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Abstract
In this paper, we consider the concept of the residual inaccuracy measure and extend it
to its weighted version based on extropy. The properties of this measure are studied,
and the discrimination principle is applied in the class of proportional hazard rate mod-
els. A characterization problem for the proposed weighted extropy-inaccuracy measure is
studied. Some alternative expressions are provided as well as upper and lower limits and
various inequalities related to the proposed measure. Non-parametric estimators based on
the kernel density estimation method and empirical distribution function for the proposed
measure are obtained, and the performance of the estimators are also discussed using some
simulation studies. Finally, two real datasets are applied to illustrate our provided esti-
mators. In general, our study highlights the potential of the weighted residual inaccuracy
using extropy as a powerful tool to improve the quality and reliability of data analysis
and modeling across various disciplines. Researchers and practitioners can benefit from
incorporating this measure into their analytical toolkit to enhance the accuracy and effec-
tiveness of their work.
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Keywords. extropy, weighted measure of inaccuracy, proportional hazard rate model,
kernel density estimation, residual lifetime

1. Introduction
The concept of entropy was first proposed by the physicist [20] to express the degree

of chaos in the physical system. Later, Shannon [36] proposed and extended the entropy
to the field of information as a measure of the uncertainty of the information. Shan-
non entropy represents the absolute limit of the best possible lossless compression of any
communication. For additional details on this concept, see Cover and Thomas [6].

Suppose that we have two nonnegative continuous random variables X and Y , which
represent the time to failure of two systems. These variables have probability density
functions (PDF) f(x) and g(x), respectively. Furthermore, let F (x) and G(x) be the
cumulative distribution functions (CDF) of X and Y , and let F̄ (x) and Ḡ(x) be the
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survival functions (SF) of X and Y , respectively. The Shannon measure of uncertainty
associated with the random variable X is defined as

H(X) = −Ef [log f(X)] = −
∫ +∞

−∞
f(x) log f(x)dx. (1.1)

Similarly, Kerridge’s measure of inaccuracy, as cited in Kerridge [17], is also denoted by
Equation (1.2) as

H(X, Y ) = −Ef [log g(X)] = −
∫ +∞

−∞
f(x) log g(x)dx, (1.2)

where “ log ” represents the natural logarithm and following the convention that 0 log 0 = 0,
if we have g(x) = f(x), then Equation (1.2) reduces to Equation (1.1).

In life testing and survival analysis, considering the current age of the system is impor-
tant. Therefore, when calculating the uncertainty of a system or distinguishing between
two systems, the measures referenced in Equations (1.1) and (1.2) may not be appropriate.
Instead, when a system has survived up to time t, the corresponding dynamic measure
of uncertainty of [9] and of discrimination of [15, 17] are denoted by Equations (1.3) and
(1.4) as

H(X; t) = −
∫ ∞

t

f(x)
F̄ (t)

log f(x)
F̄ (t)

dx, (1.3)

and

H(X|Y ; t) =
∫ ∞

t

f(x)
F̄ (t)

log f(x)Ḡ(t)
F̄ (t)g(x)

dx, (1.4)

respectively. Obviously, when t = 0, then Equation (1.3) reduces to Equation (1.1).
According to [37], the dynamic measure of inaccuracy is defined as the measure associ-

ated with two residual lifetime distributions, denoted by F and G. This measure is known
as Kerridge’s measure of inaccuracy and is represented by Equation (1.5)

H(X, Y ; t) = −
∫ ∞

t

f(x)
F̄ (t)

log g(x)
Ḡ(t)

dx. (1.5)

Clearly, for t = 0, it reduces to Equation (1.2).
The relationship between information and inaccuracy can be quantified using the equa-

tion H(X, Y ) = H(X)+ H(X|Y ), where H(X|Y ) represents the Kullback-Leibler relative
information measure of X about Y of [18], defined in Equation (1.6) as

H(X|Y ) = Ef

[
log f(X)

g(X)

]
=
∫ ∞

0
f(x) log f(x)

g(x) dx. (1.6)

It is clear that H(X|Y ; 0) = H(X|Y ).
The information measures mentioned in [7] do not consider the value of the random

variable itself, but only its probability density function (PDF). They proposed a “length-
biased” shift-dependent information measure that is related to the differential entropy.
This measure assigns a higher weight to higher values of observed random variables.

The concept of a weighted distribution, as introduced by [31], is widely utilized in
statistics and various other applications. Weighted distributions come into play when
observations generated from a stochastic process are recorded with a certain weight func-
tion. In this context, let X represent a continuous non-negative random variable with
PDF f(x). Furthermore, let Xw be a weighted random variable associated with X, where
the weight function w(x) is positive for all values of x ≥ 0. The corresponding PDF fw(x)
of Xw can be determined in Equation (1.7) as

fw(x) = w(x)f(x)
E (w (X)) , x ≥ 0. (1.7)
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When the function w(x) = x is used, the random variable Xw is termed a random
variable biased by length or biased by size. In this case, the PDF becomes

f∗(x) = xf(x)
E (X) , x ≥ 0. (1.8)

For further details on this topic, see [10, 26]. If X is a random variable with a finite
mean E[X], the length biased CDF and SF are defined in Equations (1.9) and (1.10) as

F∗(t) =
∫ t

0

xf(x)
E (X)dx, (1.9)

and

F̄∗(t) =
∫ ∞

t

xf(x)
E (X)dx, (1.10)

respectively. These functions describe weighted distributions that occur in sampling pro-
cedures where the probabilities of sampling are proportional to the values of the samples.
Therefore, the measure of residual entropy in Equation (1.3) has been expanded to include
the length biased weighted residual entropy, denoted by Equation (1.11) as

H∗(X, t) = −
∫ ∞

t
x

f(x)
F̄ (t)

log f(x)
F̄ (t)

dx. (1.11)

The presence of the factor x in the integral on the right-hand side introduces a length biased
shift-dependent information measure that assigns higher significance to larger values of the
random variable X. Di Crescenzo and Longobardi [8] discussed weighted versions of the
residual and past entropies. The weighted residual entropy is defined in Equation (1.12)
as

Hw (Xt) = −
∫ +∞

t
x

f(x)
F̄ (t)

log f(x)
F̄ (t)

dx, (1.12)

while the weighted past entropy is defined in Equation (1.13) as

Hw (tX) = −
∫ t

0
x

f(x)
F (t) log f(x)

F (t)dx. (1.13)

2. Extropy
Recently, Lad et al. [19] proposed an alternative measure of uncertainty of a random
variable called extropy. The extropy is a measure of information introduced as a dual to
entropy or as an antonym to entropy. The extropy of the random variable X is defined in
Equation (2.1) as

J(X) = −1
2

∫ ∞

0
f2(x)dx = −1

2

∫ +∞

0
f(x)dF (x) = −1

2

∫ 1

0
f
(
F −1(u)

)
du. (2.1)

For more details and applications of extropy, refer to [19]. The extropy may also be used
to compare the uncertainties of two random variables. For two random variables Y and
Z, J(Y ) ≤ J(Z) implies that Y has more uncertainty than Z.

Qiu and Jia [28] considered a random variable Xt = [X − t|X > t], t ≥ 0 and defined
uncertainty of such a system based on extropy, given in Equation (2.2) as

J(X; t) = −1
2

∫ ∞

t

[
f(x)
F̄ (t)

]2

dx. (2.2)

Analogous to the weighted entropy, Balakrishnan et al. [3] introduced the concept of
weighted extropy defined in Equation (2.3) as

Jw(X) = −1
2E[Xf(X)] = −1

2

∫ +∞

0
xf2(x)dx, (2.3)
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which can also be rewritten in Equation (2.4) as

Jw(X) = −1
2

∫ ∞

0
f2(x)

∫ x

0
dy dx = −1

2

∫ ∞

0
dy

∫ ∞

y
f2(x)dx. (2.4)

Also, they introduced the weighted residual extropy (WRJ) by Equation (2.5) as

Jw (Xt) = − 1
2F̄ 2(t)

∫ ∞

t
xf2(x)dx. (2.5)

Jahanshahi et al. [14] introduced an alternative measure of uncertainty of non-negative
continuous random variable X which they called it cumulative residual extropy (CRJ) by
Equation (2.6) as

ξJ(X) = −1
2

∫ ∞

0
F̄ 2(x)dx. (2.6)

They studied some properties of the aforementioned information measure. The measure
defined in Equation (2.6) is not applicable to a system that has survived for some unit of
time. Hence, Sathar and Nair [35] proposed a dynamic version of CRJ (called dynamic
survival extropy) to measure residual uncertainty of lifetime random variable X as follows

ξJ(X; t) = − 1
2F̄ 2(t)

