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1. Introduction
In the 1960s, Berge and Ore developed a mathematical formulation for the concept of

graph domination, which has since gathered significant attention from researchers. Its ap-
plications span across diverse fields such as computer science, operations research, linear
algebra, and optimization. For additional related concepts regarding graph domination,
readers are directed to [2]. In relation to the concept of domination in graphs, the defi-
nitions of closed neighborhood ideals and dominating ideals were introduced by Sharifan
and Moradi recently in [7]. The closed neighborhood ideal of a simple graph G, denoted
by NI(G), is the squarefree monomial ideal generated by monomials corresponding to the
closed neighborhoods of vertices of G, and the dominating ideal of G, denoted by DI(G),
is the squarefree monomial ideal generated by monomials corresponding to the dominating
sets of G. It is observed in [7, Lemma 2.2] that for any graphs G, the ideals DI(G) and
NI(G) are Alexander dual of each other. Different graphs can correspond to the same
closed neighborhood ideals and dominating ideals as noticed in [5, Example 2.2].

In comparison to the edge ideals and cover ideals associated with graphs which are well
known and extensively studied, relatively little is known in the case of closed neighborhood
ideals and dominating ideals of graphs. In [1], Farber introduced strongly chordal graphs
and proved that a graph G is strongly chordal if and only if the neighborhood hypergraph
of G is totally balanced. Rephrasing this in the algebraic language, it is established in [6]
that the dominating ideals of strongly chordal graphs are componentwise linear. Since path
graphs are strongly chordal, one can conclude that the dominating ideals of path graphs
are componentwise linear. In our work, we show that the dominating ideals of path graphs
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have linear quotients by precisely giving a linear quotient order of their minimal generating
set. Invoking [4, Theorem 8.3.15], we obtain another proof for the componentwise linearity
of dominating ideals of path graphs. Utilizing a well-known result of Sharifan and Varbaro
[8, Corollary 2.7], we also compute the total and graded Betti numbers of the dominating
ideals of path graphs.

The breakdown of the content of this article is as follows: Section 2 contains all the
required ingredients from commutative algebra and graph theory. In Section 3, we describe
a recursive order on the generating set of dominating ideals of path graphs which gives
linear quotients as shown in Theorem 3.5. This order is used in Section 4, to describe the
total and graded Betti numbers of dominating ideals of path graphs (See Theorem 4.3 and
Theorem 4.4). In Theorem 4.2, we also compute projective dimension and regularity of
dominating ideals of path graphs and recover the formulas given in [7, Theorem 2.6].

2. Required terminologies
We first recall some definitions and notions from commutative algebra. Let S =

K[x1, . . . , xn] be a polynomial ring over a field K and I be a homogeneous ideal of S.
Let

0 →
⊕
j∈Z

S(−j)βp,j(I) −→ · · · −→
⊕
j∈Z

S(−j)β0,j(I) φ0−→ I → 0

be the minimal graded free resolution of I, see [4, page 265]. For each i and j, βi,j(I) is
the (i, j)-th graded Betti number of I, and the i-th Betti number of I is βi(I) =

∑
j∈Z βi,j .

The CastelnuovoMumford regularity (or simply regularity) of I, denoted by reg(I), is
reg(I) = max{j| βi,i+j(I) 6= 0},

and the projective dimension of I is the length of its minimal graded free resolution, given
by

proj dim(I) = max{i| βi,j(I) 6= 0}.

The ideal I is said to have d-linear resolution if βi,j(I) = 0 for all i and all j − i 6= d.
Let Id be the ideal generated by all homogeneous polynomials of degree d in I. The ideal
I is called a componentwise linear ideal if Id has a linear resolution, for each d.

