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Abstract
The work addresses the study of third-order recurrent sequences for mod m cases. Thus, some definitions aim
to transform infinite sequences into finite ones. In this regard, the Fourier transform is used as a visualization
technique, explored in Google Colab. The mathematical theorems presented are established to examine the
patterns of these sequences and their corresponding cycles. As a future perspective, it is intended to investigate
other mathematical theorems to generalize the sequences into finite groups.
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1. Introduction
Recent research examines Gaussian numbers in third-order recurrent sequences connected to finite groups in Abstract

Algebra [1]-[5].
The study of recurrent sequences has been gaining relevance in mathematical literature, standing out as an area of research

and promoting connections with a variety of other mathematical contents [6]-[8]. Building upon studies on the Fibonacci
sequence, [9], we have third-order sequences, namely Padovan, Perrin, Narayana, and Leonardo, preliminarily presented and
discussed in the following paragraphs.

The Padovan sequence is denoted in this work as Pn and has a recurrence relation given by: Pn = Pn−2 +Pn−3, with n≥ 3
and initial values P0 = P1 = P2 = 1 [10, 11].

The Perrin sequence, in turn, has mathematical properties similar to those of the Padovan numbers. Indeed, the Perrin
numbers form a recurrent sequence, denoted by Rn and with recurrence relation: Rn = Rn−2 +Rn−3, with n ≥ 3 and initial
values R0 = 3,R1 = 0,R2 = 2 [12, 13]. It is noticeable that these numbers exhibit the same recurrence relation as the Padovan
numbers, with their respective initial values altered. Similarly, this also occurs with the Fibonacci and Lucas numbers.

The Narayana sequence is also a recurrent sequence, denoted by Nn and present recurrence relation Nn = Nn−1 +Nn−3, with
n≥ 3 and initial values N0 = 0,N1 = N2 = 1 [14, 15].

Finally, we have the Leonardo sequence, denoted by Ln, with recurrence relation denoted by: Ln = Ln−1 +Ln−2 +1, with
n ≥ 2 and initial values L0 = L1 = 1. Building upon other studies on this sequence, Catarino and Borges [16] performed
an algebraic operation, resulting in the recurrence Ln = 2Ln−1−Ln−3 with n ≥ 3, making it third-order, with initial values
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L0 = L1 = 1,L2 = 3 [17].
The Table 1 shows a brief summary of the third-order recurrent sequences to be addressed in this work.

Table 1. Sequências recorrentes de terceira ordem. Fonte: Elaborado pelos autores.
Sequence Recurrence Initial values
Padovan Pn = Pn−2 +Pn−3 P0 = P1 = P2 = 1
Perrin Rn = Rn−2 +Rn−3 R0 = 3,R1 = 0,R2 = 1
Narayana Nn = Nn−1 +Nn−3 N0 = 0,N1,N2 = 1
Leonardo Ln = Ln−1 +Ln−2 +1 ou Ln = 2Ln−1−Ln−3 L0 = 1,L1 = 1,L2 = 3

Given the growing investigation around these numerical sequences, as well as the development of theorems and properties,
there are several possibilities for integrating these relationships with other mathematical concepts. Studies conducted by
[18]-[21] have opened new perspectives by extending the research to Gaussian numbers of third-order sequences in conjunction
with finite groups. This approach has allowed the transition from infinite to finite sequences, resulting in the formulation of
mathematical theorems and definitions for these numbers, observation, and analysis of cyclic patterns.

For a dynamic visualization, Google Colab [22] was used in this work to enable a graphical analysis of some specific
examples presented in the next section, which were based on the definitions and theorems established.

Finite groups play a crucial role in group theory, and exploring them in conjunction with recurrent sequences reveals a
valuable connection that expands the scope and depth of mathematical study, as well as the possibility of developing new
properties and theorems [23]. This integration provides a more comprehensive understanding by exploring the relationships
between finite groups and the properties of sequences, thereby enriching the perspective of students and researchers and
fostering an interdisciplinary approach among the subjects.

