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Abstract 
Photogrammetry has played an essential role in creating visually interesting three-dimensional (3D) models thanks to unmanned aerial 

vehicle (UAV) images in recent years. Photogrammetry and GIS are widely used together to produce and analyze 3D models. This 

study successfully created 3D models of buildings using photogrammetry and transferred them to GIS for analysis. UAVs were utilized 

to capture images, which were then processed to generate a dense point cloud. The point cloud was classified using rule-based 

classification. Buildings were vectorized and textured, and the resulting models were analyzed in commercial GIS software. The study 

proposed the classification process and automatic vectorization of buildings in the photogrammetric point clouds. In the study, buildings 

were classified with 90% accuracy, and the obtained building point clouds were vectorized and transferred to a GIS environment. The 

use of UAVs expedited data collection and improved data quality, while the detailed analysis of the point enabled precise analysis for 

many applications such as urban planning and land management. The integration of building models into GIS facilitated more accurate 

and efficient work processes. 
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Introduction 

Object detection and classification studies using 

photogrammetric data have recently become an important 

research topic. These studies can be applied in various 

fields such as monitoring urban changes and 

developments, urban planning, map production, property 

assessment, and disaster management. Object detection in 

urban areas primarily focuses on buildings, which are the 

most prominent and visually striking objects compared to 

others (Chen, et al., 2012). The rapid and accurate 

automated extraction of up-to-date building data is crucial 

in creating city models. The hierarchical steps involved in 

automated building extraction include (I) Data 

preparation, (II) Point cloud generation, (III) Point cloud 

classification, (IV) Building separation, (V) 3D modeling, 

and (VI) Validation. Data preparation involves collecting, 

organizing, and preprocessing drone imagery and other 

relevant data. Point cloud generation processes the input 

data to create a point cloud, involving data processing, 

filtering, and resampling. Point cloud classification 

assigns different classes to each point in the point cloud, 

such as buildings, trees, roads, and terrain. Building 

separation is used to distinguish buildings from other 

objects in the point cloud. 3D modeling is the process of 

creating 3D models of buildings. Validation is used to 

verify the accuracy of automatically extracted buildings 

(Sirmacek and Gulec, 2017; Büyüksalih et al., 2018; 

Yildirim et al., 2021). Studies in the literature indicate that 

most methods used for automated building extraction do 

not achieve total accuracy in point cloud classification. 

Factors that negatively affect the accuracy of point cloud 

classification such as insufficient point density, occlusion, 

noise, lighting conditions, and ground characteristics. 

Analyzing 3D model data using GIS software is important 

for understanding and interpreting the data. In GIS, 

analysis and modeling processes can be performed on 3D 

data, including 3D visualization, volume calculation, 

slope analysis, viewshed analysis, shading analysis, etc. 

The interpretation and reporting of results involve 

analyzing and reporting the analysis results, which can be 

presented in the form of 3D models, tables, and graphs 

(Lu, et al., 2019).  

In this study, very high-resolution UAV imagery was 

used, obtained through the nadir method. The nadir 

method involves positioning the drone vertically to the 

Earth's surface during flight, allowing it to capture the top 

and sides of objects and obtain high-resolution and 

detailed imagery (Wang et al., 2019). A dense point cloud 

was generated from the acquired imagery using structure 

form motion (SFM). The point cloud was edited, noise 

was removed, a macro was created to automatically 

classify and manually correct misclassified point clusters. 

Buildings were converted to vector format, and texture 

processing was performed. The resulting textured 

buildings were analyzed using GIS tools.  

Related Works 

Many studies have been published in the literature on 

point cloud classification (Atik et al., 2021; Duran et al., 

2021; Aljumaily et al., 2023; Pellerin et al., 2024; Atik et 

al., 2024). Machine learning-based methods have been 

widely used in the last decade for point cloud 

classification. However, there are significant limitations 

such as high hardware requirements and large training 

data. For this reason, it is preferred for point cloud 

classification in parametric and rule-based unsupervised 

classification. Although LiDAR point clouds are mostly 
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used, studies on photogrammetric point clouds are 

increasing. In the article published by Haithcoat et al. 

