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Abstract
This paper aims to associate a new graph to nonzero unital modules over commutative
rings. Let R be a commutative ring having a nonzero identity and M be a nonzero unital
R-module. The zero intersection graph of annihilator ideals of R-module M, denoted by
CR(M), is a simple (undirected) graph whose vertex set M⋆ = M − {0}, and two distinct
vertices m and m′ are adjacent if annR(m)∩annR(m′) = (0). We investigate the conditions
under which CR(M) is a star graph, bipartite graph, complete graph, edgeless graph.
Furthermore, we characterize certain classes of modules and rings such as torsion-free
modules, torsion modules, semisimple modules, quasi-regular rings, and modules satisfying
Property T in terms of their graphical properties.
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1. Introduction

Throughout the paper, all rings under consideration are assumed to be commutative
with nonzero identity and all modules are nonzero unital. In particular, R will always
denote such a ring and M will denote such an R-module. Graph theory is a crucial
branch of mathematics studying graphs that are mathematical structures used to model
pairwise relations between discrete objects and has many applications in other areas such
as game theory, commutative algebra, designs of networks, chemistry, medicine, etc. For
more information on applications of graph theory, the reader may consult [40]. First,
in 1988, I. Beck initiated the study of graphs on commutative rings. In his paper [10],
the author considered the coloring of a given commutative ring R. Afterwards, Anderson
and Livingston introduced the zero divisor graph Γ(R) of R and studied the connections
between graphical properties of Γ(R) and algebraic properties of R. The zero divisor graph
Γ(R) of R is a simple (undirected) graph whose vertex set is zd∗(R), the set of nonzero
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zero divisors of R, where any two distinct vertices x and y are adjacent if xy = 0. For many
years, many researchers associated certain graphs to commutative rings/modules and they
characterized certain algebraic properties of these algebraic structures in terms of some
combinatorial properties of the given graphs. See, for example, [1], [3], [8], [11–13], [19]
[34–39] and [43]. The purpose of the paper is to associate a new graph CR(M) to a unital
R-module M and investigate the connections between the graphical properties of CR(M)
and the algebraic properties of M. For the sake of completeness, we will give some notions
and notations which will be followed in the sequel.

Let L be a submodule of M, K be a nonempty subset of M and I be a nonempty subset
of R. The residuals of L by K and I are defined as follows:

(L :R K) := {x ∈ R : xK ⊆ L}
(L :M I) := {m ∈ M : Im ⊆ L}.

In particular, if L = (0) is the zero submodule and K = {m} (I = {a}) is the singleton,
where m ∈ M (a ∈ R), then we use annR(m) (annM (a)) to denote ((0) :R {m}) (((0) :M
{a})). Recall from [41] that an R-module M is said to be a faithful module if annR(M) =
(0 : M) is the zero ideal (0). An R-module M is said to be a multiplication module
if every submodule N of M has the form N = annR(M/N)M, where annR(M/N) =
(N :R M) [9]. For more details on multiplication modules, we refer [2], [18] to the reader.
An element m ∈ M (a ∈ R) is said to be a torsion element (zero divisor on M) if
annR(m) ̸= (0) ((annM (a) ̸= (0)). The set of all torsion elements (zero divisors on M) is
denoted by T (M) (z(M)). Here, we note that if we consider the ring R as an R-module,
then T (R) = z(R) = zd(R). If T (M) = 0, then M is said to be a torsion-free module
[41]. Also, M is called a torsion module if T (M) = M. Otherwise, we say that M is a
non-torsion module, that is, there exists an element m ∈ M such that annR(m) = (0). An
R-module M is called a torsionable module if T (M) is a submodule of M [4]. Note that all
torsion-free modules are torsionable but the converse is not true in general. For instance,
Z-module Z×Zn is not a torsion-free, while it is a torsionable (non-torsion) module, where
n ≥ 2.

A commutative ring R is said to be a von Neumann regular ring if its every principal
ideal (a) of R is generated by an idempotent element e ∈ R [42]. The notion of von
Neumann regular ring and its generalizations have drawn considerable interest and studied
by many authors. See, for example, [17], [21–26] and [29]. Also, a ring R is said to be
a quasi-regular ring if its total quotient ring q(R) is a von neumann regular ring. It is
well known that a ring R is a quasi-regular ring if and only if R is reduced and for each
a ∈ R, annR(annR(a)) = annR(b) for some b ∈ R [17]. A commutative ring R is said to
satisfy Property A, if for each finitely generated ideal I of R contained in zd(R), then there
exists 0 ̸= x ∈ R such that xI = 0 [20]. We know that (by [20]) every quasi-regular ring also
satisfies Property A but the converse is not true in general. The class of rings satisfying
Property A is quite wide including integral domains, quasi-regular rings, polynomial rings,
etc. (See, [20]). Property A has been extended to modules in two different ways and
studied in several papers. See, for example, [5], [6], [15] and [30]. Recall from [5] that
an R-module M is said to satisfy Property T (Strong Property n-T ) if for each finitely
generated submodule N of M (each subset B of M with |B| ≤ n) contained in T (M),
then there exists 0 ̸= x ∈ R such that xN = (0) (xB = (0)).