Moreover, it is important to consider the sequence of finite groups, which transforms infinite recurrent sequences into finite
ones through group theory. By applying group theory to these sequences and transforming them into finite sequences, it is
possible to understand the properties of these sequences more clearly and adjustably. Thus, a sequence generating a finite group
G (of length n) consists of a finite sequence (g1, . . . ,gn) of elements G that generate G, [24]. This implies that this sequence
contains essential information about the structure and properties of the finite group, facilitating its analysis and application in
various mathematical contexts.

2. The Gaussian Padovan Sequence (mod m)

The Gaussian Padovan sequence as defined by Tusci [25] with the following formula: GPn = Pn + iPn−1, in which Pn is the
n-th term of the Padovan sequence and GPn the n-th term of the Gaussian Padovan sequence.

Definition 2.1. Therefore, the recurrence relation of the Gaussian Padovan sequence is given by:

GPn = GPn−2 +GPn−3,

with initial values GP0 = 1,GP1 = 1+ i,GP2 = 1+ i and n≥ 3.

In this regard, the study of the modular sequence is based on the work of Tas and Karaduman [21]. Therefore, a sequence
is said to be simply periodic, with period k, when its first k different elements in the sequence forming a new sequence (or
subsequence) repeated. With this, it is denoted GPi (mod m) for

{
GP(m)

i

}
, in which:{

GP(m)
i

}
=
{

GP(m)
0 ,GP(m)

1 ,GP(m)
2 ,GP(m)

3 , . . . ,GP(m)
n

}
.

Indeed, it can be noted that the sequence preserves the recurrence relation of the Gaussian Padovan numbers (GPn = GPn−2 +GPn−3).

Theorem 2.2.
{

GP(m)
n

}
is the simply periodic form of the Gaussian Padovan sequence.

Proof. The sequence has only a finite number given by m3 possible triplets of terms, where the repetition of the triples is
nothing more than the iteration of all subsequent terms.

Thus, based on Definition 2.1, we have:

GPm
i+2 = GPm

j+2,

GPm
i+1 = GPm

j+1,

GPm
i = GPm

j .
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Therefore:

GPm
i− j+2 = GPm

2 ,

GPm
i− j+1 = GPm

1 ,

GPm
i− j = GPm

0 .

Implying that the sequence
{

GP(m)
n

}
is simply periodic, as required.

Thus, one can denote kGP(m) as being the smallest period of
{

GP(m)
n

}
, called the period of the Gaussian Padovan sequence

modulo m.

Example 2.3. The Gaussian Padovan sequence (mod 3) with its first terms calculated from GP1 and kGP(3) = 13:

{
GP(3)

n

}
= {1+ i,1+ i,2+ i,2+2i,2i,1,2+ i,1+2i, i,0,1, i,1,1+ i,1+ i,2+ i, . . .} .

With this, we have conducted a brief analysis of the periodicity given in Example 2.3 from the Fourier Transform, which
allows visualization of the period components (see Figure 2.1) of the amplitude versus period, where it is possible to observe
the period 13 of the finite sequence. In the analysis of the periodicity of the sequence, one can highlight the presence of a peak
at the point 13, revealed by the Fourier transform. This finding validates the previous mathematical calculation, identifying the
recurrence of the sequence exactly at the point 13, being the period determined by the frequency of occurrence of terms in the
sequence. Due to the proximity of terms, especially 0,1 and 2, some additional peaks are noted in other periods. However, the
primary period is clearly defined in 13, marking the beginning of the sequence repetition.

Figure 2.1. The Gaussian Padovan sequence (mod 3) from the Fourier Transform. Source: Elaborated by the authors

The Figure 2.2 presents a visualization of the terms of the sequence in a 3D perspective, where the construction of the
Gaussian Padovan spiral can be observed (mod 3) along the axes n, complex variable and real variable.