For a given monomial ideal I ⊂ S, we denote the unique minimal generating set of I by
G(I). Let G(I) = {u1, . . . , ur}. The ideal I is said to have linear quotients with respect
to the ordering u1, . . . , ur if the colon ideal (u1, . . . , ui−1) : (ui) is generated by a subset of
variables, for each i = 2, . . . , r. We refer such an order of G(I) as a linear quotient order. If
an ideal admits linear quotients, then it is componentwise linear, see [4, Proposition 8.2.15].
However, the converse of this statement does not hold, for example, see [3, Remark 2.15].
For more information on ideals with linear quotients and componentwise linear ideals, we
refer reader to [4, Theorem 8.2.15] and [3].

The support of a monomial u ∈ S, denoted by supp(u), is the set of variables that divide
u. Given a squarefree monomial ideal I ⊂ S, the Alexander dual of I, denoted by I∨, is

I∨ =
⋂

u∈G(I)
(xi : xi ∈ supp(u)).

Next, we recall some definitions and notions from graph theory. Let G be a finite simple
graph with vertex set V (G) and edge set E(G). For each vertex v ∈ V (G), the closed
neighborhood of v in G is the set

NG[v] = {u ∈ V (G) : {u, v} ∈ E(G)} ∪ {v}.

When there is no confusion about the underlying graph, we will denote NG[v] simply
by N [v]. A vertex v ∈ V (G) is said to dominate a vertex v′ ∈ V (G) if v ∈ N [v′]. In
particular, every vertex dominates itself. A subset S ⊆ V (G) is called a dominating set
of G if S ∩ N [v] 6= ∅, for all v ∈ V (G). A dominating set is called minimal if it does not
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properly contain any other dominating set of G. The domination in graphs is a well-studied
topic in graph theory. We refer reader to [2] for more information on this topic.

Let G be a simple graph with V (G) = {x1, . . . , xn}. We identify the vertices of G as
variables of S to simplify the notation. In [7], Moradi and Sharifan introduced the notion
of closed neighborhood ideals and dominating ideals of graphs as follows: for any graph
G, the closed neighborhood ideal of G is

NI(G) = (
∏

xj∈N [xi]
xj : xi ∈ V (G)),

and the dominating ideal of G is

DI(G) = (
∏

xi∈T

xi : T is a minimal dominating set of G).

It is shown in [7, Lemma 2.2] that DI(G) is the Alexander dual of NI(G).

3. Linear quotient order of dominating ideals of path graphs
For a given n > 1, let Pn be the the path graph with vertices x1, . . . , xn and edges

{x1, x2}, {x2, x3}, . . . , {xn−1, xn}. For n = 1, we set P1 as a graph with an isolated vertex
x1. In this section we will construct a recursive order of G(DI(Pn)) which gives linear
quotients. To do this, we first give a recursive presentation of dominating sets of Pn.
Throughout the following text, for any non-empty set A and for any element x, we set
xA = {xy| y ∈ A}. If A is empty then we set xA to be an empty set as well.

Remark 3.1. Let In = DI(Pn), and set

A1 = ∅, B1 = {x1},

A2 = {x1}, B2 = {x2},

A3 = {x2}, B3 = {x1x3},

A4 = {x1x3, x2x3}, B4 = {x1x4, x2x4}.

It can be readily verified with simple computations that

G(I1) = A1 ∪ B1 = {x1};
G(I2) = A2 ∪ B2 = {x1, x2};
G(I3) = A3 ∪ B3 = {x2, x1x3};
G(I4) = A4 ∪ B4 = {x1x3, x2x3, x1x4, x2x4}.

For n ≥ 5, we set An = xn−1G(In−3) ∪ xn−1(xn−2An−4) and Bn = xnG(In−2). It can be
easily verified that

G(I5) = A5 ∪ B5 = x4G(I2) ∪ x4(x3A1) ∪ x5G(I3) = {x1x4, x2x4, x2x5, x1x3x5}
and similarly,

G(I6) = A6 ∪ B6 = x5G(I3) ∪ x5(x4A2) ∪ x6G(I4)
= {x2x5, x1x3x5, x1x4x5, x1x3x6, x2x3x6, x1x4x6, x2x4x6}.

