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Abstract Ventricular Septal Defect (VSD) disease is the most prevalent type of congenital heart disease. VSD is a
hole between the left and right ventricles of the heart structure. VSD disease accounts for approximately
one-fifth of all congenital heart disease types. Therefore, accurate disease diagnosis is paramount in
determining the most appropriate treatment methods. This study aims to classify VSD disease using the
deep learning algorithms VGG16, ResNET50, and Inceptionv3 on Computed Tomography (CT) images and
compare the pre-trained algorithms used. One of the reasons why imaging methods such as echocardiog-
raphy are generally used to detect congenital heart diseases is that there are almost no CT datasets related
to this disease. The dataset used in this study is the ImageCHD dataset, which comprises 3D CT scans
encompassing 16 distinct types of congenital heart defects. Hyperparameter optimization was performed
using the grid search method to enhance the model performance, identifying the VGG16 model as the most
effective. The model demonstrated a very high classification accuracy of 99.99% in the training dataset
and 99.94% in the test dataset. Gradient-weighted Class Activation Mapping was employed to enhance
model explainability, providing visualizations of the regions most critical for the classification, thereby
enabling medical professionals to validate AI-driven predictions. An optimized model that successfully
classifies VSD using 3D CT image data has been introduced to the literature for the first time. Therefore,
this study assumes greater significance in the existing literature and sets a benchmark for future studies.
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Introduction
With the developing technology in the world, significant developments and innovations are also expe8

rienced in the health field. Mainly since the beginning of the 2010s, artificial intelligence technology has
been aimed to be used in different fields, following the significant developments and successful results
obtained in the field of artificial intelligence, and with the innovations brought by this technology, much
more advanced systems have started to be used compared to the existing system. Health is one of these
fields, but considering the importance of human health and treatment processes, it has become one of the
leading fields. Especially regarding the correct diagnosis of the disease and applying the proper treatment
to the patient, the correct detection of some diseases is a process that challenges healthcare professionals.
When human health is taken into consideration, a wrong diagnosis or a wrong decision is of such severe
importance that it can even lead to the death of a person.

Ventricular Septal Defect (VSD) disease is the most prevalent type of congenital heart disease. VSD is a
hole between the left and right ventricles of the heart structure. VSD disease accounts for approximately
one8fifth of all congenital heart disease types. Therefore, accurate disease diagnosis is paramount in deter8
mining the most appropriate treatment methods. This study aims to classify VSD disease using the deep
learning algorithms VGG16, ResNET50, and Inceptionv3 on Computed Tomography (CT) images and compare
the pre8trained algorithms used. One of the reasons why imaging methods such as echocardiography are
generally used to detect congenital heart diseases is that there are almost no CT datasets related to this
disease. The dataset used in this study is the ImageCHD dataset, which comprises 3D CT scans encompassing
16 distinct types of congenital heart defects. Hyperparameter optimization was performed using the grid
search method to enhance the model performance, identifying the VGG16 model as the most effective. The
model demonstrated an outstanding classification accuracy of 99.99% in the training dataset and 99.94%
in the test dataset. Gradient8weighted Class Activation Mapping was employed to enhance model explain8
ability, providing visualizations of the regions most critical for the classification, thereby enabling medical
professionals to validate AI8driven predictions. An optimized model that successfully classifies VSD using 3D
CT image data has been introduced to the literature for the first time. Therefore, this study assumes greater
significance in the existing literature and sets a benchmark for future studies.

Congenital heart disease is a type of congenital heart disease seen in 8 out of every 1000 babies
worldwide (Bernier et al., 2010). Heart diseases, one of the most common types of congenital diseases, can
cause serious health problems and deaths (Hallıoğlu et al., 2018). Ventricular Septal Defect (VSD) and Atrial
Septal Defect (ASD) are the two most common types of congenital heart defects and account for the majority
of the most common congenital heart diseases (Geva et al., 2014). It has been a challenging and complex
process for doctors to detect and accurately differentiate these diseases, which show severe differences in
the heart structure. Specialized radiologists can detect the types of congenital heart diseases by observing
the structural changes in some parts of the anatomical structure of the heart (Left Ventricle, Right Ventricle,
Left Atrium, Right Atrium, Aorta). There are techniques generally used to diagnose heart diseases. The
echocardiography (EC) imaging technique plays an important role. It is widely used, especially in some cases,
for diagnosing whether the heart performs its routine functions properly or for diagnosing structural heart
diseases (Tay Lik Wui et al., 2011). Thanks to EC, the work of the heart can be monitored live. Thanks to this
technique, which transmits sound waves to the heart, the heart valves, vessels, and muscle movements can
be monitored, and heart murmurs and structural status can be observed from different angles. It has been
observed that some defects can be missed when only the listening method is used to diagnose congenital
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heart diseases, and it is emphasized that patients should also be evaluated using the EC imaging method
(Yıldız et al., 2015). However, even though EC and similar imaging modalities are more commonly used in
diagnosing heart diseases, Computed Tomography (CT) imaging in diagnosing congenital heart diseases has
advantages over commonly used modalities such as EC. It can provide more successful results (Dillman &
Hernandez, 2009).