∫ ∞

t
F̄ 2(x)dx, t ≥ 0. (2.7)

It is clear that ξJ(X; 0) = ξJ(X). Recently, Hashempour et al. [11] introduced a weighted
cumulative residual extropy as an extended version of Equation (2.6) as follows

ξJw(X) = −1
2

∫ ∞

0
xF̄ 2(x)dx. (2.8)

They studied the characterization problem, estimation, and testing for this measure. Also,
Mohammadi and Hashempour [22] proposed a modified interval weighted cumulative resid-
ual and past extropies, respectively in Equations (2.9) and (2.10) as

WCRJ(X; t1, t2) = −1
2

∫ t2

t1
ϕ(x)

(
F̄ (x)

F̄ (t1) − F̄ (t2)

)2

dx, (2.9)

and
WCPJ(X; t1, t2) = −1

2

∫ t2

t1
ϕ(x)

(
F (x)

F (t2) − F (t1)

)2
dx, (2.10)

where ϕ is a weight function. They provided non-parametric estimators for these measures
based on the kernel method. Also, For more details, concepts, generalizations, applications
and estimations in the field of extropy, one can refer to the following references. Qiu [27]
used the extropy for record values and ordered statistics. Qiu and Jia [29] considered the
estimations of extropy measure. The extropy of a mixed system’s lifetime was considered
by [30]. Recently, Hashempour and Mohammadi [13] consider the extropy measure of
inaccuracy for record statistics. Also, readers can refer to [11,12,16,23,24] and references
therein. In this article, an attempt has been made to present new criteria that have a more
general form compared to the criteria introduced in other articles. One of these criteria is
the presentation of residual weight criteria based on extropy. In this regard, data available
often do not have equal importance and value. In such cases, the presented criteria should
be considered in a weighted form. Additionally, in many cases, there is a need to obtain
information about future events, where we use the SF instead of the PDF. Considering
the aforementioned points, the extropy-based residual weight criteria can meet the needs
of researchers. In this paper we extend the concept of residual inaccuracy to length biased
weighted residual inaccuracy (WRJI). In the rest of this paper, in Section 2, some concepts,
definitions and generalizations related to extropy are given. In Section 3, we define and
study WRJI and weighted residual discrimination information (WRDJ) by using some
examples and remarks. In Section 4, we study that when F and G follow the PHR model
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then WRJI uniquely determines the survival function F̄ and some alternative expressions
related to WRJI are studied. In Section 5, we obtain some bounds and inequalities for our
proposed measure. In Section 6, we give two non-parametric estimators for the proposed
measure. Based on the results in the previous section, a simulation study is also obtained
in Section 7 for comparing our proposed estimators. Finally, Section 8 investigates the
behavior of the provided estimators for two real datasets. We conclude the paper in Section
9.

3. Weighted residual inaccuracy measure
In this section, for two non-negative continuous random variables with the same support,

we introduce some measures of uncertainty based on extropy and some properties are
studied.

Definition 3.1. Let X and Y be two non-negative continuous random variables with
PDFs f and g, respectively. The weighted measure of discrimination of X about Y based
on extropy is defined in Equation (3.1) as

Jw(X|Y ) = 1
2

∫ ∞

0
xf(x) [f(x) − g(x)] dx. (3.1)

The weighted measure of inaccuracy between X and Y based on extropy (WJI) denoted
by Jw(X, Y ) is defined as follows:

Definition 3.2. Let X and Y be non-negative continuous random variables with PDFs
f(x) and g(x) and CDFs F (x) and G(x), respectively. Then WJI between the distributions
X and Y is defined in Equation (3.2) as

Jw(X, Y ) = −1
2

∫ ∞

0
xf(x)g(x)dx. (3.2)

On WJI measure in Equation (3.2), F̄ (.) is the actual SF corresponding to the observations
and Ḡ(.) is the SF assigned by the experimenter. If f(x) = g(x), then the WJI in Equation
(3.2) reduces to Equation (2.3) introduced by [3]. WJI measures the value of misspecifying
the correct model in which f(x) is the actual PDF of observations and g(x) is the PDF
assigned by the experimenter such that the value of each observation is taken into account
in its formula. In other words, by WJI, the discrimination measure between f and g can
be affected by the strength of each observation.

In the provided example, we demonstrate the application of Equation (3.2) to compare
statistical models.

Example 3.3. The statistical model for the random variable X is represented by SF
Q̄(x) = 1 − x, where x is within the range (0, 1). Furthermore, two SFs, F̄ (x) = 1 − x2

and S̄(x) = 1 − x3, x ∈ (0, 1), have been determined through nonparametric statistical
tests to approximate the random variable X. Using Equation (3.2), we can calculate the
WJI values. Specifically, we have Jw(X, X) = Jw(X) = −0.25, Jw(X, Y ) = −0.33, and
Jw(X, Z) = −0.5. Based on these WJI values, we can conclude that the WJI between X
and Y, which follows the SF F̄ (x), is closer to the WJI of X itself compared to the WJI
between X and Z, which follows the SF S̄(x). Therefore, Y provides a better approx-
imation of X than Z. In other words, the statistical model represented by the survival
function F̄ (x) is the closest approximation to the statistical model represented by Q̄(x)
that generated the data. 2

Balakrishnan et al. [3] examined a random variable denoted by Xt = [X − t|X > t],
where t ≥ 0. They introduced the concept of uncertainty in this system using extropy in
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Equation (3.3), denoted by

Jw(X; t) = −1
2

∫ ∞

t
x

[
f(x)
F̄ (t)

]2

dx. (3.3)

Jw(X; t) is a suitable metric for quantifying information in situations where uncertainty
is linked to future events.

In the subsequent discussion, we introduce a weighted measure of inaccuracy that per-
tains to two residual lifetime distributions, denoted by G(.) and F (.), which are associated
with the measure of inaccuracy.

Definition 3.4. Consider two non-negative continuous random variables X and Y with
probability density functions f and g respectively. WRJI measure between X and Y ,
utilizing extropy, can be defined in Equation (3.4) as follows

Jw(X, Y ; t) = −1
2

∫ ∞

t
x

f(x)
F̄ (t)

g(x)
Ḡ(t)

dx, (3.4)

meanwhile, F̄ (t) and Ḡ(t) can not be zero in (3.4).

Remark 3.5. From Equation (3.4), it is observed that Jw(X, Y ; t) = Jw(Y, X; t) and
Jw(X, Y ; t) ≤ 0. Furthermore, by taking the limit as t → 0 in Equation (3.4), the
WRJI transforms into the inaccuracy measure in Equation (3.2). Furthermore, when two
random variables X and Y have the same SFs, the WRJI simplifies to the WRJ as given
in Equation (3.3).

Remark 3.6. The weight functions used in WRJI play a crucial role in determining
the impact of different data points on the overall measure of the fit of the model. It is
important to explain why these particular weight functions were chosen over others and
how they align with the objectives of the study. Discussing the rationale behind the choice
of weight functions and their potential effects on the results will improve the understanding
of the methodology used in the study. Furthermore, sensitivity analysis on different weight
functions could be beneficial in assessing the robustness of the results.

In addition, we introduce the concept of uncertainty-weighted discrimination informa-
tion of variable X with respect to variable Y using the concept of extropy.

Definition 3.7. Assume that F̄ (x) and Ḡ(x) denote the SFs of non-negative continuous
random variables X and Y , respectively. The weighted residual discrimination information
(WRDJ) between X and Y can be defined in Equation (3.5) as a quantity denoted by

J(X|Y ; t) = 1
2

∫ ∞

t
x

f(x)
F̄ (t)

[
f(x)
F̄ (t)

− g(x)
Ḡ(t)

]
dx. (3.5)

Clearly, when t = 0, then Equations (3.3)-(3.5) reduce to Equations (2.1), (3.2) and
(3.1), respectively. By adding Equations (3.3) and (3.5), we obtain Equation (3.4), i.e.
Jw(X, Y ; t) = Jw(X; t) + Jw(X|Y ; t).
The WRJI measure based on extropy offers a valuable approach for evaluating predictive
models in a dynamic data environment. By incorporating weights and extropy, this mea-
sure provides a more comprehensive assessment of model performance, considering the
importance of different time periods and the unpredictability of the data. The practi-
cal value of WRJI lies in its ability to capture the nuances of data and provide a more
accurate evaluation of predictive models. This measure can be applied in various fields
where accurate predictions are crucial, such as finance, health care, weather forecasting,
and supply chain management. By considering the weighted residuals and extropy con-
cepts, decision makers can gain insights into the model’s performance over time and make
informed decisions based on the most relevant and reliable information. Furthermore,
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the potential impact of WRJI extends beyond model evaluation. It can aid in model
selection, parameter tuning, and identifying areas for improvement in predictive models.
By understanding the strengths and weaknesses of different models in dynamic scenarios,
organizations can enhance their decision-making processes and optimize their operations.
Together, the WRJI measure based on extropy offers a robust and practical solution for
evaluating predictive models in dynamic environments. Its potential impact in various
fields is significant, allowing for more accurate predictions, informed decision making, and
improved performance of predictive models.