Let G be a graph and V (G) be its set of vertices. For every two distinct vertices u
and v, by u − v, we mean u and v are adjacent. A subgraph G′ is said to be an induced
subgraph if G′ contains all the edges x − y in G for each x, y ∈ V (G′) [16]. Let n ≥ 0 be
an integer. A graph G is said to be an edgeless (n-empty) graph if G has some vertices
(n-vertices) but no edges. In particular, the 0-empty graph is called an empty graph. A
vertex u ∈ V (G) that is adjacent to every other vertex is called a universal vertex of
G. A graph G is said to be a star graph if there is a universal vertex u ∈ V (G) and
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any other two vertices different from u are not adjacent. A star graph with n vertices is
denoted by Sn. Let G be a graph and x1, x2, . . . , xn+1 ∈ V (G) be distinct vertices. Then
x1 − x2 − · · · − xn+1 is said to be a path from x1 to xn+1 of length n if xi − xi+1 for each
i = 1, 2, . . . , n. A graph G is said to be a connected graph if, for every pair of vertices x
and y, there is a path between x and y. A path x1 − x2 −· · ·− xn is said to be a cycle if all
vertices are distinct except x1 = xn. If every two distinct vertices x and y are adjacent in
G, then G is called a complete graph [16]. Also, a complete graph with n vertices is denoted
by Kn. An isolated point of a graph G is a vertex x ∈ V (G) such that there is no edge
between x and y for every y ∈ V (G). Also, for any x ∈ V (G), deg(x) denotes the degree
of x. ∆(G) is the maximum degree of G, that is, ∆(G) = sup{deg(x) : x ∈ V (G)}, and
similarly, δ(G) is the minimum degree of G. Note that G has no isolated point if and only
if δ(G) ≥ 1. Let x, y ∈ V (G) and d(x, y) denote the length of the shortest path (if there
exists) from x to y. If there is no path between x and y, we say that d(x, y) = ∞. The
diameter of a graph G is defined as diam(G) = sup{d(x, y) : x, y ∈ V (G)}. Also, the girth
of a graph G, denoted by girth(G), is the length of the shortest cycle (if there exists) in
G. If there is no cycle in G, then we assume that girth(G) = ∞. A graph G with the
vertex set V (G) is called a bipartite graph if the vertex set V (G) can be partitioned into
two disjoint subsets V1, V2 of V (G) such that every edge has endpoints from different sets
V1 and V2. Note that a nontrivial graph G is bipartite if and only if it has no odd cycle
[14, Theorem 1.12].

In this paper, we associate a graph CR(M) to an R-module M which we call the zero
intersection graph of annihilator ideals of M, and study its induced subgraph CR(T (M)).
The zero intersection graph of annihilator ideals CR(M) is a simple (undirected) graph
whose vertex set M⋆ = M − {0}, where two distinct vertices m and m′ are adjacent
if annR(m) ∩ annR(m′) = (0). Also, CR(T (M)) is an induced subgraph of CR(M) with
the vertex set V (CR(T (M))) = T (M) − {0}. Among other things in this paper, we show
that CR(M) and CR(T (M)) have different graphical properties since CR(M) is always
connected with diam(CR(M)) ≤ 2, where M is a non-torsion module, while CR(T (M))
may be an edgeless graph (See, Proposition 2.1 and Example 2.2). In Theorem 2.4, we
showed that either girth(CR(M)) = ∞ or girth(CR(M)) = 3. Also, we determine the
conditions under which CR(M) is a bipartite graph (See, Theorem 2.6). In Theorem
2.7, we give a test to detect universal vertices in CR(M). Furthermore, we characterize
certain classes of rings/modules such as quasi-regular rings, torsion-free modules, torsion
modules, semisimple modules, modules satisfying Property T in terms of the conditions
under which CR(M) and CR(T (M)) is an edgeless graph, star graph and complete graph
(See, Proposition 2.1, Theorem 2.3, Theorem 2.9, Theorem 2.11, Proposition 2.13).

2. Zero intersection graph of annihilator ideals

Recall that an ideal P of R is said to be an irreducible ideal if whenever P = I ∩ J for
some ideals I and J of R, then P = I or P = J [41]. A ring R is said to be a valuation
ring if the lattice L(R) of all ideals of R is totally ordered by inclusion, that is, I ⊆ J or
J ⊆ I for each I, J ∈ L(R) [27]. Note that in a valuation ring, every ideal is irreducible.
Darani and Hojjat extended the concept of irreducible ideals to 2-irreducible ideals. An
ideal I of R is called 2-irreducible if whenever I = J ∩ K ∩ L for some ideals J, K, L of
R, then either I = K ∩ L or I = J ∩ K or I = J ∩ L [33]. Note that every irreducible
ideal is a 2-irreducible ideal but the converse is not true in general. For instance, I = 6Z
is a 2-irreducible ideal which is not irreducible in the ring Z of integers.

Now, we investigate the conditions under which CR(T (M)) or CR(M) is an edgeless
graph.
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Proposition 2.1. Let M be an R-module and 0 ̸= m, m′ ∈ M . Then the following state-
ments are satisfied.

(a) m and m′ are adjacent in CR(M) if and only if rm and rm′ are adjacent in CR(M)
for each r ∈ R − z(M).

(b) If annR(m) ⊆ annR(m′) or annR(m′) ⊆ annR(m) for some m, m′ ∈ T (M), then m
and m′ can not be adjacent in CR(T (M)). In particular, if R is a valuation (chain) ring,
then CR(T (M)) is an edgeless graph.

(c) If zero ideal is an irreducible ideal, then CR(T (M)) is an edgeless graph. In partic-
ular, if R is an integral domain, then CR(T (M)) is an edgeless graph.