Especially since 2010, the rapid rise of artificial intelligence applications worldwide has begun to impact
the medical field. When the literature is examined, Sun et al. (2012) used heart sounds to classify VSD
disease using a support vector machines (SVM) algorithm and achieved a 98.4% success rate in detecting
the heart with VSD disease. Hassani et al. (2017) developed an artificial neural network (ANN) based method
to classify heart sounds using discrete wavelet transform to detect the size of VSDs and obtained 96.6%
accuracy for the classification of VSDs with small structural size and 93.3% accuracy for VSDs with large
structural size. Aziz et al. (2020) used signal8processing techniques to classify ASD and VSD, two types of
congenital heart diseases, and achieved an accuracy of 95.24%. They used the SVM algorithm to create the
classification algorithm. Wang et al. (2020) obtained sensitivity scores of 96.0% and specificity scores of
96.7% using the automatic murmur recognition system (TAP8CRNN) model in their study using a dataset
containing two classes of heart murmurs, normal and VSD. In the heart’s second aortic and tricuspid regions,
they observed 100% classification success of heart murmurs. They concluded that the automatic murmur
recognition system has a promising potential for detecting VSD and other structural heart diseases. Sapitri
et al. (2021) reported that they achieved 99.79% pixel accuracy and 97.82% overall accuracy by applying the
semantic segmentation method with U8NET architecture on 2D ultrasound videos in their disease detection
studies, including three disease classes: VSD, ASD, and AVSD, which is a combination of these two diseases
. Yang et al. (2023) compared the classification success of VSD disease using several different models. They
reported that the YOLOV5 model was the most successful in classifying VSD disease, with a success rate of
92.59%. In a study by Koundinya et al. (2023), they trained three different congenital heart diseases, including
VSD disease, using the CNN model they created by converting heart sounds into spectrograms and achieving
97.12% classification success. Abbas et al. (2024) compared machine learning and deep learning techniques
to detect heart diseases by analyzing noisy audio signals and found that the multilayer perceptron model
performed the best with an accuracy of 95.65%. Tüzün and Özdemir (2023) demonstrated the efficacy of
deep learning models in classifying brain tumors using MRI images, making a significant contribution to
accelerating early diagnosis processes and minimizing human errors. This study particularly emphasizes
that the EfficientNet8b0 model achieved the highest performance with an accuracy rate of 99.54%. Arslan
and Ozdemir (2024) published the DEMxNET deep learning model, which demonstrates success in classi8
fying the stages of Alzheimer’s disease and possesses the potential to enhance the reliability of AI8based
diagnostic tools in clinical settings through the explainability provided by the LIME method. Dörterler et al.
(2024) presented an innovative approach to improve the accuracy of medical datasets by hybridizing meta8
heuristic algorithms with K8Means.

Xu et al. (2021) published the world's first 38dimensional (3D) ImageCHD dataset of CT images of congenital
heart diseases. They achieved an overall classification success of 82% in the classification of 16 different
congenital heart diseases, including VSD disease, in their congenital heart disease classification study with
this dataset. The same study emphasizes that theirs is the first disease classification study developed using
CT images on this subject. Their success rates are very suitable for improvement, as they emphasize the
classification success they have achieved. When the literature is examined, it is stated that there are very few
studies on the classification of congenital heart diseases and the importance of the ImageCHD dataset in
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terms of its contribution to new studies in this field. In their study, Dillman and Hernandez (2009) stated that
although EC and Cardiac Angiography are the most common methods used in the diagnosis of congenital
heart diseases, CT and Magnetic Resonance methods are also essential imaging techniques that can be
used in the detection of this disease and that CT imaging method is more advantageous to be used in the
diagnosis of congenital heart diseases when evaluated in terms of structural examination of the heart due
to some technical limitations of EC and other imaging methods, especially when compared with CT scans.
When the EC method is evaluated from this point of view, the fact that this dataset is the world’s first
dataset containing CT images of 16 different types of congenital heart diseases reveals the importance of
the dataset. In particular, the medical images that make up this dataset are in 3D, providing the opportunity
to examine the heart's structure in more detail and to examine the details of the physical structure of the
heart significantly better in diagnosing congenital heart diseases.

VSD has become the most common type of congenital heart disease in newborns as a structural defect
due to the formation of a hole between the right and left ventricle of the heart. While the EC method is
widely known to be successful in diagnosing VSD disease by analyzing heart murmurs, the ImageCHD dataset
used in this study plays a significant role in better structural understanding and detection of VSD disease
with its 44 3D 512x512 resolution medical images in the 3D CT dataset. This can be better understood by
examining other studies in which VSD disease has been detected using medical images.

