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Abstract 

This paper presents a mathematical model describing climate change in the oxygen-

plankton system. The model consists of a system of non-linear ordinary differential 

equations. The Nonstandard Finite Difference (NSFD) method is applied to 

discretize the non-linear system. The stability of the continuous and discrete model 

is presented for the given parameters in the literature. Similar results for stability are 

obtained in both continuous and discrete models. The model is solved by the Runge–

Kutta–Fehlberg (RKF45) method, and the numerical results are compared in 

graphical forms. Moreover, the comparison of numerical results obtained by the 

NSFD method, the Euler method and the fourth order Runge-Kutta (RK4) method is 

presented in tabular form. Furthermore, the efficiency of the NSFD method 

compared to classical methods such as the Euler method and the RK4 method for the 

bigger step sizes is shown in tabular forms. 
 

 

1. Introduction 

 

Climate change and global warming are serious 

threats to ecological life. One of the results of climate 

change and global warming is the increasing of the 

sea surface temperature in the oceans. Therefore, the 

photosynthetic production rate of phytoplankton 

changes. Mathematical models describing climate 

change are developed. Some of them can be 

summarized as follows. Sekerci and Petrovskii [1] 

consider a model of coupled plankton-oxygen 

dynamics under climate change. The stability of the 

steady states is analyzed and detailed numerical 

simulations are presented in [1]. Moreover, they 

analyze both analytically and numerically a model of 

the oxygen-phytoplankton-zooplankton dynamics in 

[2]. The climate models are presented by 

Priyadarshini and Veeresha [3]. The stability analysis 

is presented, and the Adams Predictor-Corrector 

method is applied to obtain the numerical results in 

[3]. Mondal et al. [4] give a detailed analysis of the 
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dynamics of the oxygen-plankton model with a 

modified Holling type II functional response. 

Furthermore, the continuous model given in [1] is 

reconsidered in the fractional cases in [5-7]. A new 

delayed plankton–oxygen dynamical model is 

presented by Xu et al. [8]. They explore bifurcation 

and stability. Gökçe [9] analyzes the stability of a 

mathematical model of oxygen–phytoplankton 

interactions. Chowdhury et al. [10] consider a coupled 

model presenting plankton-oxygen dynamics and 

investigate the model using analytical techniques and 

numerical simulations.  

Remarkable mathematical methods can be 

encountered in solving mathematical models. In this 

study, we prefer the Nonstandard Finite Difference 

(NSFD) method developed by Mickens [11-15] 

considering the advantages over the classical and 

standard finite difference methods. The NSFD 

method can be considered as a generalization of the 

usual discrete models of differential equations. In 

many cases, it removes the numerical instabilities 
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encountered in usual finite difference schemes. The 

method can be applied to both ordinary and partial 

differential equations. Moreover, the NSFD method 

preserves dynamic consistency. By virtue of the 

advantages of NSFD schemes, many researchers have 

been studying NSFD schemes for solving 

mathematical models. The detailed studies presented 

about the NSFD schemes can be found in [16, 17]. 

Moreover, there have been numerous studies of the 

NSFD schemes in the literature, recently. For 

example, Khan et al. [18] consider a nonlinear 

mathematical model of COVID-19. The NSFD 

schemes are constructed, local and global stability are 

studied in [18]. Zhang et al. [19] examine an epidemic 

model for waterborne disease, where the NSFD 

method is applied, and stability analysis is presented. 

Yang et al. [20] construct an NSFD scheme for a 

diffusive within-host virus dynamics model. Globally 

asymptotically stability of the model under the effect 

of virus-to-cell and cell-to-cell transmissions is 

studied in [20]. Kocabıyık et al. [21] and Dang and 

Hoang [22] consider computer virus models in the 

view of NSFD schemes. Moreover, Hoang et al. [23] 

construct the NSFD schemes for a modified 

epidemiological model of computer viruses. More 

studies about NSFD schemes can be found in [24-37]. 