Example 3.8. Let X be a non-negative random variable with SF of F̄ (x) = 1 − x2

for values of x between 0 and 1. Furthermore, Y is a random variable with a uniform
distribution between 0 and 1, and its SF is denoted by Q̄(x) = 1 − x, x ∈ (0, 1). we obtain

Jw(X, Y ; t) = t2 + t + 1
3t2 − 3 , t 6= 1,

Jw(X, t) = t2 + 1
2t2 − 2 ,

and
Jw(X|Y ; t) = − t − 1

6t + 6 , t 6= 1.

Example 3.9. Suppose that X and Y have exponential distributions with SFs as follows
F̄ (t) = e−θt; t ≥ 0, θ > 0,

Ḡ(t) = e−λt; t ≥ 0, λ > 0.

From Equation (3.2), we given

Jw(X, Y ) = − θλet(θ+λ)

2 (λ + θ)2 ,

Jw(X, Y ; t) = − θλ · (tλ + tθ + 1)
2 (λ + θ)2 e−t(θ+λ)

.

Example 3.10. Let X and Y have Weibull distributions with same shape parameter 2
and SFs as

F̄ (t) = e−θt2 ; t ≥ 0, θ > 0,

Ḡ(t) = e−λt2 ; t ≥ 0, λ > 0.

From Equation (3.2), we obtain

Jw(X, Y ) = −θλet2(θ+λ)

(λ + θ)2 ,

also, from Equation (3.4), we have

Jw(X, Y ; t) = − θλ
(
t2(λ + θ) + 1

)
2 (λ + θ)2 e−t2(θ+λ)

.

In what follows, we prove another result to show the effect of monotone transformations
on WJI defined in Equation (3.2). In this context, we prove the following theorem.

Theorem 3.11. Let X be a nonnegative absolutely continuous random variable with PDF
f(x) and CDF F (x). Assume Y = φ(X), where φ is a strictly monotonically increasing and
differentiable function. Let G(y) and g(y) denote the distribution and density functions
of Y , respectively. Then,

Jw(Y ) = J(X,
φ(X)
φ′(X)X). (3.6)
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Proof. The PDF of Y = φ(X) is gY (y) = | 1
φ′ (φ−1(y)) |fX(φ−1(y)). Therefore,

Jw(Y ) = −1
2

∫ ∞

0
yg2

Y (y)dy.

This gives

Jw(Y ) = −1
2

∫ ∞

0
y

[ 1
φ′(φ−1(y))

]2
f2

X(φ−1(y))dy

Substituting x = φ−1(y), we get

Jw(Y ) = −1
2

∫ ∞

0
φ(x)

( 1
φ′(x)

)2
f2

X(x)φ′(x)dx

= −1
2

∫ ∞

0
f2

X(x) φ(x)
φ′(x)dx

= −1
2

∫ ∞

0
fX(x) φ(x)

φ′(x)fX(x)dx

= J(X,
φ(X)
φ′(X)X),

the proof is completed. �

Example 3.12. Suppose F̄ (x) = exp{−θx}, x ∈ (0, ∞), is the true statistical model
for random variable X that generated some data. Also, suppose Ḡ(x) = exp{−2θx}
and S̄(x) = exp{−5θx}, x ∈ (0, ∞), be two SFs determined through non-parametric
statistical tests to approximate X. From Equation (3.2), we obtain Jw(X, X) = Jw(X) =
−1/8, Jw(X, Y ) = −1/9 and Jw(X, Z) = −5/72. Thus, WJI between X and random
variable Y which follows the survival function Ḡ(x) is closer than that of between X and
random variable Z which follows the survival function S̄(x). Therefore, Y provides a
better approximation to X than Z i.e. the statistical model F̄ (x) is the closest to the
statistical model Ḡ(x) that generated data.

Example 3.13. According to Example 3.12 and Equation (3.4), we have

Jw(X, X; t) = J(X; t) = −2tθ + 1
8 ,

Jw(Y, Y ; t) = J(Y ; t) = −4tθ + 1
8 ,

Jw(Z, Z; t) = J(Z; t) = −10tθ + 1
8 .

Also, from Equation (3.4), we obtain the following equations:

Jw(Y, Z; t) = −35tθ + 5
49 ,

Jw(X, Z; t) = −30tθ + 5
72 .

It is seen that Jw(Y, Z; t) is greater than Jw(X, Z; t) for all t, θ > 0.

Example 3.14. Let X and Y be two non-negative random variables with survival func-
tions F̄ (x) = (x + 1)e−x and Ḡ(x) = e−2x, x > 0 respectively. We obtain

Jw(X, Y ; t) = −9t2 + 6t + 2
27 (t + 1) ,
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and

Jw(X|Y ; t) = −36t3 + 78t2 − 34t − 49
432t2 + 864t + 432 .

Figure 1 provides the graphs of Jw(X, Y ; t) and Jw(X|Y ; t) for various values of t in
the case where X and Y are random variables with the given SFs. From Figure 1, we can
see that both Jw(X, Y ; t) and Jw(X|Y ; t) are decreasing functions of t.

0.0 0.5 1.0 1.5 2.0

−
0
.3

−
0

.2
−

0
.1

0
.0

0
.1

t

WRJI

WRDJ

Figure 1. Graph of Jw(X, Y ; t) and Jw(X|Y ; t) as a function of t.

In the following, we investigate the relationship between WRIJ and WJI.

Corollary 3.15. Suppose that X and Y are continuous nonnegative random variables
with SFs F̄ (x) and Ḡ(x), respectively. Then, we given

Jw(X, Y ; t) = a(t) [Jw(X, Y ) + c(t)] , (3.7)

where a(t) = [F̄ (t)Ḡ(t)]−1 and c(t) = 1
2
∫ t

0 xf(x)g(x)dx.

Proof.

Jw(X, Y ; t) = −1
2

[∫ ∞

0
x

f(x)
F̄ (t)

g(x)
Ḡ(t)

dx −
∫ t

0
x

f(x)
F̄ (t)

g(x)
Ḡ(t)

dx

]

= 1
F̄ (t)Ḡ(t)

[
Jw(X, Y ) + 1

2

∫ t

0
xf(x)g(x)dx

]
.

This completes the proof. �

Corollary 3.16. Let X and Y be two non-negative continuous random variables with
PDFs f and g, respectively. Then, we given

Jw(X, Y ; t) = k1Jw(X, Y ) − k2J̄w(X, Y ; t), (3.8)

where k1 = [F̄ (x)Ḡ(x)]−1, k2 = F (x)G(x)
F̄ (x)Ḡ(x) and J̄w(X, Y ; t) is the weighted past inaccuracy

measure.
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4. Some properties of WRJI measure
Recently, several authors studied the subject of characterizing underlying distribution

of a sample based on the extropy. The general characterization problem is to determine
when the residual measure characterizes the CDF uniquely. In this section, we study char-
acterization problem for the proposed WRJI in Equation (3.4) under the PHR model. We
study characterization problem for the WRJI under the assumption that the distribution
functions of X and Y satisfy the PHR model. Under this model, the SFs of two random
lifetime variables are related by

Ḡ(x) =
[
F̄ (x)

]γ
, γ > 0. (4.1)

Notice that, based on the PHR model in Equation (4.1), the hazard rate functions (HRFs)
µF (x) and µG(x) satisfy the relation µG(x) = γµF (x). The PHR model assumes that
the hazard rate for an individual at any given time is a constant multiple of the hazard
rate for a reference individual. This assumption implies that the hazard ratios between
different groups remain constant over time. It is important to discuss why this assumption
is appropriate for the specific context of the study and how it aligns with the data being
analyzed. Justifying the use of the PHR model will add credibility to the results obtained
using this methodology. Since X and Y satisfy the PHR model, Jw(X, Y ), Jw(X, Y ; t)
and Jw(X|Y ; t) can be rewritten as follows. Let X and Y be two nonnegative continuous
random variables satisfying the PHR model. Then, we have

(I) Jw(X, Y ) = −γ

2

∫ ∞

0
xµ2

F (x)F̄ γ+1(x)dx, (4.2)

(II) Jw(X, Y ; t) = −γ

2

∫ ∞

t
xµ2

F (x)
[

F̄ (x)
F̄ (t)

]γ+1

dx, (4.3)

(III) Jw(X|Y ; t) = 1
2

∫ ∞

0
x

(
f(x)
F̄ (t)

)2
1 − γ

(
F̄ (x)
F̄ (t)

)γ+1
 dx. (4.4)

When γ = 1, that is, F̄ (x) = Ḡ(x), then Equation (4.3) becomes Equation (3.3).
Some alternative expressions to Equations (4.2) and (4.3) of WJI and WRJI of a non-

negative random variable X are provided hereafter.