(d) Assume that |V (CR(M))| ≥ 2. If CR(M) is an edgeless graph, then M is a torsion
module, that is, M = T (M).

(e) If M is not a faithful module, then CR(M) is an edgeless graph.
(f) M is a torsion-free module if and only if CR(T (M)) is an empty graph.
(g) CR(T (M)) is an edgeless graph if and only if M satisfies strong Property 2-T.
(h) Suppose that M is a non torsion module. Then CR(M) is a connected graph with

diam(CR(M)) ≤ 2.

Proof. (a) : Let m − m′ in CR(M). It is clear that rm and rm′ are two distinct nonzero
elements of M for each r ∈ R−z(M). Since m and m′ are adjacent, annR(m)∩annR(m′) =
(0). As r ∈ R−z(M), we have annR(rm)∩annR(rm′) = annR(m)∩annR(m′) = (0). Then
rm and rm′ are adjacent in CR(M). Suppose that rm and rm′ are adjacent in CR(M). Then
annR(rm) ∩ annR(rm′) = (0). As annR(m) ∩ annR(m′) ⊆ annR(rm) ∩ annR(rm′), we get
m and m′ are adjacent in CR(M).

(b) : Without loss of generality, we may assume that annR(m) ⊆ annR(m′) for some
nonzero elements m, m′ ∈ T (M). If m and m′ are adjacent in CR(T (M)), we have
annR(m) ∩ annR(m′) = annR(m) = (0), which implies that m /∈ T (M), a contradic-
tion. Thus m and m′ are not adjacent in CR(T (M)). The rest is clear.

(c) : Suppose that zero ideal is an irreducible ideal of R. Assume that m and m′ are
adjacent in CR(T (M)). Then we have annR(m) ∩ annR(m′) = (0). Since zero ideal is an
irreducible ideal, we get either annR(m) = (0) or annR(m′) = (0), which implies either
m /∈ T (M) or m′ /∈ T (M). This is a contradiction. Therefore, CR(T (M)) is an edgeless
graph. The rest follows from the fact that every prime ideal is irreducible.

(d) : Let CR(M) be an edgeless graph. Suppose to the contrary that M is not a tor-
sion module. Then there exists m ∈ M such that annR(m) = (0). Since |V (CR(M))| ≥
2, choose an element m′ ∈ M such that m′ ∈ M − {0, m}. Then we have annR(m) ∩
annR(m′) = (0), which implies that m and m′are adjacent in CR(M). This is a contradic-
tion. Thus we have M = T (M).

(e) : Suppose that M is not a faithful module. Then there exists a nonzero element
x ∈ R such that xM = 0. Let m and m′ be two distinct nonzero elements of M . Then
xm = xm′ = 0 and so x ∈ annR(m) ∩ annR(m′). Hence, m and m′ are not adjacent in
CR(M).

(f) : Suppose that M is a torsion-free module. Then we have T (M) − {0} = ∅ and
so CR(T (M)) is an empty graph. Let CR(T (M)) be an empty graph. Then we have
T (M) − {0} = ∅, which implies that T (M) = {0}. Thus, M is a torsion-free module.

(g) : Suppose that CR(T (M)) is an edgeless graph. Let B = {m, m′} ⊆ T (M) with
|B| = 2. We may assume that m and m′ are nonzero. Since CR(T (M)) is an edgeless
graph, we have annR(m)∩annR(m′) ̸= (0), which implies that annR(B) ̸= (0). Therefore,
M satisfies strong Property 2-T. Let M satisfy strong Property 2-T. Assume that m and
m′ are adjacent in CR(T (M)). Then m, m′ ∈ T (M) and pick B = {m, m′} ⊆ T (M). Since
M satisfies strong Property 2-T, we have annR(B) = annR(m) ∩ annR(m′) ̸= (0), which
implies that m and m′ are not adjacent in CR(T (M)). Therefore, CR(T (M)) is an edgeless
graph.
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(h) : Suppose that M is a non-torsion module. Let m /∈ T (M). Since annR(m) = (0), m
is a universal vertex. If M is a torsion-free module, then it is clear that diam(CR(M)) =
1. Now, choose m′, m′′ ∈ T (M). Note that m′ − m − m′′ is a path so we have d(m′, m′′) ≤
2, which completes the proof. □

Note that CR(T (M)) and CR(M) have different graphical properties. The following
example illustrates this.

Example 2.2. Consider the R = Z-module M = Z × Z3. Then note that T (M) =
{(0, 0), (0, 1), (0, 2)} and M − T (M) = {(x, k) : x ̸= 0 and k = 0, 1, 2}. Since M is non
torsion module, CR(M) is a connected graph with diam(CR(M)) ≤ 2. On the other hand,
note that annR((0, 1)) = annR((0, 2)) = 3Z, it is clear that (0, 1) and (0, 2) are not
adjacent. Therefore, CR(T (M)) is an edgeless graph.

The following first figure illustrates Example 2.2. Note that in the following figure (z, k)
and (x, y) denote the arbitrary infinite elements of Z-module Z × Z3.

(0, 1) (0, 2)

(z, k)

(0, 2)

(x, y)

(0, 1)

Figure 1. CZ(T (Z × Z3)) vs CZ(Z × Z3)

2 3 4 2 3 4

1 5

Figure 2. CZ6(T (Z6)) vs CZ6(Z6)
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Theorem 2.3. Suppose that zero ideal is a 2-irreducible ideal of R. Then the following
statements are equivalent.

(i) M is an R-torsionable module satisfying property (T).
(ii) CR(T (M)) is an edgeless graph.