(2001), it was aimed to conduct a study on automatic 

building footprint extraction and retrieving the three-

dimensional (3D) view of these buildings from LIDAR 

(Light Detection and Ranging) data. Creating the building 

footprint; Creating a building footprint consists of three 

steps: DEM production, footprint extraction and footprint 

simplification. In the study published by Zhang et al. 

(2020), the footprint and height information of each 

building in three study areas located on the main campus 

of Universitas Negeri Makassar (UNM) were extracted 

using aerial photographs and LiDAR data. LIDAR data 

was used to produce Digital Surface Model (DEM) and 

Digital Terrain Model (SAM). Park and Gundman (2019) 

aimed to create a three-dimensional city model with 

building roof footprints within the study area located in 

the City of Columbus and Franklin. It aimed to present a 

point cloud classification methodology that assigns 

LIDAR points to different classes, detects points that 

reflect a roof surface, and estimates building heights using 

only those points. Each point is characterized by a set of 

features and classified by a machine learning algorithm. 

In the study conducted by Duran et al. (2022), four 

different classes, one of which was a building, were 

detected in the urban area through photogrammetric and 

LiDAR point clouds. Each point is defined using 

geometric features. Machine learning algorithms have 

been used for classification. Chen et al. (2020) proposed 

a new approach for extracting object information such as 

individual tree locations and building footprints from 

photogrammetric point cloud. Supervised machine 

learning algorithms have been analyzed using different 

point descriptors. Huang et al. (2022) proposed a fully 

automatic approach to reconstruct 3D building models 

from airborne point clouds. In the study, building sample 

segmentation was carried out by separating buildings 

separately using vectorized building footprint data. 

Additionally, using preliminary information about the 

structures of the buildings, their vertical planes were 

determined. Nys et al. (2020) aim for automatic 

reconstruction of consistent 3D city buildings formatted 

according to CityJSON. It is ensured that the models 

created from the airborne LiDAR point cloud have a 

reliable geometric and topological structure to store 

information and be used consistently in complex 

calculations. Shirowzhan and Sepasgozar (2019) 

proposed a new approach to extract landmarks using 

autocorrelation-based algorithms for accurate detection of 

building structures in hilly urban areas. Thanks to the 

digital elevation model (DEM) created using ground 

points, ground points are eliminated from the point cloud 

and used to eliminate ground height from building height. 

Widyaningrum et al. (2019) proposed a new sequential 

point-assisted Hough Transform (OHT) to extract high-

quality building outlines from an airborne LiDAR point 

cloud using sequential building edge points. Sharma and 

Garg (2023) extracted buildings from point clouds using 

machine learning classifiers and geometric features. 

Building points were separated by applying K-means 

clustering to the obtained classified point cloud. Finally, 

building footprints were vectorized from the point clouds 

of the buildings. However, building facades were not 

modeled in the study. Kang (2023) proposed an approach 

to automatically generate building mass and facade 

information on the GIS platform from airborne laser 

scanning (ALS) data. With the proposed approach, a 

holistic approach for Scan to BIM mapping has been 

presented. 3D models have been created in the GIS 

environment, considering building heights and footprints. 

However, texture information has not been included in the 

study. In another study (Karsli et al., 2024), building 

footprints were extracted from photogrammetric and 

LiDAR point clouds with the Improved-Octree approach. 

Building footprints were extracted from both data types 

using ground filtering, clustering and 

vectorization/regulation, but no analysis was performed in 

a GIS environment. In this study, all of the building 

footprint, facade and texture information from point 

clouds were transferred to the GIS environment and 

analyses were performed. Thus, an end-to-end approach 

was presented to the literature. 

