid 

classifiers. These results show that the proposed hybrid 

models are more effective than the TL models in detecting 

tire problems and have a reasonable level of success. In 

this context, the proposed hybrid models are considered to 

be a promising method for future studies in tire defect 

detection. 

The original contributions of this work can be listed as 

follows: First, we propose a new architecture, 

CTLDF+EnC, which enables inspection from tire images. 

This architecture represents an important step forward in 

tire defect detection. Second, the architecture has the 

ability to combine deep features of TL models and classical 

ML methods in an ensemble classifier. This provides an 

efficient way to achieve more comprehensive and 

accurate results. Finally, the study emphasizes the use of 

images acquired with a digital camera, which is a cheaper 

and easy-to-use method to replace expensive and 

complex imaging techniques. This provides a more 

accessible and cost-effective solution for tire defect 

detection. Therefore, the proposed system can be 

considered as a useful tool to improve safety standards in 

the tire industry and solve tire-related problems more 

effectively. 
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6. CONCLUSION 

 

This paper presents a novel approach, CTLDF+EnC, for 

tire defect detection. This architecture combines deep 

features derived from TL methods and classical ML 

methods to propose an effective solution for tire defect 

detection. The proposed architecture can work with cheap 

and easy-to-use digital images that can be acquired with 

regular digital cameras, which reduces the cost and 

increases the applicability. In addition, this work aims to 

detect problems that occur during the lifetime of tires, 

such as oxidation and aging, unlike the studies in the 

literature, which are usually aimed at detecting defects that 

occur on the production line. Nine different TL models 

were used to extract features, which were then combined 

and fed to ensemble classifiers containing classical ML 

models. Stacking, Soft and Hard voting methods are used 

as ensemble classifiers. The implementations show that 

the proposed architecture achieves satisfactory 

performance compared to other alternatives. The results 

show that the CTLDF+EnC architecture can successfully 

detect oxidized or worn tires and is advantageous in terms 

of cost and applicability. This study is considered to 

propose an effective system to improve safety standards 

in the tire industry and solve tire-related problems more 

effectively. 
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