Proof. (i) ⇒ (ii) : Assume that M is an R-torsionable module satisfying property (T).
Let m1, m2 ∈ T (M). Since M is R-torsionable, T (M) is a submodule and so N = Rm1 +
Rm2 ⊆ T (M). By Propoerty (T), we get annR(N) = annR(m1) ∩ annR(m2) ̸= (0) and so
CR(T (M)) is an edgeless graph.

(ii) ⇒ (i) : Suppose that CR(T (M)) is an edgeless graph. Let m ∈ T (M). Then for each
a ∈ R, we have am ∈ T (M). Now, take 0 ̸= m, m′ ∈ T (M). Since CR(T (M)) is an edgeless
graph, we have annR(m) ∩ annR(m′) ̸= (0), which implies that m + m′ ∈ T (M). Thus,
M is an R-torsionable module. Now, assume that N is a finitely generated submodule with
N ⊆ T (M). Then there exists m1, m2, ..., mn ∈ M such that N =

n∑
i=1

Rmi ⊆ T (M). Since

CR(T (M)) is edgeless, we get ann(mi) ∩ ann(mj) ̸= (0) for all 1 ≤ i, j ≤ n. Assume that
annR(N) = (0). Then we have

n∩
i=1

annR(mi) = (0). As (0) is 2-irreducible, we conclude

that there exist distinct i1, i2 ∈ {1, 2, ..., n} such that annR(mi1) ∩ annR(mi2) = (0), a
contradiction. So that annR(N) ̸= (0) and thus M satisfies property (T). □
Theorem 2.4. Let M be an R-module with |V (CR(M))| > 2. The following statements
are satisfied.

(i) If M is a non torsion module, then girth(CR(M)) = 3.
(ii) If M is a torsion module, then girth(CR(M)) = ∞ or girth(CR(M)) = 3.

Proof. (i) : Suppose that M is a non torsion module. Then there exists m ∈ M such that
ann(m) = 0. Now, we have two cases. Case 1: Let char(R) ̸= 2. This gives m ̸= −m
since ann(m) = 0. As |V (CR(M))| > 2, choose another vertex m∗ ∈ M − {m, −m}. Then
we conclude that m − (−m) − m∗ − m is a triangle. Case 2: Let char(R) = 2. Then
m∗ = −m∗ for all m∗ ∈ M. Choose 0 ̸= m∗ ∈ M − {m}. Thus we conclude that m − m∗ −
(m + m∗) − m is a triangle. Hence, we have girth(CR(M)) = 3.

(ii) : Suppose that M is a torsion module. We may assume that girth(CR(M)) ̸=
∞. Then CR(M) can not be edgeless graph. Then we can choose an edge m − m∗ in
CR(M). If m + m∗ = 0, then ann(m∗) = ann(−m) = ann(m). This gives ann(m) =
ann(m) ∩ ann(m∗) = 0 and thus M is a non torsion module, a contradiction. Then we
have m + m∗ ̸= 0. Also one can easily check that m − m∗ − (m + m∗) − m is a triangle.
In this case, girth(CR(M)) = 3. □
Corollary 2.5. Let M be an R-module with |V (CR(M))| > 2. Then girth(CR(M)) = ∞
or girth(CR(M)) = 3.

Proof. Follows from Theorem 2.4. □
Theorem 2.6. Let M be an R-module with |V (CR(M))| > 1. The following statements
are equivalent.

(i) CR(M) is a bipartite graph.
(ii) CR(M) is an edgeless graph or CR(M) ∼= K2.
(iii) girth(CR(M)) = ∞.

Proof. (i) ⇒ (ii) : Let CR(M) be a bipartite graph. Now, we will show that CR(M)
is an edgeless graph or CR(M) ∼= K2. If |V (CR(M))| = 2, then the claim is trivial. So
we assume that |V (CR(M))| > 2. Since CR(M) is bipartite, it can not contain a triangle.
Then by the proof of Theorem 2.4, CR(M) is an edgeless graph.

(ii) ⇒ (iii) : It is clear.
(iii) ⇒ (i) : By the assumption, there is no odd cycle in CR(M). The rest follows from

[14, Theorem 1.12]. □
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Now, we are ready to give a test to detect universal vertices in CR(M).

Theorem 2.7. Let M be an R-module. An element 0 ̸= m ∈ M is a universal vertex in
CR(M) if and only if one of the following conditions holds.

(a) annR(m) = 0.
(b) T (M) = Rm = {0, m}.
(c) There exists an idempotent element 0, 1 ̸= e ∈ R such that annR(m) = (1 − e)R,

annR(m′) = eR = {0, e} and m + m′ /∈ T (M) for every m′ ∈ T (M) − {0, m}.