In the following theorem, we give a recursive way to construct dominating ideals for
path graphs.

Theorem 3.2. Let In = DI(Pn) and n ≥ 5. Then G(In) = An ∪ Bn, where
An = xn−1G(In−3) ∪ xn−1xn−2An−4 and Bn = xnG(In−2).

Moreover, the sets xn−1G(In−3), xn−1xn−2An−4, and xnG(In−2) are pairwise disjoint.
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Proof. It immediately follows from the definition of minimal dominating set and the
construction of An and Bn that xn−1G(In−3), xn−1xn−2An−4, and xnG(In−2) are pairwise
disjoint. To prove G(In) = An ∪ Bn, we apply induction on n. The case n = 5 can be
verified from Remark 3.1. Assume that n > 5. First we show that An ∪ Bn ⊆ G(In). Let
w ∈ Bn, then w = xnw′ for some w′ ∈ G(In−2). Since supp(w′) is a minimal dominating
set of Pn−2 and xn dominates xn−1 and itself in Pn, we obtain that supp(w) is a dominating
set of Pn. The minimality of supp(w) follows from the minimality of supp(w′). This gives
w ∈ G(In).

Now, let w ∈ An. Then w = xn−1w′′ for some w′′ ∈ G(In−3) or w′′ ∈ xn−2An−4. If
w′′ ∈ G(In−3), then supp(w′′) is a minimal dominating set of Pn−3. Furthermore, xn−1
dominates xn−2, xn and itself in Pn. It yields that supp(xn−1w′′) is a dominating set
of Pn. The minimality of supp(w) follows from the minimality of supp(w′′). This gives
w ∈ G(In). On the other hand, if w′′ ∈ xn−2An−4, then there exists w′′′ ∈ An−4 such that
w = xn−1xn−2w′′′. By the induction hypothesis, we have An−4 ⊂ G(In−4), hence supp(w′′′)
is a minimal dominating set of Pn−4. The remaining vertices xn−3, xn−2, xn−1, xn of Pn

are minimally dominated by xn−2 and xn−1. Thus, supp(xn−1xn−2w′′′) is a minimal
dominating set of Pn and w ∈ G(In).

Next we show that G(In) ⊆ An ∪ Bn. Since N [xn] = {xn, xn−1}, for any w ∈ G(In),
either xn divides w or xn−1 divides w. However xn and xn−1 do not divide w at the same
time, by the virtue of minimality of supp(w) as a dominating set of Pn.

First, assume that xn divides w. Then w = xnw′ for some monomial w′. Since xn

dominates itself and xn−1, the set supp(w′) = supp(w) \ {xn} is a dominating set of Pn−2.
The minimality of supp(w′) follows from the minimality of supp(w). It gives w′ ∈ G(In−2)
and w ∈ Bn.

Now, assume that xn−1 divides w. Then w = xn−1w′′ for some monomial w′′. Below
we show that w ∈ An. To do this, we consider the following cases:

Case 1: Assume that xn−2 /∈ supp(w′′). Since xn−1 dominates only xn, xn−2 and itself,
for each i = 1, . . . , n − 3, the vertex xi must be dominated by supp(w′′). This shows
that supp(w′′) is a dominating set of Pn−3. The minimality of supp(w′′) follows from the
minimality of supp(w), and we obtain w′′ ∈ G(In−3). This shows that w ∈ xn−1G(In−3).