Due to the wide variety of congenital heart diseases, the automatic diagnosis and classification of these
diseases has been a field of study that has been felt lacking in the literature due to the scarcity of medical
image data sets related to this subject and the difficulty of accessing these data. This study is one of the
few studies using image datasets to detect and classify VSD disease on 3D medical images. This study
categorizes 3D CT scans in the ImageCHD database into "VSD" and "Non8VSD". A grid search method was used
to conduct hyperparameter optimization to ascertain the influence of the hyperparameters on the model
efficacy. This approach facilitated the identification of the optimal configuration. The original images with a
size of 512x512 were separated into 2D slices and resized to 128x128 after separation. The input layers of the
VGG16, ResNET50, and InceptionV3 pre8trained deep learning models were modified to have 128x128x3 input
layers and two classes in the output layers. In this study, Gradient8weighted Class Activation Mapping (Grad8
CAM) was also employed to provide a better visual representation of the classified medical images and
to highlight the regions that play a more significant role in the classification process. Grad8CAM improves
the explainability of artificial intelligence models in healthcare, providing reliability and transparency. The
novelty and contribution of the study are as follows:

• An optimized model that successfully classifies VSD using 3D CT image data has been introduced to the
literature for the first time.

• The optimized VGG16 model achieved a high 99.94% classification accuracy on the test set by hyperpa8
rameter optimization and evaluating state8of8the8art pre8trained deep learning models.

• This research sets a benchmark for future studies by demonstrating how artificial intelligence models
can support and improve the diagnostic accuracy in congenital heart disease, specifically in VSD.

• Integrating the Grad8CAM method enhances the interpretability of the results, allowing medical profes8
sionals to validate AI8driven predictions by visualizing the model's focus areas and pinpointing regions
critical to diagnosis.
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This article is organized as follows: In the materials and methods section, the ImageCHD dataset is
explained, and the pre8processing and CNN architectures are given. The experimental studies of VGG16,
ResNET50, and InceptionV3 are presented in Section 3. Finally, Section 4 presents the conclusions.

Materials And Methods
This study aimed to classify 3D CT scans obtained from the ImageCHD database into “VSDs” and “Non8

VSDs.” The original 512x512 images were sliced into 2D slices of 128x128 pixels during the image resizing. The
deep learning models VGG16, ResNET50, and InceptionV3 were modified to accept 128 x 128 x 3 inputs and
predict two output classes.

ImageCHD dataset

The data used in this study were obtained from the ImageCHD dataset. The ImageCHD dataset, which
contains 110 3D CT images, is the first medical image dataset in the field to be published to detect congenital
heart disease (Xu et al., 2021). This dataset contains 16 different congenital heart disease data, including 44
congenital heart diseases with VSDs and 110 congenital heart diseases with 512x512x38dimensional medical
images. In addition, some of the 3D CT scan images in the ImageCHD dataset contained more than one
congenital heart disease. In this case, it is essential to note that any CT image in the dataset may contain
more than one disease.

Table 1 shows the number of medical images of VSD and other diseases in the dataset. Some diseases
can be a combination of two or more different diseases.

Table 1
Distribution of diseases in the ImageCHD dataset

ASD AVSD VSD TOF PDA TGA CA PuA
Common Congenital Heart Diseases

32 18 44 12 14 5 6 16

PAS DORV CAT DAA APVC AAH IAA DSVC
Rare Congenital Heart Diseases

3 8 4 5 6 3 3 8

Normal 6

Because some diseases are more common than other types of diseases, the table is divided into
"Common Diseases" and "Rare Diseases". In addition to 16 different disease types, the dataset includes six
disease8free healthy heart CT scans.

Figure 1 shows the structural shapes of one of the 3D CT images in the ImageCHD dataset in different axes.

Figure 1
Illustration of the width (X), height (Y), and depth (Z) layers of a 3D image
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Since the CT image is 3D, it is seen that training a 3D CNN model with much more detailed data is a more
precise and accurate classification approach than a 2D classification model in terms of revealing structural
defects in the classification of this disease. In addition, given that each 3D image is of the float64 type, each
image has a higher file size and much more detail.

Transforming 3D images into 2D slices

Different methods exist for training a convolutional neural network (CNN) to classify 3D images. In this
study, 3D medical images were reduced to 2 dimensions before training the CNN model. As a result, new 28
dimensional (2D) images are obtained from the segmented 3D image from the number of slices that make
up the 3D image.

Figure 2 shows how one of the 3D tomography images in the dataset looks when converted to 2D.

Figure 2
Representing a 3D image as 2D slices

This image, which has a size of (275x512x512), has become 275 (512x512) medical images after being reduced
to 2 dimensions. Each of the 110 3D images was separated into two dimensions in this way, and then all the
2D images were resized to (128x128x3). In this way, it was suitable for pre8trained 2D CNN models for model
training. Figure 3 shows the specific layers of a 3D image in the ImageCHD dataset in 2D.

Figure 3
Some 2D slices of a 3D image

L denotes the number of layers on the 3D image in Figure 3. There are ten 2D CT images between each
image. As the layers change, the structural differences in the image can be seen more clearly.
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Convolutional neural networks

This neural network model, first introduced by Yann LeCun et al. in 1998, has seen a rapid increase in
usage in recent years and has become the most popular neural network model used in image classification
problems. It can give outstanding results, especially in classification problems. Today, CNN models are
used in many fields, and different neural network models can be created in a specific field by developing
the model according to the field needed. It is frequently used in image classification, natural language
processing, style transfer, and text mining. Figure 4 shows the general structure of the CNN model.