This study constructing an NSFD scheme for an 

ecological model consists of five sections. The study 

begins with a brief introduction section. The second 

section presents a mathematical model of the oxygen-

plankton system. The third section gives the method 

used in the study. The fourth section gives the stability 

of the model and numerical simulation. Lastly, the 

final section belongs to the conclusion and 

suggestions section. 

 

2. Definition of the Model 

 

In this paper, a simplified mathematical model of the 

climate change on the oxygen-plankton system given 

in [1,2,5] is considered. The continuous model is 

defined as 
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           (1c)         

subject to initial conditions 

  00f f ,   00g g ,   00s s .                   (2) 

The unknowns of the system of non-linear ordinary 

differential equations (1a)-(1c) presented by  f t , 

 g t , and   s t  denote the oxygen concentration, 

phytoplankton density, and zooplankton density, 

respectively. The parameters T ,  ,  , G ,  ,  , 

and   denote the rate of oxygen production by 

phytoplankton, phytoplankton respiration coefficient, 

zooplankton respiration coefficient, rate of 

phytoplankton maximum growth, phytoplankton 

natural mortality rate, zooplankton feeding efficiency, 

and zooplankton natural mortality, respectively. 

Moreover, the parameters h , 1f , 2f , 3f , and 4f  

denote the half saturation values of the phytoplankton 

predation, phytoplankton growth, respiration by 

phytoplankton, respiration by zooplankton, and 

zooplankton feeding efficiency, respectively. 

 

3. Material and Method 

 

This section presents the discrete model of Eqs. (1a)-

(1c) with the help of the NSFD method which has 

many advantages compared to classical methods. The 

NSFD method leads to determining a convenient 

denominator function that can be chosen instead of 

step size. Therefore, unlike classical methods, the 

convergent schemes that satisfy positivity conditions 

can be constructed by the NSFD method for bigger 

step sizes. Moreover, while numerical instabilities 

may be encountered in standard finite difference 

methods, the NSFD method removes the numerical 

instabilities. Detailed explanations about the rules of 

the NSFD method, determining denominator 

functions, and the benefits of the methods take place 

in [11-15].  

The continuous model (1a)-(1c) can be 

discretized using the discretizing procedure of the 

NSFD method given in [11-15]. Thus, the following 

substitutions i)-iii) are employed to discrete the 

continuous model (1a)-(1c), respectively: 

i) i)    g t g n , 
   

 

   

 

1

1 1

f t g t f n g n

f t f n




 
,

   

 

   

 2 2

1g t f t g n f n

f t f f n f




 
,
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and    1s t s n  . 

Therefore, the following discrete model preserving 

positivity condition is obtained for the mathematical 

model describing climate change in the oxygen-

plankton system: 
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where 
1

, 
2

 and 
3
 denote the denominator 

functions constructed as  

1 1he   , 

2

1he





 , 

and 

3

1he





 . 

The following lemma can be given for the positivity 

condition of the discrete system (3a)-(3c): 

Lemma 3.1. All solutions of discrete system (3a)-(3c) 

satisfy the positivity condition under the assumption 

of positive initial conditions 0f , 0g , 0s ,  and positive 

parameters T ,  ,  , G ,  ,  ,   , h , 1f , 2f , 3f

, 4f   and h . 

Proof. Assume that the initial conditions 0f , 0g , 0s   

and the parameters T ,  ,  , G ,  ,  ,   , h , 1f

, 2f , 3f , 4f ,  and h  are positive. Then, it is obvious 

from the discrete system (3a)-(3c) and their 

corresponding denominator functions that, all 

solutions of discrete system (3a)-(3c) are positive. 

 

3.1. Stability Analysis  

 

In this section, some theorems used during the 

stability analysis of the continuous model (1a)-(1c) 

and the discrete model (3a)-(3c) are given.  

For an autonomous differential equation defined as    

 ,            nx f x x  ,                                           (4) 

the linearized system can be determined for an 

equilibrium point E  as 

 
dy

J E y
dt

 ,               

where  J E  is the Jacobian matrix of the system (4) 

at the equilibrium point E .  