Proof. (⇒) : Suppose that 0 ̸= m is a universal vertex in CR(M) and ann(m) ̸= 0. Let
a /∈ annR(m). Then, am ̸= 0. If am ̸= m, then we have am−m in CR(M). This implies that
annR(m) ∩ annR(am) = annR(m) = (0), which is a contradiction. Thus, am = m, which
implies that Rm = {0, m}. If T (M) = Rm, then we are done. So assume that T (M) ̸=
Rm. Now, choose an element m′ ∈ T (M) − {0, m}. Then we conclude that annR(m) ∩
annR(m′) = 0. Also, it is easy to see that R/annR(m) ∼= Z2 so that annR(m) is a maximal
ideal of R. This implies that annR(m)+annR(m′) = R since annR(m′) ⊈ annR(m). Then,
by the Chinese Remainder Theorem, we get R ∼= R/annR(m) × R/annR(m′). Now, we
will show that annR(m′) = eR = {0, e} for some idempotent element 0, 1 ̸= e ∈ R. Let
0 ̸= e ∈ annR(m′). Then e /∈ annR(m). This implies that em = m and so (1 − e)m = 0.
Then we have e(1−e) ∈ annR(m)∩annR(m′) = (0), which implies that e = e2. Now, take
y ∈ annR(m′). Then y(1 − e) ∈ annR(m) ∩ annR(m′) = 0 implying that y = ey ∈ eR and
so annR(m′) = eR. Also, note that (1 − e)R ⊆ annR(m). Let 0 ̸= t ∈ annR(m). Then we
have et ∈ annR(m) ∩ annR(m′) = (0). Thus we conclude that t = t − et = t(1 − e) ∈ (1 −
e)R. Hence, we get annR(m) = (1−e)R. As R/annR(m) = R/(1−e)R ∼= eR ∼= Z2, we have
eR = annR(m′) = {0, e}. Now, we will show that m+m′ /∈ T (M). Suppose that m+m′ ∈
T (M). Then, m + m′ is nonzero and m + m′ /∈ {m, m′} . As annR(m) is a maximal ideal
and annR(m + m′) ⊈ annR(m), we get annR(m + m′) + annR(m) = R. Then we conclude
that annR(m) + [annR(m′) ∩ annR(m + m′)] = R. Since annR(m′) ∩ annR(m + m′) ⊆
annR(m), we have annR(m) = R, which implies that m = 0, a contradiction. Therefore,
m + m′ /∈ T (M). Now, choose m′′ ∈ T (M) − {0, m}. A similar argument shows that
there exists an idempotent element 0, 1 ̸= e′ ∈ R such that annR(m′′) = e′R = {0, e′} and
annR(m) = (1−e′)R = (1−e)R. Since m−m′′ in CR(M), we have annR(m)∩annR(m′′) =
(1 − e)R ∩ e′R = (1 − e)e′R = (0), which implies that e′ = ee′ ∈ eR = {0, e}. Since e′ ̸= 0,
we have e′ = e, which completes the proof.

(⇐) : First Case: Suppose that annR(m) = 0. Then clearly, m is a universal vertex
in CR(M).

Second Case: Suppose that T (M) = Rm = {0, m}. Take an element m′ ∈ M⋆ −
{m}. Then we have annR(m′) = 0 and so annR(m) ∩ annR(m′) = (0), which implies that
m − m′ in CR(M).

Third Case: Suppose that (c) holds. Let m′ ∈ M⋆ − {m}. If m′ ∈ T (M), then
by (c), we have ann(m′) = eR and annR(m) = (1 − e)R for some idempotent element
0, 1 ̸= e ∈ R. Then we have annR(m) ∩ annR(m′) = e(1 − e)R = (0), which implies that
m − m′ in CR(M). If m′ /∈ T (M), then clearly we have m − m′ in CR(M). □

Recall that a ring R is said to be a decomposable ring if R ∼= R1 ×R2 for some nontrivial
rings R1 and R2. Otherwise, we say that R is indecomposable. It is clear that R is
indecomposable if and only if all idempotents are the only 0, 1. Recall from [41] that a
commutative ring R is said to be a quasi-local if it has a unique maximal ideal. Note
that all quasi-local rings are indecomposable. But the converse is not true in general. For
instance, let k be a field. Then k[X] is indecomposable but not a quasi-local ring. As a
consequence of Theorem 2.7, we have the following explicit result.

Corollary 2.8. Let M be an R-module. The following statements are satisfied.
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(i) Suppose that R is an indecomposable ring. Then 0 ̸= m ∈ M is a universal vertex
in CR(M) if and only if annR(m) = (0) or T (M) = Rm = {0, m}.

(ii) Suppose that R is a quasi-local ring. Then 0 ̸= m ∈ M is a universal vertex in
CR(M) if and only if annR(m) = (0) or T (M) = Rm = {0, m}.

(iii) Suppose that M is a torsionable R-module. Then 0 ̸= m ∈ M is a universal vertex
in CR(M) if and only if annR(m) = (0) or T (M) = Rm = {0, m}.

(iv) Suppose that R is an integral domain. Then 0 ̸= m ∈ M is a universal vertex in
CR(M) if and only if annR(m) = (0) or T (M) = Rm = {0, m}.

Now, we are ready to determine when CR(M) is a star graph.

Theorem 2.9. Let M be an R-module. Then the following statements are equivalent.
(i) CR(M) is a star graph.
(ii) CR(M) ∼= S1 or CR(M) ∼= S2.
(iii) M = Rm = {0, m} or M = {0, m, −m} with ann(m) = 0.