Case 2: Assume that xn−2 ∈ supp(w′′). Then w = xn−1w′′ = xn−1xn−2u for some
monomial u. Then xn−3 /∈ supp(u), otherwise, supp(w) \ {xn−2} is a dominating set of
Pn, a contradiction to the minimality of supp(w). This shows that supp(u) is a dominating
set of Pn−4. The minimality of supp(u) follows from the minimality of supp(w) and hence
u ∈ G(In−4). By the induction hypothesis we have G(In−4) ⊆ An−4 ∪ Bn−4. Note that
xn−4 /∈ supp(u), otherwise, supp(w) \ {xn−2} is a dominating set of Pn, a contradiction to
the minimality of supp(w). This shows that u /∈ Bn−4 because every element in Bn−4 is a
multiple of xn−4. Therefore u ∈ An−4 and w ∈ xn−1xn−2An−4 ⊂ An. This completes the
proof. �

Remark 3.3. Set In = DI(Pn). For each n ≥ 1, we order the elements of G(In) by
first listing the elements of An and then listing the elements of Bn. In particular, for
1 ≤ n ≤ 4, we order the elements in An and Bn as given in Remark 3.1. For n ≥ 5, from
Theorem 3.2 we have

G(In) = An ∪ Bn

= xn−1G(In−3) ∪ xn−1xn−2An−4 ∪ xnG(In−2).

Let G(In−3) = {u1, . . . , ut}, An−4 = {a1, . . . , ak} and G(In−2) = {v1, . . . , vs}. An
ordering of G(In) for n ≥ 5 is given below:

xn−1u1, . . . , xn−1ut, xn−1xn−2a1, . . . , xn−1xn−2ak, xnv1, . . . , xnvs.
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For example, in Remark 3.1 the elements of G(I5) and G(I6) are listed in the order de-
scribed above. Throughout the following text, we let An and Bn be the ideals generated by
the elements of An and Bn, respectively.

Next we will show that DI(Pn) has linear quotients with respect to the ordering of
the generators given in the remark above. To do this, we first state the following simple
observation.

Lemma 3.4. Let I ⊂ S = K[x1, . . . , xn, x, y] be a monomial ideal with G(I) = {u1, . . . , um}
such that x, y /∈ supp(ui) for all i = 1, . . . , m. Then the following statements hold.

(i) Let w be a monomial in S with x /∈ supp(w). Then any generator of xI : (w) is
divisible by x.

(ii) For any ui ∈ G(I), we have xI : (yui) = (x).

Proof. (i) It is easy to see that every generator of xI : (w) is of the form xui/ gcd(xui, w)
for some i, for example see [4, Proposition 1.2.2]. Using the assumption x /∈ supp(w), we
conclude that x does not divide gcd(xui, w), as required.

(ii) It follows from (i) that every generator of xI : (yui) is divisible by x. Moreover, we
have (x) = (xui) : (yui) ⊆ xI : (yui). This gives xI : (yui) = (x). �

Now we give the main theorem of this section.

Theorem 3.5. For any n ≥ 1, DI(Pn) has linear quotients.

Proof. Set In = DI(Pn). We show that the order of G(In) described in Remark 3.3 is
a linear quotient order. We proceed by applying induction on n. It is easy to verify the
assertion for 1 ≤ n ≤ 5 by following straightforward computations. Let n > 5 and for all
1 ≤ k < n assume that Ik has linear quotients with the order as in Remark 3.3.

First, we show that An = xn−1In−3 + xn−1xn−2An−4 has linear quotients. By the
induction hypothesis An−4 has linear quotients because G(In−4) = An−4 ∪ Bn−4. Let
An−4 = {a1, . . . , ak} where the generators are listed in the linear quotient order. We know
that xn−1In−3 and xn−1xn−2An−4 have linear quotients because In−3 and An−4 have
linear quotients. Moreover, for i = 2, . . . , k, we have

[xn−1In−3 + (xn−1xn−2a1, . . . , xn−1xn−2ai−1)] : (xn−1xn−2ai) =
xn−1In−3 : (xn−1xn−2ai) + (xn−1xn−2a1, . . . , xn−1xn−2ai−1) : (xn−1xn−2ai).

Therefore, we only need to show that xn−1In−3 : (xn−1xn−2ai) has linear quotients, for all
i = 1, . . . , k. We claim that for all i = 1, . . . , k,

xn−1In−3 : (xn−1xn−2ai) = (xn−3, xn−4). (3.1)

Proof of claim: For 5 < n ≤ 10, the above claim can be verified with straightforward
computation. The reason we let n > 10 in the following argument is to avoid non-positive
indices.