Figure 4
The general structure of a CNN

The CNN structure, which is highly preferred in the medical field due to its successful results in disease
classification in recent years, is an improved version of ANN. The CNN model, which works on image data,
attempts to obtain the attributes of the object to be detected in the image by processing the images in layers
consisting of some basic pre8processing before entering the ANN. Before these attributes enter the ANN,
the image is reduced to a much smaller size than its original size, and the extracted attributes are reduced
to a single dimension. This process is called flattening. After the flattening process, the data becomes one8
dimensional and thus enters the ANN (Yamashita et al., 2018). The CNN model has become increasingly
popular, especially after its highly successful results in high8impact image classification competitions
like ImageNET (Russakovsky et al., 2014). Using the CNN model, binary or multiclass classification can be
performed on the image.

Unlike the structure of the regular ANN model, the CNN model includes some essential layers, such as
convolution and pooling. In this structure, pre8processing is performed to reduce the data size before the
data enters the neural network and is trained. After obtaining the features that separate the attributes
specific to these data instead of the entire data, they are included in the neural network.

ImageNet data set

When the ImageNet dataset was first published in 2010 under ImageNet LSVRC82010, it contained 1.2
million high8resolution images in 1000 categories (Deng et al., 2009). As of 2024, it has become one of the
most popular image datasets in the world, containing 14 million images. Many pre8trained deep learning
models have been trained using this dataset. In addition, an image classification competition called "The
ImageNet Large Scale Visual Recognition Challenge (ILSVRC)" has been organized annually since 2010. This
competition determines the best algorithm for object detection using the ImageNet dataset (Russakovsky
et al., 2014). InceptionV3, ResNET50, and VGG16 pre8trained deep learning models used in this study were
also trained using the ImageNet dataset.
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Transfer learning

Although CNN produces excellent results in image classification problems, it is a more challenging model
for dealing with some problems. Some reasons are the lack of data sets for model training, the data size
being too high, or the need for more costly hardware and time, as the CNN model consists of too many layers.
Such problems that stand in the way of better model training and high classification success are significant
challenges for scientists and researchers to overcome in their work. Transfer learning is often used to
deal with these problems, and good results can be obtained. Transfer learning is the reuse of a previously
trained artificial intelligence model by modifying it for different problems (Tan et al., 2018). Modifying and
using some pre8trained neural networks with data that is too large to be obtained personally under normal
conditions increase the success rate (Accuracy) obtained from the model. Some transfer learning models
that gave successful results in most cases were used in this study. These models are called pre8trained deep
learning models because they are trained with extensive data and have many layers in their structure.

Figure 5 shows a structural comparison between a typical CNN model and the modified version of the
pre8trained deep learning models.

Figure 5
Comparison of the CNN and the pre-trained model

In this study, ResNET50, VGG16, and InceptionV3 pre8trained deep learning algorithms were utilized, and
the original output layers were modified to have two neurons.

VGG16 model

In 2014, Karen Simonyan and Andrew Zisserman from the University of Oxford introduced the VGG16 and
VGG19 models at the ILSVRC competition organized by ImageNet to investigate the effects of neural network
depth on the success rate of large8scale data classification problems (Simonyan & Zisserman, 2015). The
most important differences between these models and the previous deep CNN models are the smaller filter
sizes and more convolutional layers. Figure 6 shows the structure of the VGG16 model. While developing
these deeper CNN models, Krizhevsky et al. (2017) referenced their classification study using the ImageNet
dataset. VGG models have been widely used in recent studies because of their high performance. This tech8
nique offers high performance primarily because it is already optimized for training with multidimensional
data. Consequently, the model’s feature map is highly developed (Kara, 2023).

Acta Infologica, 9 (1), 34–54   41



Classification of Ventricular Septal Defect Disease Using Deep Learning   Barut et al., 2025

Figure 6
Internal structure and layers of the VGG16 model

The structure of the VGG models consists of convolution, pooling, and fully connected layers. The input
layer accepts 224x224 fixed8size inputs. The only pre8processing is to extract the average RGB (Red, Green,
Blue) value from each pixel value. In the convolution layers, 3x38dimensional filters are used. The five
convolution layers have a 2x2 maximum pooling layer. The successive convolution and pooling layers are
connected to fully connected layers of 1000 classes in the output layer (Simonyan & Zisserman, 2015).

ResNET50 model

The ResNET50 model has less complexity than other popular deep learning models and simplifies the
difficulty of training high8dimensional deep learning models with significantly more layers. Although it is
much deeper than the VGG models, it has less complexity (He et al., 2016). The ResNET50 model trained with
the ImageNet dataset won first place in classification in the ILSVRC competition held in 2015. In the Microsoft
Common Object in Context (COCO) competition, they won first place in detection and segmentation (He et
al., 2016).