Proof. (i) ⇒ (ii) : Suppose that CR(M) is a star graph. Then there exists 0 ̸= m ∈ M
is a universal vertex in CR(M). Assume that ann(m) = 0. First, we will show that
|V (CR(M))| ≤ 2. Let |V (CR(M))| ≥ 3. Let m1, m2 ∈ V (CR(M)) − {m}. If annR(m1) =
(0) or annR(m2) = (0), then note that m − m1 − m2 − m is a triangle, which is a con-
tradiction. Thus m1, m2 ∈ T (M) − {m}. Choose x ∈ R. Assume that x ̸= 0, 1. Then
note that xm ̸= m and (1 − x)m ̸= m since annR(m) = (0). Let y ∈ annR(xm) ∩
annR((1 − x)m). Then we have yx = 0 = y(1 − x) since annR(m) = (0). This implies
that y = yx = 0 so that annR(xm) ∩ annR((1 − x)m) = (0). If xm ̸= (1 − x)m, then
m − xm − (1 − x)m − m is a triangle, which is a contradiction. Thus, we have xm =
(1 − x)m, which implies that 2x = 1, that is, 2 is a unit of R. Now, take a unit element
a ∈ R. If am ̸= m, then m − am − m1 − m is a triangle, which is again a contradiction.
Thus am = m and so a = 1. Since 2 is a unit of R, we conclude that 2 = 1, again a
contradiction. Therefore, x = 0 or x = 1, that is, R = Z2. However, this implies that
annR(m1) = R = annR(m2), again a contradiction. Therefore, |V (CR(M))| ≤ 2. In this
case, CR(M) ∼= S1 or CR(M) ∼= S2.

Now, assume that ann(m) ̸= 0. Since m is a universal vertex in CR(M), by Theorem
2.7, we have two cases. Case 1: T (M) = Rm = {0, m}. We will show that |M − T (M)| ≤
1. Take two distinct elements m1, m2 ∈ M − T (M). Then note that m1 − m − m2 − m1
is a triangle, which is a contradiction. Thus either M − T (M) = ∅ or M − T (M) = {m′}
for m′ ∈ M. If M − T (M) = ∅, then M = {0, m} = Rm = T (M) and so CR(M) ∼= S1. So
assume that M − T (M) = {m′} for m′ ∈ M. In this case, we have m′ = −m which implies
that ann(m) = ann(m′) = 0 which is a contradiction. Thus, M = {0, m} = Rm = T (M)
and CR(M) ∼= S1.

Case 2: Assume that there exists an element m′ ∈ T (M) − {0, m}. In this case, by
Theorem 2.7, there exists an idempotent element 0, 1 ̸= e ∈ R such that annR(m) = (1 −
e)R, annR(m∗) = eR = {0, e} and m + m∗ /∈ T (M) for every m∗ ∈ T (M) − {0, m}. Then
m and m′ are adjacent. In this case, M −T (M) = ∅. Otherwise, we would have a triangle.
Indeed, if y ∈ M − T (M), y − m − m′ − y is a triangle, which is a contradiction. Thus
M − T (M) = ∅, that is, M is a torsion module. On the other hand, by Theorem 2.7,
m + m′ /∈ T (M), that is, M − T (M) ̸= ∅, again a contradiction. Thus the second case is
impossible, that is CR(M) ∼= S1.

(ii) ⇔ (iii) : It is clear.
(ii) ⇒ (i) : It is straightforward. □
Let M be an R-module. Recall from [7] that M is said to be a simple module if its

only proper submodule is the zero submodule. Also, M is said to be a semisimple module
if it is a direct sum of simple submodules. In [31], the authors introduced and studied
the concept of torsion graph for modules as follows. The torsion graph ΓR(M) of M is a
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simple graph whose vertices are non-zero torsion elements of M and two different elements
x, y are adjacent if and only if annR(x) ∩ annR(y) ̸= 0. Clearly, the torsion graph ΓR(M)
of M is the complement graph of CR(T (M)). By using this fact and some results in [31],
[32], we obtain the following proposition.

Proposition 2.10. Let M be a multiplication R-module. The following statements are
satisfied.

(1) If CR(T (M)) has a universal vertex, then M = M1⊕M2 is a faithful R-module where
M1 and M2 are two submodules of M such that M1 has only two elements. Especially, if
M is finite then M2 is simple.

(2) CR(T (M)) is a complete graph if and only if M ≃ M1 ⊕ M2 with |M1| ≤ 2 and
|M2| ≤ 2.

Proof. (1) Follows from [31, Theorem 2.6].
(2) Follows from [32, Corollary 2.3]. □

Now, we determine the conditions under which CR(M) is a complete graph (even if M
is multiplication or not).

Theorem 2.11. Let M be an R-module. Then CR(M) is a complete graph if and only of
one of the following conditions holds.

(i) M is a torsion-free module.
(ii) T (M) = {0, m} = Rm for some 0 ̸= m ∈ M. In this case, M is an R-torsionable

module.
(iii) There exist m, m′ ∈ T (M) and a non trivial idempotent element e ∈ R such that

annR(m) = (1 − e)R, annR(m′) = eR and T (M) = {0, m, m′}, M = Rm ⊕ Rm′, where
Rm = {0, m} and Rm′ = {0, m′}. In this case, M is semisimple and CR(M) is a triangle.