Note that xn−1In−3 : (xn−1xn−2ai) = In−3 : (xn−2ai). Using Theorem 3.2 we obtain

In−3 = xn−4In−6 + xn−4xn−5An−7 + xn−3In−5

which gives

In−3 : (xn−2ai) = xn−4In−6 : (xn−2ai) + xn−4xn−5An−7 : (xn−2ai)
+ xn−3In−5 : (xn−2ai).

(3.2)
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Since An−4 = xn−5G(In−7) ∪ xn−5xn−6An−8, we separate the discussion in the following
two cases: ai ∈ xn−5G(In−7) or ai ∈ xn−5xn−6An−8.

Case 1: Let ai ∈ xn−5G(In−7). From Lemma 3.4 and Theorem 3.2, we obtain

xn−3In−5 : (xn−2ai) = (xn−3An−5 + xn−3xn−5In−7) : (xn−2ai)
= (xn−3).

Note that xn−5G(In−7) = xn−5(An−7 ∪ Bn−7). If ai ∈ xn−5An−7, then again from
Lemma 3.4, we obtain

xn−4In−6 : (xn−2ai) + xn−4xn−5An−7 : (xn−2ai) = (xn−4).

On the other hand, if ai ∈ xn−5Bn−7 = xn−5xn−7G(In−9), then by using the expan-
sion In−6 = xn−7In−9 + xn−7xn−8An−10 + Bn−6 obtained from Theorem 3.2, and as an
application of Lemma 3.4, we have

xn−4In−6 : (xn−2ai) = (xn−4xn−7In−9 + xn−4xn−7xn−8An−10 + xn−4Bn−6) : (xn−2ai)
= (xn−4).

Then, again from Lemma 3.4 we obtain

xn−4In−6 : (xn−2ai) + xn−4xn−5An−7 : (xn−2ai) = (xn−4).

Therefore, from (3.2) we conclude that In−3 : (xn−2ai) = (xn−3, xn−4) and the claim holds.
Case 2: Let ai ∈ xn−5xn−6An−8. Theorem 3.2 gives

In−6 = An−6 + Bn−6 = An−6 + xn−6In−8

= An−6 + xn−6An−8 + xn−6Bn−8.

Thanks to Lemma 3.4, we obtain

xn−4In−6 : (xn−2ai) = (xn−4An−6 + xn−4xn−6An−8 + xn−4xn−6Bn−8) : (xn−2ai).
= (xn−4).

Hence

In−3 : (xn−2ai) = xn−4In−6 : (xn−2ai) + xn−4xn−5An−7 : (xn−2ai) + xn−3In−5 : (xn−2ai)
= (xn−4) + xn−3In−5 : (xn−2ai).

From Theorem 3.2, we have the expansion

In−5 = An−5 + Bn−5

= xn−6In−8 + xn−6xn−7An−9 + xn−5In−7

= xn−6An−8 + xn−6Bn−8 + xn−6xn−7An−9 + xn−5In−7.

Once again, as a direct application of Lemma 3.4, we obtain

xn−3In−5 : (xn−2ai) = (xn−3).

This completes the proof of our claim.
Let G(In−2) = {v1, . . . , vs} where the generators are listed in the linear quotient order.

Next, we show that An+(xnv1, . . . , xnvi−1) : (xnvi) has linear quotients for all i = 2, . . . , s.
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Since In−2 has linear quotients, it follows that xnIn−2 also has linear quotients. Therefore,
it is enough to show that An : (xnvi) has linear quotients for each i = 1, . . . , s. We claim
that

An : (xnvi) = (xn−1). (3.3)
Proof of claim: For 5 < n ≤ 7, the above claim can be verified with straightforward
computation. The reason we let n > 7 in the following argument is to avoid the non-
positive indices in the following text.