Figure 2.2. The Gaussian Padovan sequence (mod 3) in 3D view. Source: Elaborated by the authors

In the Figure 2.3 one can observe the cyclic pattern that occurs with the Gaussian Padovan sequence (mod 3), presenting a
cycle within the interval 0 to 12, i.e., period equals 13 as mentioned earlier.
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Figure 2.3. The Gaussian Padovan sequence (mod 3) - Pattern. Source: Elaborated by the authors

Based on the matrix form of the Gaussian Padovan numbers, studied by Tasci [25] and Vieira [26], it is possible to recall
that:

QP =

0 1 1
1 0 0
0 1 0

 ,vP =

1+ i 1+ i 1
1+ i 1 i

1 i 1

 .
Thus, we have:

QPnvP =

GPn+2 GPn+1 GPn
GPn+1 GPn GPn−1
GPn GPn−1 GPn−2

 .
For the matrix M = [ai j](K+1)×(k+1) with ai j integer, M (mod m) means that all entries of M are reduced modulo m, i.e., M

(mod m) = (ai j (mod m)). Let 〈QP〉pα =
{

QPi (mod pα)|i≥ 0
}

a cyclic group and |〈QP〉pα | denotes the order of 〈QP〉pα .
From the Gaussian matrix form of the Padovan sequence, we have that kGP(pα) = |〈QP〉pα |.

Theorem 2.4. Let t a positive integer such that kGP(p) = kGP(pt). Therefore, we have that kGP(pα) = rα−tkGP(p) for
α ≥ t. Particularly, if kGP(p) 6= kGP(r2), then: kGP(pα) = pα−tkGP(p) com α > 1.

Proof. Using a demonstration similar to the work of [27], we have:
Let q a positive integer. Being QPkGP(pq+1) ≡ I (mod rq+1) and QPkGP(pq+1) ≡ I (mod rq), we have that kGP(pq) divides

kGP(pq+1), in which I is the identity matrix and vP the vector whose contains the initial values of the Gaussian Padovan
sequence. Therefore, we have:

QPkGP(pq)vP = I +
(

a(q)i j pq
)
,

So, we can write:

QPkGP(pq)pvP = I +
(

a(q)i j pq
)p

=
p

∑
i=0

(
p
i

)(
ai j(q)pq

)
≡ I (mod pq+1)vP

QPkGP(pq)p ≡ I (mod pq+1),

Resulting in kGP(pq+1) divides kGP(p)p. Therefore, we obtain:
kGP(pq+1) = kGP(pq) or kGP(pq+1) = kGP(pq)p and this last one is valid if, and only if, there exists a a(q)i j that is not

divisible by p, as long as kGP(pt) 6= kR(pt+1) exists a a(t+1)
i j which is not divisible by p, and so, kGP(pt+1) 6= kGP(pt+2). The

proof is concluded by induction on t.

Example 2.5. For p = 3 and q = 1, kGP(9)≡ QP39 ≡ I (mod 9), then:

QP39 =

0 1 1
1 0 0
0 1 0

39

=

23833 31572 17991
17991 23833 13581
13581 17991 10252


(mod 9)

=

1 0 0
0 1 0
0 0 1

 .
3. The Gaussian Perrin Sequence (mod m)

The Gaussian Perrin sequence, studied by Kartal [28] alters the recurrence definition of Gaussian numbers. Thus, the present
research makes a correction in its formula, allowing it to follow the pattern established by Jordan [29], Tusci [25], among
others. Thus, the Gaussian Perrin numbers have their recurrence as: GRn = Rn + iRn−1, in which Rn is the n−th term of the
Perrin sequence and GRn the n−th term of the Gaussian Perrin sequence.
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Definition 3.1. The recurrence relation of Gaussian Perrin sequence is defined by:

GRn = GRn−2 +GRn−3,

with the initial values iniciais GR0 = 3− i,GR1 = 3i,GR2 = 2 and n≥ 3.

Thus, a connection can be established between the Gaussian Perrin sequence and its modular form, denoted by GRi

(mod m) for
{

GR(m)
i

}
, in which:{

GR(m)
i

}
=
{

GR(m)
0 ,GR(m)

1 ,GR(m)
2 ,GR(m)

3 , . . . ,GR(m)
n

}
.

And it is worth noting that the recurrence relation of Gaussian Perrin numbers is preserved.

Theorem 3.2.
{

GR(m)
n

}
is the simply periodic form of the Gaussian Perrin sequence.

Proof. The proof follows analogously to Theorem 2.2.