Materials and Methods 

Study Area and Data Captured 

UAV images are application data belonging to the 

neighborhood of Alibeyköy, located in the Eyüp district 

of Istanbul province, covering an area of approximately 

48,500 square meters.   

Fig. 1. Study area. 

The data used in the application consists of images 

captured with a Phantom 4 RTK drone in the area, using 

a nadir (usually at an angle close to 90 degrees) 

perspective. Moreover, the ground sampling distance 

(GSD) is about 2 cm, all the flights were carried out at an 

altitude of 80 m. Sample images are presented in Figure 

2. A 60-80% overlap during image capture enhances the

linkage of images, resulting in high-accuracy orthophotos

and 3D models.
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Fig. 2. Sample images of the study area taken from 

UAV. 

RTK is a positioning technology used with global 

positioning systems (GPS, GLONASS, etc.). This method 

provides high-precision location information and enables 

real-time positioning capabilities (Smith, et al., 2021). 

This technology can reduce or eliminate the need for 

Ground Control Points (GCP) in photogrammetric 

processes, as it directly provides geographic reference 

position data for each photo, significantly reducing post-

processing workload. RTK operates through collaboration 

between a base station and at least one rover (portable 

device). The base station is placed in a fixed location and 

sends reference signals that provide high-precision 

location information. On the other hand, the rover is a 

mobile device that receives the reference signals from the 

base station to determine its position. The fundamental 

principle of RTK is to utilize the signal differences 

between the base station and the rover to achieve fast and 

accurate positioning. These differences are used to correct 

atmospheric effects and other errors. The most significant 

feature of RTK is its ability to obtain high-precision 

location information in real-time (Smith, et al., 2021) 

Point Cloud Generation and Digital Elevation Model 

The point cloud, digital elevation model (DEM) and 

orthomosaic are generated using SFM. SFM calculates the 

3D coordinates of an object based on epipolar geometry 

by measuring the corresponding points between two 

overlapping images. SFM automatically estimates camera 

positions and orientation to create object geometry. The 

initially estimated values are iteratively improved using 

non-linear least squares adjustment (Westoby et al., 

2012).   

Image matching was performed by loading the nadir angle 

images (a total of 95 images) into the software. This 

process finds similar points by using the images' 

overlapping regions and common features. The software 

calculated the camera parameters using the similar points 

obtained from the image-matching process and known 

control points. These parameters include the camera's 

intrinsic and extrinsic parameters. The intrinsic 

parameters represent the optical characteristics of the 

camera (e.g., focal length, lens distortion), while the 

extrinsic parameters transform the camera's position and 

orientation into the world coordinate system. To create a 

denser point cloud, the software performs dense point 

matching using the matched points. This process converts 

each pixel in the images into 3D points, resulting in a 

point cloud. After the dense point matching, a 3D point 

cloud is generated. This point cloud contains dense 3D 

coordinates derived from the images. DEM is a 

representation of the Earth's surface topography or terrain. 

It is a three-dimensional model that provides information 

about the elevation or height values of the Earth's surface 

at regularly spaced intervals. A DEM is typically 

represented as a grid of elevation values, where each cell 

in the grid corresponds to a specific geographic location 

and contains the elevation value for that location. 

DEM is produced by applying inverse distance weighted 

(IDW) interpolation to the dense point cloud produced as 

a result of SfM. IDW performs a surface interpolation 

based on the weighted average of the support points, 

which lose weight as they move away from the point to be 

interpolated (Yanalak, 2002). DEM of the region has been 

generated (Figure 3). After the DEM is generated, the 

height variations of each object in the study area have 

been determined. The red areas represent the highest 

points, while the blue areas represent the lowest. 

Orthophoto Generation 

An orthophoto image is a geometrically corrected aerial 

or satellite image that has been adjusted to remove 

distortions caused by the perspective and relief of the 

terrain. Unlike regular aerial or satellite images, which 

may have distortions due to the angle of capture and 

terrain variations, orthophotos have a uniform scale and 

can be used to measure distances, areas, and angles 

accurately. Orthophotos are widely used in various fields, 

including mapping, urban planning, agriculture, 

environmental analysis, and infrastructure development. 