Since G(In−2) = An−2∪Bn−2, we first consider the case when vi ∈ An−2 = xn−3G(In−5)∪
xn−3xn−4An−6. After a repeated use of Theorem 3.2, we obtain

In−3 = xn−4In−6 + xn−4xn−5An−7 + xn−3In−5

= xn−4An−6 + xn−4Bn−6 + xn−4xn−5An−7 + xn−3In−5.

Above equality together with Lemma 3.4 gives xn−1In−3 : (xnvi) = (xn−1). Therefore, in
this case,

An : (xnvi) = (xn−1In−3 + xn−1xn−2An−4) : (xnvi)
= xn−1In−3 : (xnvi) + xn−1xn−2An−4 : (xnvi)
= (xn−1)

as required. Next, let vi ∈ Bn−2 = xn−2G(In−4) = xn−2An−4 ∪ xn−2Bn−4. If vi ∈
xn−2An−4, then Lemma 3.4 gives

An : (xnvi) = [xn−1In−3 + xn−1xn−2An−4] : (xnvi) = (xn−1).

If vi ∈ xn−2Bn−4 = xn−2xn−4G(In−6), then Lemma 3.4 gives

xn−1In−3 : (xnvi) = [xn−1xn−4In−6 + xn−1xn−4xn−5An−7 + xn−1Bn−3] : (xnvi)
= (xn−1),

and we again retrieve An : (xnvi) = [xn−1In−3 + xn−1xn−2An−4] : (xnvi) = (xn−1). This
completes the proof. �

Using Theorem 3.5, we retrieve the following result from [6, Theorem 2.8].
Corollary 3.6. For any n ≥ 1, DI(Pn) is a componentwise linear ideal.
Proof. By Theorem 3.5, DI(Pn) has linear quotients. Thus, by [4, Theorem 8.2.15],
DI(Pn) is componentwise linear. �

4. Betti numbers of dominating ideals of path graphs
In this section, we give a recursive formula to compute the Betti numbers of dominating

ideals of path graphs. To do this, we recall the following result of Sharifan and Varbaro
from [8] which gives the Betti numbers, regularity and projective dimension of an ideal
with linear quotients.
Theorem 4.1 ([8], Corollary 2.7). Let I be a monomial ideal with linear quotients with re-
spect to u1, . . . , ur where G(I) = {u1, . . . , ur}. Let np be the number of minimal generators
of (u1, . . . , up−1) : up for p = 1, . . . , r. Then

βi,i+j(I) =
∑

1≤p≤r,deg(up)=j

(
np

i

)
, βi(I) =

r∑
p=1

(
np

i

)
,

reg(I) = max{deg(up) : p = 1, . . . , r},

proj dim(I) = max{np : p = 1, . . . , r}.
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In [7, Theorem 2.6], authors computed the regularity and projective dimension of
NI(Pn). Using NI(Pn)∨ = DI(Pn) and invoking Terai’s well-known result [9, Corol-
lary 0.3] one can formulate the regularity and projective dimension of DI(Pn). However,
in the following result, we describe the regularity and projective dimension of DI(Pn) in
the terms of n as an application of Theorem 4.1 and Theorem 3.5.

Theorem 4.2. For any n ≥ 2, following hold.
(1) reg(DI(Pn)) = dn

2 e = proj dim(NI(Pn)) + 1,
(2) proj dim(DI(Pn)) = bn

2 c = reg(NI(Pn)) − 1.

Proof. A well known result of Terai [9, Corollary 0.3] states that for any squarefree mono-
mial ideal reg(I) = proj dim(I∨)+1, and from [7, Lemma 2.2], we have NI(Pn)∨ = DI(Pn).
Therefore, to prove the assertion, it is enough to compute regularity and projective di-
mension of DI(Pn). Let n ≥ 2 and In = DI(Pn). It follows from Theorem 4.1 that the
regularity of In is

max{|S| : S is a minimal dominating set of Pn}.