Corollary 4.1. Let X and Y be two nonnegative continuous random variables satisfying
the PHR model. Then, we have

(I) Jw(X, Y ) = −γ

2

∫ ∞

0
xf2(x)F̄ γ−1(x)dx, (4.5)

(II) Jw(X, Y ; t) = −γ

2

∫ ∞

t
x

(
F̄ (x)
F̄ (t)

)γ−1(
f(x)
F̄ (t)

)2

dx, (4.6)

(III) Jw(X, Y ; t) = −γ

2

∫ ∞

t
xf2(x)

(
F̄ γ−1(x)
F̄ γ+1(t)

)
dx. (4.7)

In this following, we show that the WRJI measurement of inaccuracy can uniquely
determine the underlying distribution. In addition, we study the following properties of
the WRJI.

Theorem 4.2. Let X and Y be two non-negative continuous random variables that satisfy
the PHR model, then Jw(X, Y ; t) uniquely determines the survival function F̄ (x) of the
random variable X.
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Proof. Suppose X1, Y1 and X2, Y2 are two sets of random variables satisfying PHR model,
that is, λG1(x) = γλF1(x), λG2(x) = γλF2(x) and

Jw(X1, Y1; t) = Jw(X2, Y2; t), t ≥ 0. (4.8)
By differentiating from both side of Equation (4.8) with respect to t and using λG(x) =
γλF (x), we have

d

dt
Jw(X, Y ; t) = −γ

2

[
−tλ2

F (t) + (γ + 1)f(t)
∫∞

t xλ2
F (x)F̄ γ+1(x)dx

F̄ γ+2(t)

]
(4.9)

= −γ

2

−tλ2
F (t) + (γ + 1)λF (t)

∫ ∞

t
xλ2

F (x)
(

F̄ (x)
F̄ (t)

)γ+1

dx


= γ

2 tλ2
F (t) + λF (t)Jw(X, Y ; t) + γλF (t)Jw(X, Y ; t)

= λF (t)
[

tγλF (t)
2 + (γ + 1)Jw(X, Y ; t)

]
.

From Equation (4.8) we given

λF1(t)
(

γtλF1(t)
2 + (γ + 1)Jw(X1, Y1; t)

)
= λF2(t)

(
γtλF2(t)

2 + (γ + 1)Jw(X2, Y2; t)
)

.(4.10)

Now to prove that Equation (4.8), under the assumption of PHR model in Equation (4.1),
implies F̄1(t) = F̄2(t), it is sufficient to prove that

λF1(t) = λF2(t), ∀t > 0. (4.11)
In the sequel, define a set Ω = {t : t ≥ 0, and λF1(t) 6= λF2(t)} and suppose the set Ω is
not empty. Thus for some t0 ∈ Ω, λF1(t0) 6= λF2(t0). Without loss of generality assume
that λF1(t0) > λF2(t0) and hence Equation (4.10) holds, when either

γtλF1(t)
2 + (γ + 1)Jw(X1, Y1; t0) <

γtλF2(t)
2 + (γ + 1)Jw(X2, Y2; t0) (4.12)

or
γtλF1(t)

2 + (γ + 1)Jw(X1, Y1; t0) = γtλF2(t)
2 + (γ + 1)Jw(X2, Y2; t0) = 0. (4.13)

Let inequality (4.12) holds, then using Equation (4.8), inequality (4.12) reduces to λF1(t0) <
λF2(t0). If equality (4.13) holds, then using Equation (4.8), it reduces to λF1(t0) = λF2(t0).
Combining these two results, we get λF1(t0) ≤ λF1(t0). This contradicts our assumption
and therefore set Ω is empty and this concludes the proof. �

According to Equation (3.4), the measure of inaccuracy WRJI has ordinary upper bound
0. We will establish a lower bound.

Remark 4.3. Let X and Y be two nonnegative random variables satisfying the PHR
model. If M = f(m) ≤ ∞, where m = sup{x : f(x) ≤ M} is the mode of X, then

a1M2 ≤ Jw(X, Y ; t) ≤ 0, (4.14)
where a1 = − γ

2F̄ γ+1(t)
∫∞

t xF̄ γ−1(x)dx.

Similarly, according to Equation (3.2), we have
a2M2 ≤ Jw(X, Y ) ≤ 0, (4.15)

where a2 = −γ
2
∫∞

0 xF̄ γ−1(x)dx.

Proposition 4.4. Let X and Y be two nonnegative continuous random variables satis-
fying the PHR model. The maxima of weighted dynamic residual inaccuracy (WDRJI)
measurer exist when F is exponential.
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Proof.

Jw(X, Y ; t) = − γ

2F̄ γ+1(t)

∫ ∞

t
xf2(x)F̄ γ−1(x)dx

= γ

2F̄ γ+1(t)

∫ ∞

t
xf2(x)

[
1 − 1 + F̄ γ−1(x)

]
dx

= γ

2F̄ γ−1(t)
Jw(X, t) + γ

2F̄ γ+1(t)

∫ ∞

t
xf2(x)

[
1 − F̄ γ−1(t)

]
dx. (4.16)

The maxima of Jw(X; t) exist, when f(x) = θexp{−xθ} and max{Jw(X; t)} = −1
4

[
θt + 1

2

]
.

Thus, from Equation (4.16) the maxima of Jw(X, Y ; t) under PHR model also exists only
when f(x) = θexp{−xθ}, and max{Jw(X, Y ; t)} = − γ

2(γ+1)

[
θt + 1

γ+1

]
. �

In the following, we express WDRJI in terms of the mean residual lifetime (MRL). Let
X be a nonnegative continuous random variable with survival function F̄ , such that E(X)
is finite. Then MRL of X is defined in Equation (4.17) as

m(t) =
∫ ∞

t

F̄ (x)
F̄ (t)

dx, t ≥ 0. (4.17)

The MRL function is of interest in many fields such as survival analysis, actuarial studies,
economics, reliability, and so on.

Remark 4.5. Let X and Y be two non-negative random variables that satisfy the PHR
model. Then, we have

Jw(X, Y ; t) = −γ

2

∫ ∞

t
c∗xm(x)−2dx, (4.18)

where c∗ =
[
1 + m

′(x)
]2 ( F̄ (x)

F̄ (t)

)γ+1
.

Example 4.6. Let X and Y follow exponential and Lindley distributions, respectively,
with SFs given by

F̄ (t) = e−θt; f(t) = θe−θt, θ > 0, t ≥ 0,

Ḡ(t) = (1 + λ

λ + 1 t)e−λt; f(t) = λ2

λ + 1(1 + t)e−λt, λ > 0, t ≥ 0.

After some algebraic manipulations, we have

Jw(X, Y ; t) = −θλ2 ·
((

t2 + t
)

λ2 +
((

2t2 + 2t
)

θ + 2t + 1
)

λ +
(
t2 + t

)
θ2 + (2t + 1) θ + 2

)
2 (λ + θ)3 ((t + 1) λ + 1)

,

Jw(X, Y ) = − θλ2 · (λ + θ + 2)
2 (λ + 1) (λ3 + 3θλ2 + 3θ2λ + θ3) ,

Jw(Y ; t) = −
(
4t3 + 8t2 + 4t

)
λ3 +

(
6t2 + 8t + 2

)
λ2 + (6t + 4) λ + 3

16 ((t + 1) λ + 1)2 ,

Jw(X; t) = −2tθ + 1
8 .

Jw(X, Y ; t), Jw(Y, t) and Jw(X, t) are shown in Figure 2 for some selected values of λ and
θ. Figure 2 shows that the WRJI inaccuracy measure and the residual extropy of both X
and Y are decreasing over time t.
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Figure 2. Graph of Jw(X, Y ; t), Jw(X; t) and Jw(Y ; t)
for some selected values of λ and θ.

Example 4.7. Let a non-negative random variable X be uniformly distributed over (c, d),
such that c < d, with survival and density functions, respectively given by

F̄ (x) = d − x

d − c
, x ∈ (c, d),

and

f(x) = 1
d − c

.

If the random variables X and Y satisfy the PHR model, then the SF of the random
variable Y is

Ḡ(x) = F̄ γ(x) =
[

d − x

d − c

]γ

, x ∈ (c, d), γ ∈ (0, ∞).