Theorem 3.1 gives a condition for the stability of a 

continuous system. 

Theorem 3.1. [38] Assume that all eigenvalues of the 

Jacobian matrix of the system (4) have negative reel 

parts. Then the equilibrium point E  is asymptotically 

stable.  

Theorem 3.2 (The Schur-Cohn Criterion, n=3).   

Let us consider the discrete system defined by 

   1x k Ax k  . 

Assume that the characteristic polynomial of the 

matrix A  is 

  3 2
1 2 3p a a a       ,                                     (5) 

where  
1a , 

2a  and 
3a  are constants.  The zeros of the 

characteristic polynomial (5) lie inside the unit disk if 

and only if the following conditions hold [39]:  

i) 1 2 31 0a a a    . 

ii) 1 2 31 0a a a    . 

iii) 1 3 21a a a    and 2
2 1 3 31a a a a   . 

Thus, it can be deduced that if the conditions i)-iii) of 

Schur-Cohn criterion are satisfied then the discrete 

system (3a)-(3c) is locally asymptotically stable at the 

equilibrium point. 

 

4. Results and Discussion 

 

This section is devoted to showing the stability 

analysis of the model and numerical results for the 

following parameters [5]: 

0.1  , 1 0.7f  , 2 1f  , 3 1f  , 4 1f  , 1.8G  , 

1  , 0.01  , 0.7  , 0.1h  , 0.1  .             (6) 
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Firstly, the stability of the continuous model (1a)-(1c) 

will be examined for the parameter 1.8T   in 

addition to the parameters (6). Eleven equilibrium 

points are obtained for the continuous model (1a)-

(1c). Considering Theorem 3.1, it can be concluded 

that only the trivial equilibrium and the equilibrium 

point obtained as 

 , ,

0.455479762381921,0.493302878184821
  

,0.0689661098622050

E E f g h

 
  
 

  (7) 

are asymptotically stable.  

Here, only the stability of the non-trivial equilibrium 

point E  defined by Eq. (7) will be shown.  

The Jacobian matrix of the continuous system (1a)-

(1c) at the equilibrium point (7) is obtained as 

 

 

1.65234318346793 0.923764295710813 0.00312941322960424

0.465542685604508 0.396654077620652 0.831452022774700 .

0.0250797518364091 0.0023563816122754 0

J E

  
 

  
 
  

 

 

Corresponding eigenvalues of the Jacobian matrix 

 J E  determined as 

1

2,3

1.93764307516937,   

0.0556770929596066 0.0923582563050207i





 

 
 

have negative real parts. Thus, it can be deduced from 

Theorem 3.1 that the equilibrium point (7) of the 

continuous model (1a)-(1c) is asymptotically stable. 

From now on, the stability of the discrete 

model (3a)-(3c) will be examined. In addition to 

parameters (6), the step size is considered as 

 0.001h  . The continuous model (1a)-(1c) and the 

discrete model (3a)-(3c) possess the same equilibrium 

points. Thus, considering Theorem 3.2, the 

equilibrium point (7) and the trivial equilibrium point 

of the discrete model are asymptotically stable.  

Now, we will show the stability of the model at the 

equilibrium point (7): 

The Jacobian matrix of the discrete system (3a)-(3c) 

is determined as  

 

0.998350048513008 0.000922427186186707 0.00000312488353706965

0.000465235841788792 0.999603607361028 0.000830904004474441 .

0.0000250784978914492 0.0000023562637972002 1

J E

 
 

 
 
  

       (8) 

The characteristic polynomial of the Jacobian matrix 

(8) is as  

  3 2
1 2 3p a a a       ,     (9) 

where the constants of characteristic polynomial (9) 

are as  

1

2

3

2.99795365587404,

2.99590753866671,  

0.997953882770182.

a

a

a

 



 

 

Next, we check the conditions of Theorem 3.2.  

i. 11
1 2 31 2.2488 10 0a a a       . 

ii. 1 2 31 7.99181507731093 0a a a     . 

iii. Since 1 3 3.99590753864422a a   and 

21 3.99590753866671a  , the condition 

1 3 21a a a    is satisfied. Similarly, since 

2
31 0.004088047863918a   and  

2 3 1 0.00408804742215a a a  , the condition     

2
3 2 3 11 a a a a    is satisfied, too.  