The ResNET50 model accepts 224x224 color image data at the input layer. Instead of the standard
convolution layer, a specially modified structure called "Residual Block" is used, and the model contains 16
Residual Blocks. Each of these so8called Residual Blocks contains two convolution layers. The convolution
layers contain different filter sizes, such as 7x7 and 3x3, and there are connections between each Residual
Block structure. Thanks to these connections, the gradient vanishing problem is minimized. The Residual
Block structure of the ResNET50 Model is shown in Figure 7.

Figure 7
The residual block structure of the ResNET50 model
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Since the ResNET50 model is trained with the ImageNet dataset, it consists of fully connected networks
with 1000 classes in the output layer (He et al., 2016).

InceptionV3 model

Inception, also known as GoogLeNet, has been developed to outperform other large deep8learning
models with respect to high computational cost and memory usage (Szegedy et al., 2016). InceptionV3 is
a fast, powerful, and popular deep learning model with a high success rate in classification, even though
it uses only 5 million parameters in training and is trained with a much smaller number of parameters
compared to a popular deep learning algorithm such as VGG (Szegedy et al., 2016). The InceptionV3 model,
such as the VGG16 and ResNET50 models, was one of the high8performing deep8learning models in the
ILSVRC competition. Figure 8 shows the Asymmetric Convolution structure of the InceptionV3 model.

Figure 8
Asymmetric convolution structure of the InceptionV3 model

The factorized convolution process used in the model’s structure is one of the most important reasons for
the low hardware cost, speed, and high performance of the InceptionV3 model trained with few parameters.
Filter sizes considered relatively large, such as 5x5 or 7x7, incur a disproportionate computational cost. For
example, instead of a 5x5 filter, using two fully connected 3x3 filters is preferable. In the InceptionV3 model,
1x1 and 3x3 filters are generally preferred. In this way, the computational cost remains lower than that of
large8size filters, and a significant performance increase is achieved.

Proposed method

For VSD disease classification, the ImageCHD dataset containing 3D CT images was converted into 2D
CT images. VGG16, ResNET50, and InceptionV3 deep learning models were used in the training. These three
models using the transfer learning method were modified, as shown in Figure  9, with input layers of
128x128x3 and output layers modified to be directly 28class. The models were built with an input layer of
128x128x3 2D CT and an output layer of a categorical binary classifier as "with VSD" or "without VSD". To
utilize the pre8trained weights, it was necessary to turn off the trainable feature of the layers before training
the models. Furthermore, pre8trained with the ImageNet dataset, the default model weights were employed
to avoid training all models from scratch.
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Figure 9
Visualization of the classification method used

A 108fold cross8validation technique and 25 training cycles (epoch) were preferred for the model training.
The batch size was 16, and the activation function was "Softmax". For model optimization, the Adam
optimization algorithm was preferred.

Cross-validation and performance metrics

The k8fold cross8validation method aims to evaluate the statistical success of an artificial intelligence
model more objectively and to reveal the actual success rate more accurately. In this study, a 108fold cross8
validation was applied for model training.

The performance metrics used to evaluate the results of the VGG16, ResNET50, and Inceptionv3 models
are analyzed in this section. Accuracy, Recall, Precision, F18Score, Confusion Matrix, and Roc Curve perfor8
mance metrics frequently used in image classification problems are used to analyze the trained models
(Sevli, 2023).

Accuracy = TP + TN
TP+ TN+ FP + FN

(1)

Precision = TP
TP + FP

(2)

Recall = TP
TP + FN

(3)

F1-Score = 2* Presicion * Recall
Presicion + Recall

(4)

Results
This study aimed to classify VSD disease using deep learning models. VGG16, ResNET50, and InceptionV3

pre8trained deep learning models were trained using 3D CT images from the ImageCHD dataset. The 3D CT
scans were converted to 2D and resized to 128x128 before model training. The models were modified to
have 2 class labels, "VSD" and "Not VSD", and the output layers were set as binary classifiers. To determine
the effects of the hyperparameters on the model success, hyperparameter optimization was performed
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using the grid search method. In addition, to achieve statistically more accurate results, the "K8Fold Cross
Validation" method was applied and set to work in 10 folds, and the entire data set was entered into the
model for training as training and test data in pieces for each model.

Comparative analysis of the effects of the hyperparameters on the models

A comparative analysis of the effects of the hyperparameters on the models’ classification metrics results
was evaluated under varying batch sizes and learning rates over 108fold cross8validation, as shown in Table
2. Nvidia P100 GPU and 16 GB VRAM were used as the computational resources.