Substituting these in Equation (3.2) and simplifying, we obtain WRJI measure as

Jw(X, Y ) = − γ

2(d − c)γ+1

∫ d

c
x(d − x)γ−1dx

= −(d − c)−δ−1 (cδ + d) eln(d−c) δ

2 (δ + 1)

= − (cδ + d)δ
2(d − c)δ(δ + 1) .

In the sequel, we characterize the uniform distribution in terms of the WRJI under the
assumption that X and Y satisfy the PHR model. Differentiating of Equation (3.4) with
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respect to t and using Equation (4.1), we obtain
d

dt
Jw(X, Y ; t) = γt

2 λ2
F (t) + (γ + 1)λF (t)Jw(X, Y ; t). (4.19)

This gives
d

dt
Jw(X, Y ; t) − γ

2 tλ2
F (t) − (γ + 1)λF (t)Jw(X, Y ; t) = 0.

Hence for a fixed t > 0, λF (t) is a solution of gw(x) = 0, where

gw(x) = d

dt
Jw(X, Y ; t) − γ

2 x2t − (γ + 1)xJw(X, Y ; t). (4.20)

Differentiating both side of Equation (4.20) with respect to x, we get
d

dx
gw(x) = −γtx − (γ + 1) Jw(X, Y ; t). (4.21)

Thus, d
dxgw(x) = 0 gives,

x = −γ + 1
γt

Jw(X, Y ; t) = x0. (4.22)

In the following, we give a theorem which characterizes uniform distribution in terms of
WRJI.

Theorem 4.8. Suppose non-negative continuous random variables X and Y satisfy the
PHR model in Equation (4.1). Then random variable X over (c, d) such that c < d has
uniform distribution if and only if

Jw(X, Y ; t) = γt + d

2 (γ + 1) (t − d) . (4.23)

Proof. The only if part of the theorem is straightforward since, in the case of a uniform
distribution of the random variable X over (c, d)

f(x) = 1
d − c

, F̄ (x) = d − x

d − c
.

Hence, under PHR model, G(x) =
(

d−x
d−c

)γ
which gives g(x) = γ

(d−c)γ (d − x)γ−1. Substi-
tuting these in Equation (3.4) and simplifying, we get

Jw(X, Y ; t) = γt + d

2 (γ + 1) (t − d) . (4.24)

To prove the if part, let Equation (4.20) be valid. Then from Equation (4.23), we have
gw(0) = d

dtJ
w(X, Y ; t) < 0. Also we can show that gw(x) is a concave function with

maximum occurring at x = x0. Thus, gw(x) = 0 has a unique solution if gw(x0) = 0. We
have x0 = −

(
γ+1

γ

)
Jw(X,Y ;t)

t . Using Equation (4.24), we get x0 = (d − t)−1 , t < d and

gw(x) = d

dt
Jw(X, Y ; t) − γ

2 tx2 − (γ + 1)xJw(X, Y ; t) = 0. (4.25)

Thus, gw(x) = 0 has the unique solution given by x = x0. But λF (t) is a solution to
Equation (4.20). Hence λF (t) = x0 = 1/(d − t), t < d is the unique solution to gw(x) = 0.
So, the distribution is uniform. To illustrate the characterization results obtained above,
we consider the following example.

Example 4.9. Let random variables X1, X2, . . . , Xk have an exponential distribution with
PDF f(x) = θ exp{−θx} and CDF F (x) = 1 − exp{−θx}, x > 0, θ > 0 representing the
lifetime of components, in a series system of components k, then the lifetime of the system
is given by Y = min(X1, X2, · · · , Xk). If G is the CDF for Y, then under the PHR model
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the CDF of Y and its PDF are given Ḡ(x) = F̄ k(x) and g(x) = kf(x)F̄ k−1(x), respectively.
From Equation (3.4) under PHR model, we given

Jw(X, Y ; t) = − kθ2

2e−tθ(k+1)

∫ ∞

t
xe−xθ(k+1)dx = −k ((k + 1) tθ + 1)

2 (k2 + 2k + 1) . (4.26)

Taking limit as k → ∞, we obtain

lim
k→∞

Jw(X, Y ; t) = − tθ

2 . (4.27)

Figure 3 shows that when k, the number of components increases in a series system,
then the magnitude of the WRJI decreases. In addition, it is observed that the WRJI
inaccuracy measure is decreasing in time t and parameter θ.
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Figure 3. Graph of Jw(X, Y ; t) for some selected values of θ and t as a function
of k.

5. Some bounds and inequalities for WRJI
In this section, the upper and lower bounds and some inequalities related to WRJI are

determined. In the sequel, we express some lower bounds for WRJI in terms of the HRF.

Corollary 5.1. Suppose X and Y are two non-negative random variables satisfying the
PHR model. Then, we have

Jw(X, Y ; t) ≥ −γ

2

∫ ∞

t
xλ2

F (x)dx. (5.1)

Proof. We knew that t < x then F (t) < F (x). This implies F̄ (x)/F̄ (t) < 1. Thus,
[F̄ (x)/F̄ (t)]γ+1 < F̄ (x)/F̄ (t). After some calculations and using Equation (4.3), the proof
is complete. �

Remark 5.2. Suppose X and Y are two nonnegative random variables satisfying the
PHRM. Then, we given

Jw(X, Y ; t) ≥ −γ

2

∫ ∞

t
x
[
− log F̄ (x)

]2
dx. (5.2)
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Proposition 5.3. Let X and Y be two nonnegative random variables. Then, we have

Jw(X, Y ; t) ≥
[
F̄ (t)Ḡ(t)

]
Jw(X, Y ). (5.3)

In the following, we consider another example where F (x) and G(x) do not satisfy the
PHR model.

Example 5.4. Suppose that X and Y are two non-negative random variables having
distribution functions, respectively.

FX(x) =


x2

2 , 0 ≤ x < 1
x2+2

6 , 1 ≤ x < 2
1 , x ≥ 2 ,

and

GY (x) =


x2+x

4 , 0 ≤ x < 1
x
2 , 1 ≤ x < 2
1 , x ≥ 2 ,

The WDRJI and WRJI measures are given by

Jw(X, Y ; t) =


− 4 − 4(4t3 − 3t2)

3(2 − t2)(4 − t2 − t) − 3
2(4 − t2)(2 − t) , 0 ≤ t < 1

− 4 − t2

2(4 − t2)(2 − t) , 1 ≤ t < 2

0 , t ≥ 2 ,

and

Jw(X, Y ) =


−17

48 , 0 ≤ x < 1
−1

4 , 1 ≤ x < 2
0 , x ≥ 2 .

Figure 4 provides the graphs of Jw(X, Y ; t) as a function of t. Notice that Jw(X, Y ; t) is
a decreasing and continuous function in terms of t. 2
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Figure 4. Graph of Jw(X, Y ; t) in Example 5.4.

In the sequel, we observe the following relation between three inaccuracy measures
considered in this paper.
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Remark 5.5. Let X and Y be two non-negative continuous random variables with PDFs
respectively f(x) and g(x). Suppose F (x) and G(x) are their CDFs, respectively. The
relation between the three inaccuracy measures given by

Jw(X, Y ) = F (t)G(t)J̄w(X, Y ; t) + F̄ (t)Ḡ(t)J̄w(X, Y ; t). (5.4)

Proof. From Equation (3.2), we have

Jw(X, Y ) = −1
2

∫ t

0
xf(x)g(x)dx − 1

2

∫ ∞

t
xf(x)g(x)dx

= −1
2F (t)G(t)

∫ t

0
x

f(x)g(x)
F (t)G(t)dx − 1

2 F̄ (t)Ḡ(t)
∫ ∞

t
x

f(x)g(x)
F̄ (t)Ḡ(t)

dx

= F (t)G(t)J̄w(X, Y, t) + F̄ (t)Ḡ(t)Jw(X, Y, t),
where J̄w(X, Y, t) is weighted dynamic past inaccuracy measure.

In the next remarks, the relationship between Jw(X, Y ; t) and Jw(X, Y ) is presented.

Remark 5.6. Let X and Y be two nonnegative random variables satisfying the PHR
model. Then, we have

Jw(X, Y ; t) = c3(t)Jw(X, Y ) + c4(t), (5.5)

where c3(t) = F̄ −(γ+1)(t) and c4 = γ
2
∫ t

0 xf2(x)F̄ γ−1(x)
F̄ γ+1(t) dx.

Remark 5.7. Suppose X and Y are two nonnegative random variables satisfying the
PHR model. Then, we given

Jw(X, Y ; t) = b1(t)[Jw(X, Y ) + b2(t)], (5.6)

where b1(t) = F̄ −(γ+1)(t) and b2 = γ
2
∫ t

0 xµ2(x)F̄ γ+1dx.