Example 3.3. The Gaussian Perrin sequence (mod 3) with its first terms calculated from GR1 and kGR(3) = 13:

{
GR(3)

n

}
= {0,2,2i,2,2+2,2+2i,1+2i,1+ i, i,2,1+2i,2+ i,2i,0,2,2i, . . .} .

The Figure 3.1 details the period of the sequence in the Example 3.3, allowing to see the period 13.

Figure 3.1. The Gaussian Perrin sequence (mod 3) from the Fourier Transform. Source: Elaborated by the authors

The spiral presented in Figure 3.2 provides a visualization of the terms of the sequence:

Figure 3.2. The Gaussian Perrin sequence (mod 3) in 3D view. Source: Elaborated by the authors

In Figure 3.3 we can observe the cyclic pattern that occurs with the Gaussian Perrin sequence (mod 3), presenting a cycle
within the interval 0 to 12, i.e., period equals 13 as seen earlier.

Based on the matrix form of Gaussian Perrin numbers, it can be verified that:
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Figure 3.3. The Gaussian Perrin sequence (mod 3) - Pattern. Source: Elaborated by the authors

QR =

0 1 1
1 0 0
0 1 0

 ,vR =

GR2 GR1 GR0
GR1 GR0 GR−1
GR0 GR−1 GR−2

 .
Thus, we have:

QRnvR =

GRn+2 GRn+1 GRn
GRn+1 GRn GRn−1
GRn GRn−1 GRn−2

 .
For the matrix M = [ai j](K+1)×(k+1) with ai j integer, M (mod m) means that all entries of M are reduced modulo m, i.e., M

(mod m) = (ai j (mod m)). Let 〈QR〉pα =
{

QRi (mod pα)|i≥ 0
}

a cyclic group and |〈QR〉pα | denotes the order of 〈QR〉pα .
From the Gaussian matrix form of the Perrin sequence, we have that kGR(pα) = |〈QR〉pα |.

Theorem 3.4. Let t a positive integer such that kGR(p) = kGR(pt). So, we have kGR(pα) = rα−tkGR(p) for α ≥ t. Particu-
larly, if kGR(p) 6= kGR(r2), then: kGR(pα) = pα−tkGR(p) com α > 1.

Proof. The proof follows analogously to the Theorem 2.4.

Example 3.5. For p = 3 and q = 1, kGR(9)≡ QR39 ≡ I (mod 9), then:

QR39 =

0 1 1
1 0 0
0 1 0

39

=

23833 31572 17991
17991 23833 13581
13581 17991 10252


(mod 9)

=

1 0 0
0 1 0
0 0 1

 .
4. The Gaussian Nayarana Sequence (mod m)

Starting the study around the Gaussian Narayana sequence, investigated by Ozkan and Kuloglu [30], its formula is given
by: GNn = Nn + iNn−1, in which Nn is the n−th term of Narayana sequence and GNn the n−th term of the Gaussian Narayana
sequence.

Definition 4.1. The recurrence relation of the Gaussian Narayana sequence is given by:

GNn = GNn−1 +GNn−3,

with the initial values GN0 = 0,GN1 = 1,GN2 = 1+ i and n≥ 3.

Establishing a connection between the Gaussian Narayana sequence and its modular form, denoting GNi (mod m) with{
GN(m)

i

}
, in which [20]:

{
GN(m)

i

}
=
{

GN(m)
0 ,GN(m)

1 ,GN(m)
2 ,GN(m)

3 , . . . ,GN(m)
n

}
.

Indeed, the recurrence relation of Gaussian Narayana numbers is preserved.

Theorem 4.2.
{

GN(m)
n

}
is the simply periodic form of the Gaussian Narayana sequence.
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Proof. The proof follows analogously to the Theorem 2.2.

Example 4.3. The Gaussian Narayana sequence (mod 3) with its first terms calculated from GN1 and kGN(3) = 8:

{
GN(3)

n

}
= {1,1+ i,1+ i,2+ i,2i,1, i,0,1,1+ i,1+ i,2+ i,2i, . . .} .

The Figure 4.1 detais the period of the sequence in the Example4.3, allowing to see the period 8.