Table 2
Demonstrating the effects of different hyperparameter values on the performance of the models through performance
metrics

Train Test

M
od

el

Le
ar

ni
ng

 R
at

e

Ba
tc

h 
Si

ze

Accuracy Loss Recall Precision F1-Score Accuracy Loss Recall Precision F1-Score

0.005 8 0.9987 0.126 0.999 0.999 0.999 0.9967 0.123 0.997 0.997 0.997

0.005 16 0.9981 0.204 0.998 0.998 0.998 0.9959 0.352 0.996 0.996 0.996

0.005 32 0.9986 0.096 0.999 0.999 0.999 0.9973 0.104 0.997 0.997 0.997

0.0001 8 0.9989 0.286 0.999 0.999 0.999 0.9977 0.342 0.998 0.998 0.998

0.0001 16 0.9998 0.061 1.000 1.000 1.000 0.9993 0.110 0.999 0.999 0.999

VG
G1

6

0.0001 32 0.9999 0.004 1.000 1.000 1.000 0.9994 0.041 0.999 0.999 0.999

0.005 8 0.7232 3392 0.723 0.754 0.720 0.7250 3305 0.725 0.755 0.723

0.005 16 0.7272 4.225 0.727 0.753 0.720 0.7262 4.294 0.726 0.751 0.718

0.005 32 0.6959 5.072 0.696 0.742 0.690 0.6956 5.132 0.696 0.744 0.690

0.0001 8 0.6837 6.428 0.684 0.758 0.679 0.6829 6.267 0.683 0.756 0.678

0.0001 16 0.6687 8.594 0.669 0.747 0.654 0.6705 8.755 0.671 0.747 0.656

Re
sN

et
50

0.0001 32 0.7381 3.289 0.738 0.747 0.736 0.7346 3.124 0.735 0.745 0.733

0.005 8 0.5627 6.117 0.563 0.550 0.512 0.5648 5.967 0.565 0.552 0.513

0.005 16 0.6000 6.938 0.600 0.607 0.519 0.5972 7.168 0.597 0.573 0.516

0.005 32 0.5786 6.448 0.579 0.569 0.495 0.5788 6.164 0.579 0.572 0.495

0.0001 8 0.6248 0.900 0.625 0.612 0.545 0.6272 1.512 0.627 0.609 0.548

0.0001 16 0.6260 0.527 0.626 0.614 0.558 0.6277 1.030 0.628 0.625 0.560In
ce

pt
io

nV
3

0.0001 32 0.6286 0.368 0.629 0.613 0.561 0.6277 1. 217 0.628 0.610 0.559

Table 2 presents the classification metrics of these models, namely VGG16, ResNet50, and InceptionV3,
that were trained using various combinations of batch size (8, 16, and 32) and learning rate (0.005, 0.0001).
The variability in the VGG16 graphical network unfolds a clear advantage over other approaches in terms of
illustrative performance and tenability, where the model performs a variety of fundamental classification
techniques through vital metrics such as Accuracy, Loss, Recall, Precision, and F18Score. These outcomes
imply that VGG16 is the best and most stable model from the group for conducting the classification tasks
that were tested. Specifically, the combination of a batch size of 32 and a learning rate of 0.0001 resulted in
the highest classification performance, achieving an accuracy of 99.94%. Even though the ResNet50 model,
being better than the InceptionV3 one, shows good classification performance, it has limitations with a
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loss value of 3.124, which means it cannot efficiently classify some samples. The network architecture is
characterized by the integration of "residual blocks" specifically created to solve the vanishing gradient
problem and give a structural privilege over the InceptionV3 algorithm in this case. However, the model’s
relatively high loss value indicates the need for further optimization or refinement in hyperparameter tuning
to achieve greater reliability across diverse datasets. The InceptionV3 model demonstrated the lowest per8
formance across all metrics in this study. With an accuracy of 62.77%, the model is significantly less effective
than the VGG16 and ResNet50 models regarding the classification accuracy on this dataset. Even though it is
an advanced model, the InceptionV3 model does not appear to be very successful in classification. One of
the major drawbacks of InceptionV3 is that it uses multiple parallel convolutional layers to extract details
at various feature scales, increasing the complexity. Although such an architecture is advantageous for
particular datasets, it might introduce redundancy in all computing. Thus, the performance might be under
productivity when other datasets with a simple or even less varied configuration are applied. In Figure 10,
the classification success of the VGG16, ResNet50, and InceptionV3 models in all metrics is very detailed as
comparative graphs.

Figure 10
Comparative visualizations presenting the results achieved by the VGG16, ResNet50, and InceptionV3 models

In Figure  10, the inconsistent results obtained from the InceptionV3 model are especially noticeable
in the loss values graph. It is observed that the VGG16 and ResNet50 models obtain more consistent loss
values. When the accuracy graph is examined, the accuracy results obtained from the models at different
learning rate values (0.005, 0.0001) are seen. It is seen that the VGG16 model is again the most consistent
and successful model with the results it obtains. The results of the ResNet50 model show that similar
results were obtained at two different learning values, but the model trained with the 0.0001 learning rate
performed slightly better. When the results of the InceptionV3 model are examined, it is more clearly seen
that the model trained with the learning rate value of 0.0001 obtains more successful results than the model
trained with the value of 0.005. When the radar chart is examined, the models are compared according to the
metric results obtained. It can be observed very clearly that the VGG16 model is the most successful model
that gives the best results by far. In addition, the superiority of VGG16 over the ResNe50 and InceptionV3
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models, especially in the Loss value, is very clearly visible in the radar chart. It is seen that the Loss values
of the other two models are close to each other. The charts reveal the superiority of the VGG16 model in
classification success over the other models.