In order to provide a lower bound for the WRJI measure of a random variable X, we
study the following conditional mean value (Vitality function)

V (X; t) := E(X | X > t) = 1
F̄ (t)

∫ ∞

t
xf(x)dx, (5.7)

a result which finds applications in insurance and economics. For more details, refer to
[10].

Theorem 5.8. If the hazard rate function λG(x) is decreasing in x, then

Jw(X, Y ; t) ≥ −1
2 λG(x)V (X; t).

Proof. Jw(X, Y ; t) can be rewritten as

Jw(X, Y ; t) = −1
2

∫ ∞

t
x

f(x)
F̄ (t)

λG(x)Ḡ(x)
Ḡ(t)

dx

Since Ḡ(x)
Ḡ(t) ≤ 1, for x ≥ t, and also by the assumption that λG(x) is a decreasing function,

the proof is completed. �

Example 5.9. If the true distribution function F (x) and the reference distribution func-
tion G(x) are exponentially distributed with parameters λ1 > 0 and λ2 > 0 respectively,
then the WRJI measure is derived as follows. We obtain

Jw(X, Y ; t) = −λ1λ2 · ((λ2 + λ1) t + 1)
2 (λ2 + λ1)2 . (5.8)

Note that the hazard rate function is constant for an exponential distribution, that is,
λ(t) = λ, and the conditional mean value E(X | X > t) = t + 1

λ .
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In this part, we obtain some lower and upper bounds for the measure of inaccuracy
between X and Y . First, we express an upper (a lower) bound for WRJI in terms of the
extropy.

Theorem 5.10. Let X and Y be two nonnegative random variables satisfying the PHR
model. Then, we have

(i) For γ > 1, Jw(X, Y ; t) ≥ γJw(X; t),
(ii) For 0 < γ ≤ 1, Jw(X, Y ; t) ≤ γJw(X; t).

Proof. Since t < x then F̄ (x) < F̄ (t). Also, F̄ (x)/F̄ (t) < 1. Therefore, for 0 < γ ≤ 1,
[F̄ (x)/F̄ (t)]γ−1 > 1 and for γ > 1, [F̄ (x)/F̄ (t)]γ−1 < 1. After some algebraic manipula-
tions and using Definition 4, the proof is complete. �

In the following, we express a lower bound for Jw(X, Y ; t) in terms of the weighted
extropy inaccuracy.

Remark 5.11. A lower bound for the WDRIJ between the distributions X and Y is
obtained

Jw(X, Y ; t) ≥ a(t)Jw(X, Y ), (5.9)
where a(t) = [F̄ (t)Ḡ(t)]−1.

Proof.

Jw(X, Y ; t) = −1
2

∫ ∞

t
x

f(x)
F̄ (t)

g(x)
Ḡ(t)

dx

≥ −1
2

∫ ∞

0
x

f(x)
F̄ (t)

g(x)
Ḡ(t)

dx

= [F̄ (t)Ḡ(t)]−1Jw(X, Y ).
�

In the following, we express some lower bounds for WRJI in terms of the HRF.

Corollary 5.12. Let that X and Y be two non-negative random variables satisfying the
PHR model. Then, we have

Jw(X, Y ; t) ≥ c1

∫ ∞

t
F̄ (x)µ2

F (x)dx, (5.10)

where c1 = − γ
2F̄ (t)

Proof. We know that for t < x then F (t) < F (x). This implies F̄ (x)/F̄ (t) < 1. Thus,
[F̄ (x)/F̄ (x)]γ+1 < F̄ (x)/F̄ (x). After some calculations and using Equation (4.3), the
proof is completed. �

Proposition 5.13. Let X and Y be two non-negative random variables that satisfy the
PHR model. Then, we have

Jw(X, Y ; t) ≥ −γ

2

∫ ∞

t
xµ2

F (x)dx. (5.11)

Proof. We know that 0 ≤ F̄ (x) ≤ 1 and since t < x then [F̄ (x)/F̄ (t)]γ+1 < 1. After some
algebraic manipulations and using Definition 4, the proof is completed. �

Remark 5.14. Let X and Y be two nonnegative random variables satisfying the PHR
model and decreasing PDFs such that f(0) ≤ 1. Then, we have

Jw(X, Y ; t) ≥ c2

∫ ∞

t
xF̄ γ−1(x)dx, (5.12)

where c2 = − γ
2F̄ γ+1(t) .
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Remark 5.15. Let X and Y be two non-negative continuous random variables with PDFs
f and g, respectively. Then, we have

(i) Jw(X, Y ; t) ≥ Jw(X; t),
(ii) Jw(X|Y ; t) ≤ −Jw(X; t).

Proposition 5.16. Let X and Y be two nonnegative random variables satisfying the
PHR model. Then, we have

Jw(X, Y ; t) ≥ d1

∫ ∞

t
xµF (x)f(x)dx, (5.13)

where d1 = − γ
2F̄ (t)

Proposition 5.17. Suppose X and Y are two non-negative random variables satisfying
the PHR model. We have

(i) Jw(X, Y ; t) ≥ d2
∫∞

t xµ2
F (x)dx,

(ii) Jw(X, Y ; t) ≥ d2
∫∞

t xµF (x)f(x)dx,
where d2 = − γ

2F̄ (t)

In the sequel, we express a lower bound for WRJI in terms of the MRL.

Theorem 5.18. Let X and Y be two non negative random variables satisfying the PHR
model and decreasing PDFs such that f(0) ≤ 1. For γ = 2, we given

Jw(X, Y ; t) ≥ −k1m(t), (5.14)

where k1 = F̄ −2(x).

In the following, we express an upper bound for WRJI in terms of the measure of
inaccuracy in Equation (3.2).

Proposition 5.19. Let X and Y be nonnegative continuous random variables satisfying
the PHR model. Then, we have

Jw(X, Y ; t) ≤ k2Jw(X, Y ), (5.15)

where k2 = 1
F̄ (γ+1)(t) .

6. Non-parametric estimators
We define WRJI in Equation (3.4). In this section, we consider the estimation of this

parameter. The problem of estimating f(x) is more complicated than that of F̄ (x). For
this case, a method known as kernel density estimation is used. Let (X1, X2, ..., Xn) be a
random sample with pdf f(x) and SF F̄ (x). Then, an estimator for f(x) can be given as

fn(x) = 1
nhn

n∑
i=1

K(x − Xi

hn
),

where hn is a bandwidth satisfied the condition that hn tends to 0 as n goes to infinity,
and K(x) is a kernel function satisfied the following conditions∫ ∞

−∞
|K(x)|dx < ∞,

sup
−∞<x<∞

|K(x)| < ∞,

lim
x→∞

|xK(x)| = 0.
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For further details on this concept, the reader can refer to [25, 34]. We consider two
estimators for CDF F (x). An empirical distribution function (ECDF) can be used to
estimate F̄ (x). Then, ECDF for estimating F̄ (x) can be computed as

F̄n(t) =
∑n

i=1 I(Xi > t)
n

,

where I(x) is an indicator function taking 1 for non-negative x and 0 for otherwise. As
F̄n(t) is a step function, some researchers considered a smoothed version of ECDF based on
the kernel estimation method. Let K(.) be a kernel density function. Then an estimation
for F (.) can be obtained as

F̂h(x) = 1
n

n∑
i=1

W (x − Xi

hn
), (6.1)

where hn is a bandwidth parameter and W (x) is defined as

W (x) =
∫ x

−∞
K(t)dt.

Therefore, we consider two estimators for the proposed measure WRJI as

Jw
n (X, Y ; t) = −1

2

∫ ∞

t
x

fn(x)
F̄n(t)

gn(x)
Ḡn(t)

dx, (6.2)

and
Jw

h (X, Y ; t) = −1
2

∫ ∞

t
x

fn(x)
ˆ̄Fh(t)

gn(x)
ˆ̄Gh(t)

dx. (6.3)

The choice of kernel function is not crucial for estimating f(.) and F (.), but it is the case
for bandwidth hn. In this paper, we apply the cross-validation method to find the best hn

for both f(.) and F (.). In the case of f(.), the best hn can be obtained by minimizing the
mean integrated squared error as

hf = arg min
hn

E

[∫
f2

n(x)dx − 2
n

n∑
i=1

fn,−i(Xi)
]

, (6.4)

where fn,−i(Xi) is the kernel estimation obtained by omitting Xi. Indeed, the hf in
Equation (6.4) is the optimal bandwidth for nonnormal data and as we see the cross
validation method for finding the best bandwidth is a data-driven approach. A similar
argument can be applied to find the best bandwidth when we need to estimate the CDF
F (.). In this case, hF can be obtained as

hF = arg min
hn

1
n

n∑
i=1

∫ (
I(x − Xi ≥ 0) − F̂h,−i(x)

)2
dx, (6.5)

where Fh,−i(x) is the kernel estimation of F obtained by omitting Xi. We can refer to [5],
for further details and discussions on this subject.