After the DEM was produced, the distortions that 

occurred due to the height in each image were removed 

and an orthophoto was produced. The generated dense 

point cloud and DEM are presented in Figure 4. 

Point Cloud Classification 

Rule-based classification method was preferred for point 

cloud classification. Classification was achieved by 

defining a set of discriminant rules based on height and 

color information. The K-nearest neighbors (KNN) 

algorithm was used for the classification process. This 

algorithm is a classification method based on the nearest 

neighbors to determine the class of the data. In short, the 

KNN algorithm classifies a data point in a dataset based 

on its proximity to previously observed data points. It is 

one of the most fundamental examples of instance-based 

learning methods. Instance-based learning performs the 

learning process by relying on the data in the training set 

and utilizing the similarities between these data points.  

Each data point (𝑥, (𝑓(𝑥)) in the training set is added to 

the training examples.  For each 𝑥𝑞 to be classified, the 

following rules are applied: The k nearest examples (𝑥1 , 

𝑥2 , … , 𝑥𝑘) to the 𝑥𝑞 point in the training set are found, 

and based on these examples, the class of 𝑥𝑞 is determined 

(Özcan, K., 2021).  

f̂(𝑥𝑞) = argmax𝑣∈𝑉 ∑  

𝑘

𝑖=1

𝛿(𝑉, 𝑓(𝑥𝑖))  (𝐸𝑞. 1) 

In the equation, if a and b are equal, 𝛿(𝑎, 𝑏) = 1, otherwise 

𝛿(𝑎, 𝑏) = 0. The key parameters that affect the 
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performance of the KNN algorithm are the distance 

metric, the number of neighbors (k), and the weighting. 

Different distance metrics such as Minkowski, Euclidean, 

Manhattan, Chebyshev, and Dilca can be used. The 

Minkowski distance is defined as follows:   

(∑  

𝑛

𝑖=1

|𝑥𝑖 − 𝑦𝑖|𝑝)

1
𝑝

 (𝐸𝑞. 2) 

In the KNN algorithm, classification is done based on the 

specified number of neighbors (k). By assigning weight 

values to the neighbors, closer neighbors are expected to 

contribute more to the voting process during classification 

(Özcan, K., 2021). Upon examining Figure 5, it is clearly 

evident that there are structures with elevations lower than 

the road level. When automatic classification was applied 

in Figure 5, it was observed that certain building classes 

were incorrectly assigned to ground and default classes.  

Fig. 3. Colored Dense Point Cloud, Digital Elevation Model (DEM) and Orthomosaic. 

Fig. 4. Classified point cloud. 

This issue has been largely resolved through color-based 

classification. Color-based classification is a process that 

utilizes the color information based on point cloud data. 

In this method, each point in the point cloud includes not 

only 3D positional information but also color information. 

Color-based classification can be used to recognize and 

classify different objects or features by utilizing the color 

properties of the points. In other words, color-based 

classification assigns points with the same color in the 

colored point cloud to specific classes. For example, the 

roofs in the area mostly have the same color, and the 

classification of buildings using color-based classification 

has significantly improved the classification accuracy. In 

Figure 4, color-based classification was applied to the 

study area, effectively addressing the issues related to 

elevation differences.  
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Results and Discussion 

Accuracy Assessment of Point Cloud Classification 

Point cloud classification accuracy is a measure of the 

ability to correctly classify point cloud data. This criterion 

evaluates the assignment process of point cloud data to 

different object or surface types (e.g., buildings, trees, 

roads, water) (Limandal, 2019). Typically, a classification 

algorithm is used to classify point cloud data, and then 

these classification results are compared with the ground 

truth class labels. Through this comparison, the number of 

points correctly classified by the classification algorithm 

is determined (Park and Guldmann, 2019). The accuracy 

value is calculated as the ratio of the number of points 

correctly classified to the total number of points (Equation 

1).   