Figure 11 shows the accuracy curve graphs for the first fold of the VGG16, ResNET50, and InceptionV3
models with the specified learning rate of 0.0001 and batch size of 32.

Figure 11
Accuracy metric results for the first fold of the optimized VGG16, ResNET50, and InceptionV3 models

The relationship between the actual and predicted data of the optimized models is illustrated in Figure 12,
which depicts the confusion matrices. By looking at this table showing the TP, TN, FP, and FN values, infer8
ences can be made about the performance of the models. When the results are compared with accuracy
graphs and confusion matrix tables, inferences can be made more easily about the success of the models.

Figure 12
The confusion matrices of the optimized VGG16, ResNET50, and InceptionV3 models

When the confusion matrices are examined, the classification success of the VGG16 model attracts
attention. The performance superiority of the VGG16 model, which stands out with its high accuracy rate
and classification success, is seen compared to the ResNET50 and InceptionV3 models. The ResNET50 and
InceptionV3 models achieve average classification success. When looking at the accuracy graphs, it is seen
that the training and test curves are consistent and have a high success rate in the VGG16 model. At the
same time, it is noteworthy that the training and test curves are inconsistent and have low success rates in
the ResNET50 and InceptionV3 models. Figure 13 shows the Roc Curve graphs of the VGG16, ResNET50, and
InceptionV3 models.
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Figure 13
Roc curve of the optimized VGG16, ResNET50, and InceptionV3 models

When the Roc Curve graphs, another statistical metric, are examined, the success of the VGG16 model
stands out compared to the ResNET50 and InceptionV3 models. The results of the Roc Curve graphs obtained
from the VGG16, ResNET50, and InceptionV3 models support the results of all other performance metrics.
When the graph of the VGG16 model is examined, it has achieved a very high success. When the graphics
of the ResNET50 model are examined, it is seen that it gives better results than the InceptionV3 model, but
it is still not good enough and has a slightly above8average performance. When the Roc Curve chart of the
InceptionV3 model is examined, it is seen to give bad results. According to these results, the InceptionV3
model can be interpreted as the model with the most unreliable results. It can be clearly stated that the most
reliable and successful model is the VGG16. As a result, all models’ performance metrics and performances
were analyzed statistically. According to the results obtained, the performance metrics confirmed each other.

Comparative analysis of the effects of hyperparameters on the training times of the
models

A comparative analysis of the effects of the hyperparameters on the models’ training times under varying
batch sizes and learning rates over 108fold cross8validation is presented in Table 3. Nvidia P100 GPU and 16
GB VRAM were used as the computational resources.

Table 3
Comparative analysis of training durations for the VGG16, ResNet50, and InceptionV3 models evaluated under varying
batch sizes and learning rates over a 10-fold cross-validation

Model Number of Parameters Learning Rate Batch Size Total Training Time
(minutes)

Average Training Time per
Fold (minutes)

0.005 8 130.51 13.05

0.005 16 116.17 11.61

0.005 32 91.14 9.11

0.0001 8 130.31 13.03

0.0001 16 114.92 11.49

VGG16 138 million

0.0001 32 93.73 9.37

0.005 8 207.28 20.72

0.005 16 193.72 19.37

0.005 32 127.79 12.77

0.0001 8 205.88 20.58

ResNet50 25.6 million
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Model Number of Parameters Learning Rate Batch Size Total Training Time
(minutes)

Average Training Time per
Fold (minutes)

0.0001 16 209.03 20.90

0.0001 32 130.50 13.05

0.005 8 254.98 25.49

0.005 16 212.24 21.22

0.005 32 133.80 13.38

0.0001 8 253.97 25.39

0.0001 16 210.16 21.01

InceptionV3 23.8 million

0.0001 32 137.92 13.79

Table 3 compares the VGG16, ResNet50, and InceptionV3 models regarding training times under different
learning rates and batch size values. Each model’s architectural features and number of parameters signif8
icantly affected the training times. Although the VGG16 model, with 138 million parameters, is significantly
larger than the ResNet50 and InceptionV3 models, its training time is shorter than the other two. This shorter
training time indicates that the architectural complexity of the models has a more significant impact on
the training time than the number of parameters they contain. The results indicate that the training time
significantly decreased with larger batch sizes, while the learning rate (0.005 and 0.0001) had minimal impact
on the training duration. Although the InceptionV3 model has a lighter architecture than the VGG16 and
ResNet50 models regarding the number of parameters, its training time is longer than that of the other
models. The results demonstrate that with larger batch sizes, the training duration significantly decreased
while the impact of the learning rates (0.005 and 0.0001) on the training time was minimal. The visualization
hyperparameter analysis for the VGG16, ResNET50, and InceptionV3 models is shown in Figure 14.