Proof. (⇒) : Suppose that CR(M) is a complete graph. Assume that M is not a torsion-
free module. First case: Assume that T (M) has one nonzero element, that is, T (M) =
{0, m}. Let x ∈ R. Then xm ∈ T (M), which implies that xm = 0 or xm = m, that
is, Rm = {0, m} = T (M). Second Case: Assume that T (M) has at least two nonzero
element. Choose m, m′ ∈ T (M) − {0}. Since m is a universal vertex, by Theorem 2.7,
we have annR(m) = (1 − e)R, annR(m′) = eR and m + m′ /∈ T (M) for some nontrivial
idempotent e ∈ R. Now, choose another element m⋆ /∈ T (M). Since annR(em⋆) = (1−e)R,
we have em⋆ = m. Otherwise, em⋆ and m are not adjacent, which is a contradiction.
Similarly, we have (1−e)m⋆ = m′. This implies that m⋆ = em⋆ +(1−e)m⋆ = m+m′, that
is, M −T (M) = {m+m′}. Now, choose m′′ ∈ T (M)−{0, m}. Since m is universal vertex,
by Theorem 2.7, we have m + m′′ /∈ T (M), which implies that m + m′′ = m + m′, that
is, m′′ = m′. Thus, we have T (M) = {0, m, m′} and so M = {0, m, m′, m + m′}. As m, m′

are universal vertices, one can easily show that Rm = {0, m} and Rm′ = {0, m′}, which
implies that M = Rm ⊕ Rm′. Therefore, M is semisimple and CR(M) is a triangle with
the cycle m − (m + m′) − m′ − m.

(⇐) : First Case: Suppose that M is a torsion-free module. Then for each 0 ̸= m ∈
M, we have annR(m) = (0). In this case, m is a universal vertex so that CR(M) is a
complete graph. Second Case: Now, assume that T (M) = {0, m} = Rm for some
0 ̸= m ∈ M. Choose, 0 ̸= m′ ∈ M − {m}. Then by assumption, annR(m′) = (0), which
implies that m − m′ in CR(M). Therefore, CR(M) is a complete graph. Third Case:
Assume that (iii) holds. Then m − (m + m′) − m′ − m is a cycle, that is, CR(M) is a
triangle. □

Theorem 2.12. (i) Let M be a module over an indecomposable ring R. Then CR(M) is
a complete graph if and only if M is a torsion-free module or M is a torsionable module
with T (M) = {0, m} = Rm for some 0 ̸= m ∈ M.
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(ii) Let M be a module over a quasi-local ring. Then CR(M) is a complete graph if and
only if M is a torsion-free module or M is a torsionable module with T (M) = {0, m} =
Rm for some 0 ̸= m ∈ M.

Proof. (i) : Follows from Theorem 2.11.
(ii) : Follows from (i). □

Recall from [17, Proposition 2.5] that a ring R is a quasi-regular ring if and only if for
every x ∈ R, there exists y ∈ R such that xy = 0 and x + y is a regular element (non zero
divisor) of R. Recently, Jayaram et al. extended quasi-regular rings to modules in their
paper [22]. An R-module M is called a weak quasi regular if for each m ∈ M, there exists
r ∈ R such that annM (annR(m)) = annM (r). Also, recall from [28] that an R-module
M is said to be a reduced module, if whenever a2m = 0 for some a ∈ R and m ∈ M, then
am = 0.

Proposition 2.13. Let M be a non-torsion reduced R-module. If CR(T (M)) is a complete
graph and R satisfies property (A), then R is a quasi regular ring.

Proof. We will show that for any a ∈ R, there exists b ∈ R such that ab = 0 and a+b is a
regular element. Assume that 0 ̸= a is a zero divisor of R. Then there exists 0 ̸= b ∈ R such
that ab = 0. Since M is non-torsion, there exists m ∈ M such that annR(m) = (0). Assume
that am = bm. Then a2m = abm = 0, by the fact that M is reduced module, we have
am = 0 so that a = 0, a contradiction. Thus we have am ̸= bm. Since annR(m) = (0), it is
clear that annR(am) = annR(a) ̸= (0) and annR(bm) = annR(b) ̸= (0) so that am, bm ∈
T (M) − {0}. Since CR(T (M)) is a complete graph, we deduce annR(am) ∩ annR(bm) =
annR(a) ∩ annR(b) = (0). This implies that annR(Ra + Rb) = (0). Since R satisfies
Property (A), Ra + Rb has a regular element so that xa + yb is a regular element for
some x, y ∈ R. Now, we will show that a + yb is regular. Suppose not. There exists
0 ̸= t ∈ R such that t(a + yb) = 0 and so ta = −tyb. Since M is reduced non-torsion
module, R is reduced ring. As R is reduced ring and ta2 = −tyab = 0 we have ta = 0 and
this yields tyb = 0. Then we have t(xa + yb) = x(ta) + tyb = 0, a contradiction. So that
a + yb is a regular element and also a(yb) = y(ab) = 0. Thus R is a quasi regular ring. □

If M is a non-torsion module, then it is clear that CR(M) is a connected graph, so
CR(M) has no isolated point. However, in this case, there may be an isolated point in
CR(T (M)) (See, Example 2.2). Now, we investigate the condition under which CR(T (M)) has
no isolated point.

Proposition 2.14. Let M be a reduced multiplication non-torsion module. If M is a weak
quasi regular module, then CR(T (M)) has no isolated point.

Proof. Suppose that M is a weak quasi regular module and 0 ̸= m ∈ T (M). Then there
exists a ∈ R such that annM (annR(m)) = annM (a). Then annR(m) = annR(annM (a)).
Take m⋆ ∈ M − T (M) and put m′ = am⋆. Note that annR(m′) = annR(a). If annR(a) =
(0), then (annM (a) : M) = annR(a) = (0) and so annM (a) = (annM (a) : M)M = (0)
implying that annR(m) = R, a contradiction. Thus we get annR(m′) ̸= (0), i.e., 0 ̸= m′ ∈
T (M). If m = am⋆, then am = a2m⋆ = 0 and so am⋆ = m = 0, a contradiction. Thus
m ̸= am⋆. Now we will show that annR(m) ∩ annR(m′) = (0). First note that annR(m) ∩
annR(m′) = annR(annM (a)) ∩ annR (a). Take x ∈ annR(annM (a)) ∩ annR (a) . Then we
have xa = 0 and also xannM (a) = (0). Since M is multiplication, we have xannM (a) =
x(annM (a) : M)M = xannR(a)M = (0). This implies that x2M = (0). Since x2m⋆ =
0, we have xm⋆ = 0 and so x = 0. Therefore, m and m′ are adjacent. □