7. Simulation
We run a simulation with 10000 iterations to compute Jw

n (X, Y ; t) and Jw
h (X, Y ; t). We

consider some distributions such as exponential (exp(λ)) and beta (beta(α, β)) with sample
size n varies in {30, 50}, and then the bias and the mean squared error (MSE) of estimates
are provided. The Gaussian kernel function is used and the bandwidths hn are considered
via the method of cross validation as proposed in Section 6 for estimating of PDF f(.) and
CDF F (.), respectively, based on two estimators Jw

n (X, Y ; t) and Jw
h (X, Y ; t). The results

of simulation are provided in Table 1. For different values of time t given in Table 1, in the
case of exponential, we compare the proposed estimators Jw

n and Jw
h , when we consider an

exp(λ = 1) as the actual distribution and exp(λ) for λ = 2, 5, 7 as the one that assigned
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by an experimenter. Similar comparison is provided for the case of beta distribution in
Table 1. In this case, a beta(1, 1) is considered as the actual distribution.

Table 1. Bias and MSE for Jw
n (X, Y ; t) and Jw

h (X, Y ; t) for exponential and beta
distributions.

exponential λ = 2 λ = 5 λ = 7
t n Jw

n Jw
h Jw

n Jw
h Jw

n Jw
h

0.01 30 bias 0.0513 0.0404 0.0551 0.0518 0.0456 0.0432
MSE 0.0027 0.0018 0.0035 0.0027 0.0021 0.0019

50 bias 0.0490 0.0386 0.0543 0.0512 0.0452 0.0431
MSE 0.0025 0.0016 0.0030 0.0026 0.0021 0.0019

0.05 30 bias 0.0561 0.0456 0.0671 0.0637 0.0588 0.0562
MSE 0.0033 0.0023 0.0045 0.0041 0.0035 0.0032

50 bias 0.0537 0.0439 0.0665 0.0634 0.0581 0.0557
MSE 0.0030 0.0021 0.0044 0.0040 0.0034 0.0031

0.10 30 bias 0.0618 0.0512 0.0820 0.0787 0.0744 0.0716
MSE 0.0047 0.0029 0.0068 0.0062 0.0056 0.0052

50 bias 0.0586 0.0499 0.0808 0.0777 0.0739 0.0714
MSE 0.0036 0.0027 0.0065 0.0061 0.0055 0.0051

beta (α, β) = (1, 4) (α, β) = (5, 3) (α, β) = (6, 6)
t n Jw

n Jw
h Jw

n Jw
h Jw

n Jw
h

0.01 30 bias 0.0342 0.0170 0.1028 0.0510 0.0824 0.0410
MSE 0.0012 0.0004 0.0111 0.0035 0.0824 0.0023

50 bias 0.0326 0.0170 0.0963 0.0491 0.0773 0.0397
MSE 0.0011 0.0004 0.0097 0.0031 0.0063 0.0020

0.10 30 bias 0.0455 0.0244 0.1024 0.0537 0.0824 0.0447
MSE 0.0022 0.0008 0.0112 0.0040 0.0073 0.0027

50 bias 0.0426 0.0230 0.0946 0.0512 0.0771 0.0426
MSE 0.0019 0.0007 0.0095 0.0034 0.0063 0.0023

0.30 30 bias 0.0802 0.0571 0.1156 0.0831 0.0955 0.0679
MSE 0.0072 0.0039 0.0149 0.0082 0.0101 0.0055

50 bias 0.0726 0.0517 0.1054 0.0756 0.0880 0.0633
MSE 0.0058 0.0031 0.0123 0.0067 0.0084 0.0046

From Table 1, it is seen that the MSE of Jw
n (X, Y ; t) and Jw

n (X, Y ; t) decreases as sample
size n increases. In both cases exponential and beta, the MSE of the estimator Jw

h (X, Y ; t)
is less than that of Jw

n (X, Y ; t). The estimator based on the kernel method outperforms
the one based on the empirical estimation of CDF. So, in practice, we recommend using
approach based on the kernel estimations.

8. Real data
Here, we consider two real datasets to show the behavior of the estimator given in the

previous part.



Length biased weighted residual measure of inaccuracy 677

First real dataset:
The following dataset is given by [21] represented the remission times (in months) for

128 patients with bladder cancer. This dataset is as

2.09, 3.48, 6.94, 0.08, 4.87, 23.63, 8.66, 13.11, 3.52, 0.20, 2.23, 25.74, 4.98, 9.02, 13.29,
6.97, 2.26, 3.57, 0.40, 7.09, 5.06, 9.22, 13.80, 3.64, 0.50, 0.81, 2.46, 2.64, 5.09, 7.26, 9.47,
14.24, 25.82, 0.51, 2.54, 3.70, 5.17, 7.28, 9.74, 14.76, 26.31, 5.32, 2.62, 3.82, 12.07, 7.32,

14.77, 32.15, 10.06, 3.88, 5.32, 7.39, 10.34, 14.83, 34.26, 0.90, 2.69, 4.18, 5.34, 7.59, 10.66,
17.14, 36.66, 4.26, 15.96, 4.23, 1.05, 2.69, 8.65, 5.41, 10.75, 16.62, 7.62, 1.19, 2.75, 43.01,
11.25, 7.63, 5.41, 17.12, 1.26, 46.12, 2.83, 5.49, 4.33, 7.66, 3.36, 21.73, 22.69, 6.93, 4.50,
12.63, 2.07, 8.37, 79.05, 2.87, 5.62, 1.35, 11.64, 17.36, 7.87, 3.02, 4.34, 1.40, 7.93, 6.25,
5.71, 6.76, 12.02, 11.79, 18.10, 1.46, 2.02, 3.31, 4.51, 4.40, 5.85, 8.26, 6.54, 8.53, 12.03,

11.98, 19.13, 1.76, 20.28, 2.02, 3.36, 3.25.

For this dataset, we consider three candidate distributions. One of them is the log-logistic
distribution with parameters α and λ which has the following PDF and CDF in Equations
(8.1) and (8.2) respectively, as

gLL(x; α, λ) = αλ−αxα−1
(

1 + (x

λ
)α
)−2

, (8.1)

and
GLL(x; α, λ) = 1 −

(
1 + (x

λ
)α
)−1

. (8.2)

We denote the log-logistic distribution by LL(α, λ). Recently, two generalization of the LL
distribution were introduced. The alpha power transformed log-logistic (APLL(α, λ, a))
was introduced by [1] which has the following CDF in Equation (8.3) as

FAP LL(x; α, λ, a) = aGLL(x;α,λ) − 1
a − 1 . (8.3)

Also, Alfaer et al. [2] introduced an extended version of log-logistic distribution (ExLL(α, λ, a))
which has the following CDF in Equation (8.4) as

FExLL(x; α, λ, a) = 1 −
( 1 − GLL(x; α, λ)

1 − (1 − a)GLL(x; α, λ)

)a

. (8.4)

We fit the three above distributions to these data. The MLE of the parameters of the
above distributions (LL, APLL and ExLL) are given in Table 2. Also the Kolmogorov-

Table 2. MLE of parameters of proposed distributions.

parameter LL APLL ExLL
α̂ 1.7251 1.7118 1.4276
λ̂ 6.0898 4.9174 20.0321
â – 2.0976 2.0701

Smirnov (K-S) statistics as well as its p-value of the above distributions are given in Table
3. From Table 3, all of the distributions can be fitted to this dataset at the type I error

Table 3. K-S as well as p-value of proposed distributions.

statistic LL APLL ExLL
K-S 0.0399 0.0400 0.0351

p-value 0.9870 0.9866 0.9975
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rate 0.05. In the following, we examine two situations. In the first situation, we consider
the LL as the actual distribution of the data and APLL as a distribution assigned by the
experimenter. In the second situation, we consider the LL as the actual distribution of
the data and ExLL as a distribution assigned by the experimenter. For two situations, we
compute Jw

n (LL, F̂ ; t), Jw
h (LL, F̂ ; t) and Jw(LL, F0; t), where F0(.) can be either APLL or

ExLL distribution. The values of two estimators Jw
n and Jw

h and true value Jw(LL, F0; t)
are depicted in Figure 5 as a function of t.