We first observe that for any minimal dominating set A of Pn, we have |A| ≤ dn
2 e.

To verify this, assume n ≥ 4, as the statement is trivially true for 1 ≤ n ≤ 3. Write
n = 4q + r where q ≥ 1 and 0 ≤ r ≤ 3. For each i = 0, . . . , q − 1, define Ai =
{x4i+1, x4i+2, x4i+3, x4i+4}. Additionally, if r ≥ 1, let Br = {x4q+k : 1 ≤ k ≤ r}. Now, let
A be a minimal dominating set of Pn. The minimality of A ensures that |A ∩ Ai| ≤ 2 for
each i. If r = 0, then |A| ≤ n/2, as required. For r = 1 or r = 2, we have |A ∩ Br| ≤ 1,
and for r = 3, |A ∩ Br| ≤ 2, again due to the minimality of A. In all cases, it follows that
|A| ≤ dn

2 e.
From above discussion, we conclude reg(In) ≤ dn

2 e. On the other hand, it is easy to see
that for any n, the set {xi : i is odd and i ≤ n} is a minimal dominating set of Pn. This
gives us reg(In) = dn

2 e, as required.
To prove proj dim(In) = bn

2 c, we apply the induction on n. For 2 ≤ n ≤ 6, the equality
can be verified using Theorem 4.1. For n > 6, following (3.1), (3.3) and the linear quotient
order of DI(Pn) given in Theorem 3.5, we obtain

proj dim(In) = max{proj dim(In−3), proj dim(An−4) + 2, proj dim(In−2) + 1}.

Moreover, using An−4 ⊂ In−4 and the induction hypothesis, we obtain proj dim(An−4) ≤
proj dim(In−4) = bn−4

2 c, proj dim(In−3) = bn−3
2 c, and proj dim(In−2) = bn−2

2 c. This gives
us the desired formula. �

Using Theorem 4.1, and the linear quotient order of DI(Pn) from Theorem 3.5, first we
list Betti numbers of In = DI(Pn), for n = 1, . . . , 6.

Table 1. Betti numbers of In = DI(Pn)

n β0(In) β1(In) β2(In) β3(In)
1 1 - - -
2 2 1 - -
3 2 1 - -
4 4 4 1 -
5 4 4 1 -
6 7 11 6 1

Now, we give recursive formulas for the total and graded Betti numbers of DI(Pn), for
n > 6. To simplify the notation in the subsequent text, we use the following definition.
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Let J be a monomial ideal with linear quotients and u1, . . . , us be the linear quotient
order of the generators of J . We call the colon ideal (u1, . . . , uk−1) : uk the k-th colon of
J . It follows from Theorem 3.5 that In has linear quotients with respect to the order of
generators given in Remark 3.3. For each n, we denote by s

(n)
k , the size of k-th colon of

In.

Theorem 4.3. Let In = DI(Pn) with n > 6. Then

βi(In) = βi(In−3)
+ βi(In−2) + βi−1(In−2)
+ βi(In−4) + 2βi−1(In−4) + βi−2(In−4)
− βi(In−6) − 3βi−1(In−6) − 3βi−2(In−6) − βi−3(In−6).

Proof. Recall from Theorem 3.2 that G(In) = An ∪ Bn, where
An = xn−1G(In−3) ∪ xn−1(xn−2An−4), and Bn = xnG(In−2).

Let |An| = t, and G(In−2) = {v1, . . . , vs}. We recall the equality in (3.3) from the proof
of Theorem 3.5 that states An : (xnvi) = (xn−1), for all i = 1, . . . , s. Let n ≥ 3 and
|G(In)| = r. It follows from Theorem 3.5 that In has linear quotients with respect to the
order of generators given in Remark 3.3. For each n, we denote by s

(n)
k , the size of k-th

colon of In. Then

βi(In) = βi(An) +
r∑

k=t+1

(
s

(n)
k

i

)

= βi(An) +
r∑

k=t+1

(
s

(n−2)
k + 1

i

)
by using (3.3)

= βi(An) +
r∑

k=t+1

[(
s

(n−2)
k

i

)
+
(

s
(n−2)
k

i − 1

)]
= βi(An) + βi(In−2) + βi−1(In−2).