Theorem 2.15. Suppose that M is an R-module and CR(M) has no isolated point with
∆(CR(M)) < ∞. Then M satisfies the ascending chain condition on cyclic submodules.
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Proof. Assume that M is a non-torsion module, that is, M − T (M) ̸= ∅. Then there
exists m ∈ M such that annR(m) = (0), which implies that m is a universal vertex. Since
∆(CR(M)) < ∞, we have M is finite so that M is a Noetherian module, which completes
the proof.

Now, assume that M is a torsion module, that is, M = T (M).
Take an ascending chain of cylic submodules of M as follows:

Rm1 ⊆ Rm2 ⊆ · · · ⊆ Rmk ⊆ · · ·
This implies that annR(m1) ⊇ annR(m2) ⊇ · · · ⊇ annR(mk) ⊇ · · · . Since CR(M) has

no isolated point, there exists m ∈ T (M) = M such that m − m1 in CR(M), that is,
annR(m) ∩ annR(m1) = (0). This implies that m − mi since annR(mi) ⊆ annR(m1). As
∆(CR(M)) < ∞, we have deg(m) < ∞, which implies that Rmk = Rmk+1 = · · · for some
k ∈ N which completes the proof. □
Proposition 2.16. Let M be an R-module and CR(T (M)) be a complete graph. Then,
either T (M) = {0, m} for some 0 ̸= m ∈ M or Jac(R) = (0).
Proof. Suppose that CR(T (M)) is a complete graph. Let 0 ̸= m ∈ T (M) and x ∈
Jac(R). Assume that x /∈ annR(m). Then xm ̸= 0. Since CR(T (M)) is a complete graph,
m−xm in CR(T (M)). This implies that annR(m)∩annR(xm) = annR(m) = (0), which is a
contradiction. Thus, we have x ∈ annR(m), which implies that Jac(R) ⊆ annR(m). This
implies that Jac(R) ⊆

∩
m∈T (M)

annR(m). Suppose that T (M) has at least two nonzero

elements. Then
∩

m∈T (M)
annR(m) = (0), which implies that Jac(R) = (0). □

In Theorem 2.11, we determine when CR(M) is a complete graph. Now, we investigate
the completeness of CR(T (M)).
Theorem 2.17. Let M be an R-module. Then CR(T (M)) is a complete graph if and only
if one of the following conditions holds.

(i) T (M) = {0, m} for some 0 ̸= m ∈ M.
(ii) R ∼= Z2×Z2 and T (M) = {0, m, m′}, M = Rm⊕Rm′, where Rm = {0, m} and Rm′ =

{0, m′}. In this case, M is semisimple, CR(T (M)) ∼= K2 and CR(M) ∼= K3.

Proof. (⇒) : Suppose that CR(T (M)) is a complete graph. Assume that T (M) has at
least two nonzero elements. Choose 0 ̸= m, m′ ∈ T (M). Since CR(T (M)) is a complete
graph, m − m′ in CR(T (M)), which implies that annR(m) ∩ annR(m′) = (0). Also note
that R/ann(m) ∼= Z2 ∼= R/ann(m′). Thus, annR(m) and annR(m′) are maximal ideals of
R. This implies that annR(m)+annR(m′) = R, by the Chinese Remainder Theorem, R ∼=
R/annR(m)×R/annR(m′) ∼= Z2 ×Z2. Also, one can easily see that Rm = {0, m}, Rm′ =
{0, m′}. Now, let R = {0, 1, e, 1 − e}, where e is a nontrivial idempotent. Without loss
of generality, we may assume that annR(m) = eR and annR(m′) = (1 − e)R. Note that
m + m′ /∈ {0, m, m′}. If m + m′ ∈ T (M), by similar argument in the proof of Theorem 2.7,
we have m = 0, a contradiction. Thus m+m′ /∈ T (M). Choose, 0 ̸= m′′ ∈ T (M). Note that
annR(m′′) = eR or annR(m′′) = (1−e)R since all the ideals of R are (0), eR, (1−e)R and
R. Without loss of generality, we may assume that annR(m′′) = eR. If m′′ ̸= m, m
and m′′ can not be adjacent, which is a contradiction. Thus m = m′′ and so T (M) =
{0, m, m′}. Now, choose an element m⋆ ∈ M − T (M). Then annR(em⋆) = (1 − e)R and
annR((1 − e)m⋆) = eR. Since CR(T (M)) is a complete graph, we have em⋆ = m′ and
(1−e)m⋆ = m, which implies that m⋆ = em⋆+(1−e)m⋆ = m+m′. Therefore, M −T (M) =
{m + m′} and so M = {0, m, m′, m + m′}. Thus M = Rm ⊕ Rm′. The rest is easy.

(⇐) : Suppose that T (M) = {0, m}. Then CR(T (M)) ∼= K1. Now assume that (ii)
holds. Then CR(T (M)) ∼= K2 is a complete graph. □
Corollary 2.18. Suppose that M is not a torsion-free module. Then CR(T (M)) is a
complete graph if and only if CR(M) is a complete graph.
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