Thus, it can be deduced from the Schur-Cohn 

criterion (Theorem 3.2), the discrete system (3a)-(3c) 

is locally asymptotically stable.  

Hereinafter, the numerical results obtained by the 

NSFD and the RKF45 methods are presented in 

graphical forms. In addition to the parameters (6), the 

step size is chosen as  0.01h  , and the positive 

initial conditions are considered as 0 0.4f  , 

0 0.36g  , 0 0.12s  . The parameter defining the 

rate of oxygen production by phytoplankton T  is 

chosen as 1.8T  , 2T  , and 2.2T   to be able to 

compare the obtained numerical results with the 

studies in the literature. Moreover, the numerical 

results obtained by the Euler, RK4, and NSFD 

methods are given in tabular forms and the 

effectiveness of the NSFD method is presented. 

Figure 1 presents  the variation in oxygen 

concentration  f t , phytoplankton density  g t , 

and zooplankton density  s t  for 1.8T  . It can be 

concluded from Figure 1 that the system approaches 

the extinction state rapidly. Thereby, the plankton-

oxygen system is not sustainable for  1.8T  . 
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Figure 1. NSFD solution for oxygen concentration  f t , 

phytoplankton density  g t , and zooplankton density 

 s t  for 1.8T  . 

 
 

Figure 2 presents  the variation in oxygen 

concentration  f t , phytoplankton density  g t , 

and zooplankton density  s t  for 2T  . It can be 

concluded from Figure 2 that the system approaches 

the coexistence state for 2T  .  

 

 

 

Figure 2. NSFD solution of oxygen concentration  f t , 

phytoplankton density  g t , and zooplankton density 

 s t   for  2T   . 

 

Figure 3 presents the variation in oxygen 

concentration  f t , phytoplankton density  g t , 

and zooplankton density  s t  for 2.2T  . It can be 

concluded from Figure 3 that the system shows a few 

oscillations before approaching the extinction state 

for 2.2T  .  

 

 

 
 

Figure 3. NSFD solution of oxygen concentration  f t , 

phytoplankton density  g t , and zooplankton density 

 s t   for  2.2T  . 

 

The model (1a)-(1c) has been solved numerically by 

using the Adams predictor-collector method in [3]. 

One can see that Figures 1-3 are the same as Figure 8, 

Figure 9, and Figure 11 provided in [3], respectively. 

Moreover, the model (1a)-(1c) takes into account the 

effect of global warming through the parameter T  

[3]. Thus, detailed interpretations of the effects of 

global warming can be found in [1, 3, 5, 40]. 

Figure 4 presents the numerical comparison of the 

NSFD method with the RKF45 method for the 

parameters (6) and  1.8T  . It can be concluded from 

Figure 4 that the numerical results for the NSFD 

method are in good agreement with the RKF45 

method. 
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Figure 4. Numerical comparison of NSFD method with RKF45 method. ( 1.8T  ) 

 

 

 

Moreover, the numerical comparison of the NSFD 

method with the Euler and RK4 methods is given in 

Table 1 for the step size 0.001h   and the parameter 

2.2T  . Thus, the accuracy of the numerical results 

obtained by the NSFD method is verified. 
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Table 1. Numerical comparison of the NSFD, Euler, and RK4 methods for the step size 0.001h    

( 2.2T  ). 