Therefore

βi(An) = βi(In) − βi(In−2) − βi−1(In−2). (4.1)

On the other hand, for n > 4, using An = xn−1G(In−3) ∪ xn−1(xn−2An−4), and the
equality (3.1) in Theorem 3.5, we obtain

βi(An) = βi(In−3) +
t∑

k=p+1

(
a

(n−4)
k + 2

i

)

= βi(In−3) +
t∑

k=p+1

(
a

(n−4)
k

i − 2

)
+ 2

t∑
k=p+1

(
a

(n−4)
k

i − 1

)
+

t∑
k=p+1

(
a

(n−4)
k

i

)

where p = |G(In−3)|, and we denote the size of k-th colon of An by a
(n)
k . This gives

βi(An) = βi(In−3) + βi−2(An−4) + 2βi−1(An−4) + βi(An−4). (4.2)

For n > 6, combining (4.1) together with (4.2) gives us the required recursive formula
of total Betti numbers of In. �

Next we give a recursive formula to compute graded Betti numbers of DI(Pn), for n > 6.



10 A.A. Qureshi, A. Musapaşaoğlu

Theorem 4.4. Let In = DI(Pn) and n > 6. Then

βi,i+j(In) = βi,i+j−1(In−3)
+ βi,i+j−1(In−2) + βi−1,i+j−2(In−2)
+ βi,i+j−2(In−4) + 2βi−1,i+j−3(In−4) + βi−2,i+j−4(In−4)
− βi,i+j−3(In−6) − 3βi−1,i+j−4(In−6) − 3βi−2,i+j−5(In−6) − βi−3,i+j−6(In−6).

Proof. We proceed as in the case of total Betti numbers and follow the same notations
given in Theorem 4.3. Let G(In) = {u1, . . . , ur} and |An| = t. Theorem 4.1 together with
the linear quotient order given in Remark 3.3 gives

βi,i+j(In) = βi,i+j(An) +
r∑

k=t+1
deg uk=j

(
s

(n)
k

i

)

= βi,i+j(An) +
r∑

k=t+1
deg uk=j−1

(
s

(n−2)
k + 1

i

)
by using (3.3) and Theorem 3.2

= βi,i+j(An) +
r∑

k=t+1
deg uk=j−1

[(
s

(n−2)
k

i

)
+
(

s
(n−2)
k

i − 1

)]

= βi,i+j(An) + βi,i+j−1(In−2) + βi−1,i+j−2(In−2).
Therefore

βi,i+j(An) = βi,i+j(In) − βi,i+j−1(In−2) − βi−1,i−1+j−1(In−2). (4.3)

On the other hand, for n > 4, using An = xn−1G(In−3) ∪ xn−1(xn−2An−4) and the
equality (3.1) in Theorem 3.5, we obtain

βi,i+j(An) = βi,i+j−1(In−3) +
t∑

k=p+1
deg uk=j−2

(
a

(n−4)
k + 2

i

)

= βi,i+j−1(In−3) +
t∑

k=p+1
deg uk=j−2

[(
a

(n−4)
k

i − 2

)
+ 2

(
a

(n−4)
k

i − 1

)
+
(

a
(n−4)
k

i

)]

where p = |G(In−3)|. This gives
βi,i+j(An) = βi,i+j−1(In−3) + βi−2,i+j−4(An−4) + 2βi−1,i+j−3(An−4)

+ βi,i+j−2(An−4).
For n > 6, combining (4.3) together with the above equality gives us the required

recursive formula of the total Betti numbers of dominating ideals of path graphs. �
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