Figure 4.1. The Gaussian Narayana sequence (mod 3) from the Fourier Transform. Source: Elaborated by the authors

The spiral presented in Figure 4.2 provides a visualization of the terms of the sequence.

Figure 4.2. The Gaussian Narayana sequence (mod 3) in 3D view. Source: Elaborated by the authors

In Figure 4.3 we can observe the cyclic pattern that occurs with the Gaussian Narayana sequence (mod 3), presenting a
cycle within the interval 0 to 7, i.e., period equals to 8 as seen earlier.

Figure 4.3. The Gaussian Narayana sequence (mod 3) - Pattern. Source: Elaborated by the authors

Based on the matrix form of Gaussian Narayana numbers, it can be verified that [31]:

QN =

1 0 1
1 0 0
0 1 0

 ,vN =

1 0 i
i 1− i 0
0 i 1− i

 .
So, we have:
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QNnvR =

GNn+1 GNn−1 GNn
GNn GNn−2 GNn−1

GNn−1 GNn−3 GNn−2

 .
For the matrix M = [ai j](K+1)×(k+1) with ai j integer, M (mod m) means that all entries of M are reduced modulo m, i.e., M

(mod m) = (ai j (mod m)). Let 〈QN〉pα =
{

QNi (mod pα)|i≥ 0
}

a cyclic group and |〈QN〉pα | denotes the order of 〈QN〉pα .
From the Gaussian matrix form of the Narayana sequence, we have that kGN(pα) = |〈QN〉pα |.

Theorem 4.4. Let t a positive integer such that kGN(p) = kGN(pt). Therefore, we have that kGN(pα) = rα−tkGN(p) for
α ≥ t. Particularly, if kGN(p) 6= kGN(r2), then: kGN(pα) = pα−tkGN(p) com α > 1.

Proof. The proof follows analogously to the Theorem 2.4.

Example 4.5. For p = 3 and q = 1, kGN(9)≡ QN24 ≡ I (mod 9), then:

QN24 =

1 0 1
1 0 0
0 1 0

24

=

5896 2745 4023
4023 1873 2745
2745 1278 1873


(mod 9)

=

1 0 0
0 1 0
0 0 1

 .
5. The Gaussian Leonardo Sequence (mod m)

The Gaussian Leonardo sequence, investigated by Tasci [32], has its formula given by: GLn = Ln + iLn−1, in which Ln is the
n−th term of Leonardo sequence and GLn the n−th term of the Gaussian Leonardo sequence.

Definition 5.1. The recurrence relation of the Gaussian Leonardo sequence is given by:

GLn = GLn−1 +GLn−2 +(1+ i),

with the initial values GL0 = 1− i, GN1 = 1+ i and n≥ 2.

Lemma 5.2. For n≥ 1, we have:

GLn = 2GLn−1−GLn−3.

Proof. Using the recurrence of the Leonardo sequence (Ln = 2Ln−1−Ln−3) and the Gaussian recurrence (GLn = Ln + iLn−1),
we have:

GLn = Ln + iLn−1

= 2Ln−1−Ln−3 + i(2Ln−2−Ln−4)

= 2(Ln−1 + iLn−2)− (Ln−3 + iLn−4)

= 2GLn−1−GLn−3.

Therefore, we can establish a connection between the Gaussian Leonardo sequence and its modular form, denoting GLi

(mod m) with
{

GL(m)
i

}
, in which:{

GL(m)
i

}
=
{

GL(m)
0 ,GL(m)

1 ,GL(m)
2 ,GL(m)

3 , . . . ,GL(m)
n

}
.

Indeed, the recurrence relation of Gaussian Leonardo numbers is preserved.

Theorem 5.3.
{

GL(m)
n

}
is the simply periodic form of the Gaussian Leonardo sequence.