From Figure 5, it is seen that both Jw
n and Jw

h well estimate the value of Jw in both
plots. Indeed, in both cases, Jw

h fits true value Jw much better than Jw
n . So, we can use

the estimator Jw
h for our practical situations. Also, as expected, the values of Jw

n and Jw
h

as well as Jw are decreasing function of t in our two situations.
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Figure 5. The plot of Jw
n , Jw

h and Jw: left plot is LL as an actual and APLL as
a distribution assigned by the experimenter and right plot is LL as an actual and
ExLL as a distribution assigned by the experimenter.

Also, in the following Figure 6, we plot the values of Jw(LL, F0; t) for both model
APLL and ExLL as well as Jw

h (LL, Fh; t) when LL is considered as the actual distribution
of the data. Figure 6 shows that when APLL distribution is assigned by the experimenter
the obtained inaccuracy measure is lower than the case when the experimenter uses the
ExLL model for these data. From Figure 6, we see that the estimated Jw

h is closer to
the Jw(LL, APLL; t) than the Jw(LL, ExLL; t) when we consider LL as the actual distri-
bution for these data. Therefore, APLL model provides a better approximation to these
data when LL is the actual distribution in the sense that the SF F̄AP LL(x) is closer to the
actual model ḠLL(x) than SF F̄ExLL(x).

Second real dataset:
The following dataset is given by [4] represented the the survival times (in days) of 72

guinea pigs infected with virulent tubercle bacilli. This dataset is as

0.1, 0.33, 0.44, 0.56, 0.59, 0.59, 0.72, 0.74, 0.92, 0.93, 0.96, 1, 1, 1.02, 1.05, 1.07, 1.07,
1.08, 1.08, 1.08, 1.09, 1.12, 1.13, 1.15, 1.16, 1.2, 1.21, 1.22, 1.22, 1.24, 1.3, 1.34, 1.36,
1.39, 1.44, 1.46, 1.53, 1.59, 1.6, 1.63, 1.68, 1.71, 1.72, 1.76, 1.83, 1.95, 1.96, 1.97, 2.02,
2.13, 2.15, 2.16, 2.22, 2.3, 2.31, 2.4, 2.45, 2.51, 2.53, 2.54, 2.78, 2.93, 3.27, 3.42, 3.47,

3.61, 4.02, 4.32, 4.58, 5.55, 2.54, 0.77.

For this dataset, three candidate distributions are considered. One of them is the Weibull
distribution (WEI) with parameters λ and γ which has the following CDF in Equation
(8.5) as

GW EI(x; λ, γ) = 1 − exp−λxγ
. (8.5)
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Figure 6. The plot of Jw
h , Jw(LL, APLL; t) and Jw(LL, ExLL; t): LL model is

used as an actual and APLL and ExLL models are assigned by the experimenter.

We denote this distribution by WEI(λ, γ). The other two candidates are the gamma
exponentiated-exponential (GEE) [33] and exponential-exponential geometric (EEG) [32]mod-
els. The GEE(λ, α, θ) has the following PDF in Equation (8.6) as

fGEE(x; λ, α, θ) = αθ

Γ(λ) exp−θx(1 − exp−θx)α−1(−αlog(1 − exp−θx))λ−1. (8.6)

Also, the EEG(α, θ, p) has the following PDF in Equation (8.7) as

fEEG(x; α, θ, p) = αθ(1 − p) exp−θx(1 − exp−θx)α−1

(1 − p + p(1 − exp−θx)α)2 . (8.7)

We fit the three above distributions to these data. The MLE of the parameters of the
above distributions (WEI, GEE and EEG) are given in Table 4. Also the Kolmogorov-

Table 4. MLE of the parameters of the proposed distributions.

parameter WEI GEE EEG
γ̂ 1.7962 – –
λ̂ 0.2934 1.2899 –
α̂ – 3.4676 3.5144
θ̂ – 0.9118 1.1081
p̂ – – 0.0343

Smirnov (K-S) statistics as well as its p-value of the above distributions are given in Table
5. From Table 5, all of the distributions can be fitted to this dataset at the type I error
rate 0.05. As in the first real dataset, we examine two situations. In the first situation,
we consider the GEE as the actual distribution of the data and WEI as a distribution
assigned by the experimenter. In the second situation, we consider the GEE as the actual
distribution of the data and EEG as a distribution assigned by the experimenter. For two
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Table 5. K-S as well as p-value of the proposed distributions.

statistic WEI GEE EEG
K-S 0.0982 0.0870 0.0883

p-value 0.4902 0.6458 0.6284

situations, we compute Jw
n (GEE, F̂ ; t), Jw

h (GEE, F̂ ; t) and Jw(GEE, F0; t), where F0(.)
can be either WEI or EEG distribution. The values of the two estimators Jw

n and Jw
h and

true value Jw(GEE, F0; t) are depicted in Figure 7 as a function of t.
From Figure 7, it is seen that Jw

h fits true value Jw much better than Jw
n . So, we can

use the estimator Jw
h for our practical situations.
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Figure 7. The plot of Jw
n , Jw

h and Jw: left plot is GEE as an actual and WEI
as a distribution assigned by the experimenter and right plot is GEE as an actual
and EEG as a distribution assigned by the experimenter.

Similar to the first real dataset, in the following Figure 8, we plot the values of Jw(GEE, F0; t)
for both model WEI and EEG as well as Jw

h (GEE, Fh; t) when GEE is considered as the
actual distribution of the data. Figure 8 shows that when WEI model is assigned by the
experimenter the obtained inaccuracy measure is lower than the case when the experi-
menter uses EEG model for these data. From Figure 8, we see that the estimated Jw

h is
closer to the Jw(GEE, WEI; t) than the Jw(GEE, EGG; t) when we consider GEE as the
actual distribution for these data.

As we mentioned previously, the potential impact of WRJI extends to aid in model
selection. So, organizations can make better decisions to select the optimized model in
dynamic situations.

9. Discussion and conclusion
The WRJI measure is a broadened concept of extropy that serves as a powerful tool

for measuring errors in experimental results. It combines an uncertainty measure and a
discrimination measure between two distributions to quantify inaccuracies in statements
about probabilities of events in an experiment. This measure is particularly useful in sta-
tistical inference, estimation, and reliability studies for modeling lifetime data. In lifetime
studies, where data is often truncated, WRJI extends information-theoretic concepts to
ordered situations and record values, enabling better characterization of probability dis-
tributions and identification of the most appropriate model for lifetime data. Traditional
methods for finding the best model, such as goodness-of-fit procedures and probability
plots, may fall short, making the WRJI measure a valuable tool in this context.
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Figure 8. The plot of Jw
h , Jw(GEE, WEI; t) and Jw(GEE, EEG; t): GEE

model is used as an actual and WEI and EEG models are assigned by the ex-
perimenter.

In summary, the proposed WRJI measure significantly improves:

Quantitative Measurement: WRJI provides a numerical value that quantifies the
degree of inaccuracy between two variables X and Y . This allows for a more precise
and objective assessment of the relationship between the variables, enabling researchers
to make data-driven decisions.

Weighted Approach: By incorporating weighted factors, WRJI accounts for the im-
portance or significance of each observation in the calculation of inaccuracy. This ensures
that outliers or extreme values are appropriately weighted, leading to a more accurate
representation of the relationship between X and Y .

Comparative Analysis: WRJI facilitates the comparison of inaccuracy between X
and Y with other variables or datasets. This comparative analysis helps identify which
variables have stronger or weaker relationships, informing decision-making processes and
model selection.

Interpret-ability: The numerical value provided by WRJI is easily interpretable, mak-
ing it accessible to researchers, policymakers, and stakeholders. This clarity in communi-
cation enhances the understanding of inaccuracy and supports informed decision-making.

Diagnostic Tool: WRJI serves as a diagnostic tool to identify potential issues or dis-
crepancies in the relationship between X and Y . By measuring inaccuracy, researchers
can pinpoint areas that require further investigation or refinement, improving the accuracy
and reliability of their analysis.
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Practical Applications: The introduction of WRJI in reliability modeling and decision-
making has significant practical implications across various industries such as transporta-
tion, energy, finance, healthcare, and so on.
Given the importance of the defined measure above, in this paper, by considering the con-
cept of residual extropy inaccuracy measure, its weighted version was proposed. Under
the assumption that the reference distribution G and true distribution F satisfy the PHR
model, it has been shown that the proposed measure determines the lifetime distribu-
tion uniquely. Moreover, upper and lower bounds and some inequalities concerning WRJI
are determined. Two non-parametric estimators based on the kernel density estimation
method for the proposed measures were also obtained. The performance of the estimators
were also discussed using some simulation studies. A real data set was used for illustrating
our estimators.
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