Figure 14
Visualization hyperparameter analysis for VGG16, ResNET50, and InceptionV3 models

Acta Infologica, 9 (1), 34–54   49



Classification of Ventricular Septal Defect Disease Using Deep Learning   Barut et al., 2025

Figure 14 shows a comparative analysis of the results obtained by the VGG16, ResNet50, and InceptionV3
models when different hyperparameters (learning rate and batch size) were used. VGG16 is the model that
exhibits the most efficient training time when testing different hyperparameter configurations. The lowest
training time indicates that, among the models tested, VGG16 demonstrates the best training efficiency. It
is the optimal choice for reducing the training time in this experimental context. These results demonstrate
the necessity of grasping the influence of various deep learning models and hyperparameter settings on
the training time. This model selection process should be treated as one of the most crucial factors in the
decision8making process.

Gradient-weighted Class Activation Mapping Analysis
Grad8CAM is an eminent interpretable artificial intelligence (XAI) technique that seeks to elucidate the

inner workings of artificial intelligence models, including their decision8making processes and outputs,
for better human understanding. The approach thus allows the connection between the magnitude of AI
programs and human thought to be bridled by providing visualizations of the rationale behind a model’s
predictions.

In this experiment, the Grad8CAM algorithm (Selvaraju et al., 2017), one of the famous XAI techniques, was
implemented as a method of localization of regions in CT scans believed by the model to be affected by
VSD disease. Grad8CAM creates heatmaps by distributing larger activation values to the pixels influencing
the model’s prediction. This heatmap leads to a color8coded diagram according to different diseased parts
of the patient, henceforth providing doctors with a map indicating where the model is looking.

The Grad8CAM algorithm was employed to assess the output of a deep learning model trained for VSD
disease diagnosis. By partially covering the CT images with the overlayed heatmaps, the regions of the
disease were visually separated from the rest of the image. Therefore, the zones with more intensive red
hues are where the model the presence of disease, and the blue zones are where no disease was found. This
approach furnishes a comprehensible rationale for the model’s thinking to healthcare experts, thus making
it easily understood. The Grad8CAM output for a CT scan image with and without VSD Disease is presented
in Figure 15.

Figure 15
View of CT scans with and without VSD Disease using Grad-CAM
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Figure 15 presents an example of the Grad8CAM output for a CT scan image. The red8highlighted areas
represent regions where the model detects VSD disease, whereas the blue8highlighted areas correspond to
regions where the disease is absent. This visual representation enables a straightforward and interpretable
understanding of the model’s predictions. Visualization of the classification faults can be seen in Figure 16.

Figure 16
Visualization of the classification faults

The Grad8CAM method, as shown in Figure 16, mistakenly marked a part of a CT scan image as a VSD
case. This picture shows a problem that the deep learning model applied in this study has since it wrongly
identified the normal area as the one with the disease. Therefore, the Grad8CAM heatmap was incorrectly
focused on this image region indicated by the red spot, which could confuse the medics interpreting the
results. Noise in the input data: Artifacts or inconsistencies in CT scans are the main reasons for wrongful
feature extraction by the model. The misclassification in Figure 16 underscores the importance of not relying
solely on AI8based models for clinical decision8making, especially in high8stakes fields like healthcare.

In addition to verifying the predicted results of the deep learning model, these visual outputs help
clinicians interpret the data. Thus, it acts as a vital item. Using this method, medical professionals can
act as supervisors and thus verify or disprove the model’s reasoning. Thus, physicians will have additional
confidence in their already great expertise in diagnosis. In conclusion, Grad8CAM is a useful tool for
understanding artificial intelligence models. However, it must be applied with other validation methods and
domain expertise to ensure reliable results.

Conclusion
The fact that VSD disease is the most common type of congenital heart disease reveals the importance of

new treatment methods to be developed for this disease. To develop methods, it is of great importance to
diagnose the disease correctly. Deep learning algorithms can achieve successful results in disease detection.
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However, the fact that there are very few available data sets for VSD disease, especially the almost complete
absence of medical image data sets, has caused the number of studies in this field to remain limited.

ImageCHD, the first 3D CT medical image dataset published on congenital heart diseases, was used in this
study. Because of the research, when the literature is examined, this study is the first study conducted on
the classification of VSD disease on CT image data. In order to ascertain the optimal model and parameters
for classifying the VSD disease, hyperparameter optimization was conducted using the grid search method.
By using optimized VGG16, InceptionV3, and ResNET850 pre8trained deep learning models for classification,
it was determined that the model with the highest degree of accuracy was the VGG16 model with a value of
99.99% in the training set and 99.94% in the test set. The high classification success achieved shows that CT
image data are suitable for detecting or classifying this disease.

Moreover, the activation map generated by the Grad8CAM method, considering the weights in the deep
learning model's last convolutional layer, showed that the model focused on the exact regions and made
successful predictions. The Grad8CAM method allows for the visualization of the regions of an image that
are the focus of the model's attention during the decision8making process. This visualization enables
medical professionals to gain insight into and validate the decisions made by artificial intelligence systems.
Additionally, the Grad8CAM model can be employed to analyze instances of inaccurate predictions, which
can help identify the model's limitations and facilitate improvements in the development process.

This study will facilitate new research endeavors in this domain in the coming years. This is the first study
to use CT images to classify VSD disease, and it has yielded the most optimal outcomes regarding general
classification efficacy. In future work, classification studies will be conducted for the disease categories in
the ImageCHD dataset.
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