Proof. The proof follows analogously to the Theorem 2.2.
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Figure 5.1. The Gaussian Leonardo sequence (mod 3) from the Fourier Transform. Source: Elaborated by the authors

Figure 5.2. The Gaussian Leonardo sequence (mod 3) in 3D view. Source: Elaborated by the authors

Example 5.4. The Gaussian Leonardo sequence (mod 3) with its first terms calculated from GL1 and kGL(3) = 8:

{
GL(3)

n

}
= {1+ i, i,2,2i,0,1,2+ i,1+2i,1+ i, i,2,2i,0,1,2+ i,1+2i,1+ i, . . .} .

The Figure 5.1 details the period of the sequence in the Example 5.4, allowing to see the period 8.
The spiral presented in the Figure 5.2 provides a visualization of the terms of the sequence.
It is observed that 3D figures have better visibility of periodicity, as they have an extra dimension so that the sides can

be visualized, allowing information to be found in a clearer and less overloaded way than in the case of 2D. It is important
to realize that when viewing the figures in 3D, the sides allow for better interpretation and identification of the period of the
sequences.

In Figure 5.3 we can observe the cyclic pattern that occurs with the Gaussian Leonardo sequence (mod 3), presenting a
cycle within the interval 0 to 7, i.e., period equals to 8 as seen earlier.

Figure 5.3. The Gaussian Leonardo sequence (mod 3) - Pattern. Source: Elaborated by the authors

Based on the matrix form of Gaussian Leonardo numbers, it can be verified that [32]:

QL =

 2 1 0
0 0 1
−1 0 0

 ,vL =

GL3 GL2 GL1
GL2 GL1 GL0
GL1 GL0 GL−1

 .
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Thus, we have that:

vLQLn =

GLn+3 GLn+2 GLn+1
GLn+2 GLn+1 GLn
GLn+1 GLn GLn−1

 .
For the matrix M = [ai j](K+1)×(k+1) with ai j integer, M (mod m) means that all entries of M are reduced modulo m, i.e., M

(mod m) = (ai j (mod m)). Let 〈QL〉pα =
{

QLi (mod pα)|i≥ 0
}

a cyclic group and |〈QL〉pα | denotes the order of 〈QL〉pα .
From the Gaussian matrix form of the Leonardo sequence, we have that kGL(pα) = |〈QL〉pα |.

Theorem 5.5. Let t a positive integer such that kGL(p) = kG(pt). Therefore, we have that kGL(pα) = rα−tkGL(p) for α ≥ t.
Particularly, if kGL(p) 6= kGL(r2), then kGL(pα) = pα−tkGL(p) com α > 1.

Proof. The proof follows analogously to the Theorem 2.4.

Example 5.6. For p = 3 and q = 1, kGL(9)≡ QL24 ≡ I (mod 9), then:

QL48 =

 2 1 0
0 0 1
−1 0 0

24

=

 196417 121392 75024
−75024 −46367 −28656
−121392 −75024 −46367


(mod 9)

=

1 0 0
0 1 0
0 0 1

 .
6. Final Considerations

The current research provides an analysis of Gaussian numbers in third-order recurrent sequences, in association with finite
groups. During this study, definitions were introduced that enabled the analysis and transformation of infinite sequences into
finite sequences. For a better understanding, visualization techniques were explored, including the use of Fourier transform and
other graphics, developed in the Google Colab environment using available libraries and programming.

Transforming infinite recurrent sequences into finite ones through the study of group theory is a relevant approach to
mathematics, as it allows for a more accessible and structured analysis of these sequences. Cyclic groups play an essential role
in this process, as they are groups that can be generated by a single element, simplifying the representation and understanding
of these sequences. Additionally, the visualization of sequences can be enhanced with the use of the Fourier Transform, a tool
that decomposes a periodic function into a sum of sine and cosine functions.

Therefore, by combining concepts from group theory, especially cyclical groups, with the Fourier transform, we have shown
in this article that it is possible to transform infinite recurrent sequences into finite ones, as well as to better understand their
underlying properties and patterns. This approach enables the mathematical analysis of sequences, providing the opportunity to
identify practical applications in areas such as signal processing, communications, and data analysis, where understanding the
properties of sequences is essential. As a result, mathematical theorems were established that examined the patterns of these
sequences and their corresponding cycles.

As a perspective for future research, it is aimed to investigate other mathematical theorems, aiming for a generalization of
sequences into finite groups.
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