 

t  

Euler RK4 NSFD 

 f t   g t   s t   f t   g t   s t   f t   g t   s t  

0 0.4 0.36 0.12 0.4 0.36 0.12 0.4 0.36 0.12 

1 0.42490 0.34497 0.1177 0.42489 0.34497 0.1177 0.42489 0.34498 0.1177 

5 0.40838 0.31779 0.10864 0.40838 0.31779 0.10864 0.40840 0.31781 0.10864 

10 0.40011 0.31291 0.09521 0.40012 0.31292 0.09522 0.40015 0.31294 0.09522 

50 0.20067 0.10209 0.08609 0.20077 0.10218 0.08608 0.20132 0.10259 0.08621 

100 0.000004 0.00001 0.00059 0.000004 0.000001 0.00059 0.000004 0.000001 0.00059 

          

Table 2 presents the numerical results at 700t   

obtained by the Euler, RK4, and NSFD methods for 

different step sizes ( 2.2T  ). Thus, the system 

approaches the extinction state for the bigger step 

sizes by the NSFD method. Table 2 confirms the 

advantage of the NSFD method over the Euler and 

RK4 methods. 

 

 

 

Table 2. Numerical results at 700t   obtained by the Euler, RK4, and NSFD methods for different step sizes  (

2.2T  ). 

 

h  

Euler RK4 NSFD 

 f t   g t   s t   f t   g t   s t   f t   g t   s t  

0.01 3.4x10-32 1.3x10-32 5x10-30 3.7x10-32 1.5x10-32 5.2x10-30 3.9x10-32 1.5x10-32 5.2x10-30 

0.1 1.5x10-32 6.3x10-33 3.7x10-30 3.7x10-32 1.5x10-32 5.2x10-30 6.1x10-32 2.5x10-32 6.1x10-30 

1 3.6x10-37 1.4x10-37 1.7x10-31 3.6x10-32 1.4x10-32 5.2x10-30 10-30 7.5x10-31 2.6x10-29 

5 Float 

(undefined) 

Float 

(undefined) 

Float 

(undefined) 

Float 

(undefined) 

Float 

(undefined) 

Float 

(undefined) 

4.2x10-27 10-27 6.3x10-27 

10 Float 

(undefined) 

Float 

(undefined) 

Float 

(undefined) 

Float 

(undefined) 

Float 

(undefined) 

Float 

(undefined) 

10-23 2.2x10-24 4x10-24 

Similarly, Table 3 presents the comparison of three 

methods for the stability of the equilibrium point E  

for different step sizes. The NSFD method is the most 

appropriate for the bigger step sizes compared with 

the Euler and RK4 methods. 

 

 
 
 
 
 

Table 3. Comparison of stability of the equilibrium point E  for different step sizes. ( 2T  ) 

h  Euler RK4 NSFD 

0.01 Convergence Convergence Convergence 

0.1 Convergence Convergence Convergence 

1 Convergence Convergence Convergence 

5 Divergence Divergence Convergence 

10 Divergence Divergence Convergence 

100 Divergence Divergence Convergence 
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5. Conclusion and Suggestions 

 

The study aims to present an NSFD scheme for the 

model describing climate change in the oxygen-

plankton system. The continuous model is discretized 

through the NSFD schemes and solved numerically. 

The numerical results are compared by the RKF45 

method to present the accuracy of the NSFD method. 

Moreover, the numerical result obtained by the Euler, 

and the RK4 methods are presented to compare with 

the NSFD method. The effectiveness of the 

considered method for the bigger step sizes is 

presented in Table 2 and Table 3.  

It can be concluded from Figures 1-3 that when the 

parameter defining the rate of oxygen production by 

phytoplankton is 1.8T  , 2T   and  2.2T  , the 

plankton-oxygen system is not sustainable, the system 

approaches the coexistence state, and the system 

shows a few oscillations before approaching the 

extinction state, respectively. 

This study implies that the NSFD method is easy to 

apply to the system of nonlinear ordinary differential 

equations. It preserves positivity conditions and is 

efficient even for bigger step sizes. In future studies, 

the NSFD schemes can be applied to the other 

versions of oxygen-plankton models. 
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