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
  (Eq.3) 

The accuracy value is typically expressed as a value 

between 0 and 1 or represented as a percentage. A high 

accuracy value indicates that the classification algorithm 

accurately reflects the ability to classify the data correctly. 

The colored point cloud was used as a reference to 

evaluate the accuracy of the point cloud classification and 

validate the classification results. In this context, 200 

randomly selected points from the roofs of buildings were 

checked to determine whether these points were correctly 

classified into the "building" class after the classification 

process. This accuracy assessment process was repeated 

10 times on different sets of 200 points. The accuracy 

results obtained for each repetition were recorded, and the 

average of these results was calculated to obtain an overall 

accuracy value. In Table 1, the class information, the 

number of points taken as reference from the colored 

cloud, the number of points correctly classified in the 

classification results, and the accuracy values for each set 

are provided.  The classification accuracy was calculated 

as 0.90 when each cluster's average accuracy values was 

considered (Table 1). 

Table 1. Classification accuracy for the point cloud. 
Test Number of points Correctly Classified Accuracy 

1 200 178 0.89 

2 200 169 0.81 

3 200 194 0.97 

4 200 186 0.93 

5 200 191 0.95 

6 200 173 0.87 

7 200 197 0.98 

8 200 156 0.78 

9 200 188 0.94 

10 200 194 0.97 

Average 0.90 

Fig. 5. Building vectorization. 

Building Vectorization  

The first step of the building vectorization process 

involves preparing the data source to be vectorized. Point 

clouds belonging to buildings are filtered from the 

classified point cloud. Then it is transferred to the 

software used. With the automatic vectorization tool, the 

boundaries of each building are converted into vector 

data. Finally, the accuracy and completeness of the 

vectorized building are checked. Based on these checks, 

it was observed that the automated process achieved an 

approximate accuracy of 85%. Generally, wrong vectors 

can occur at the boundaries of adjacent buildings. Areas 

that were incorrectly vectorized were manually corrected 

and compared against the reference data. The vectorized 

buildings are represented in Figure 5.  
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Building Texture Generation 

Firstly, data importation involves transferring building 

geometry and texture data. Then, the building and texture 

data are merged, which entails combining the building 

geometry with the texture data. Next, the adjustment of 

texture coordinates takes place, where texture coordinates 

are set for applying textures to building surfaces. Then, 

texture processing and editing occur, involving 

modifications to the textures such as color adjustments, 

resizing, rotation, and other transformations (Figure 6). 

Lastly, the texture output transfers the processed texture 

data to the desired file format. 

  (a)                                              (b) 

Fig. 6. 3D model with building texture. (a) nadir view; (b) 

oblique view. 

Integration with Geographic Information System 

(GIS) 

After the provision of building textures, the data was 

transferred to the GIS environment for analysis (Figure 9).  

It became possible to access attribute data for each 

building, such as building number, number of floors, and 

coordinate information (Figure 7).  

Fig. 7. 3D model after exporting to GIS environment. 

Fig. 8. Displaying attribute data in GIS environment. 

Additionally, it is possible to make additions to the 

existing attribute data, such as the total number of units 

within the building, the number of registered individuals, 

individuals' information, physical characteristics of the 

structure, and more (Figure 8). 

Conclusions 

According to the results of this project, it has been 

possible to successfully extract 3D models of buildings 

using photogrammetry methods and transfer them to GIS. 

Dense point clouds have been generated from aerial 

images obtained through the use of drone technologies 

and processed to convert them into a vector format. 

Furthermore, texture processing has been applied to the 

buildings and they are suitable for GIS analysis.  

The outcomes of this study contribute significantly to the 

field of remote sensing and GIS. Using drone 

technologies has accelerated the data collection process 

and improved data quality. The obtained dense point 

clouds and classified point clouds enable detailed 

analyses to be performed. These analyses can be utilized 

in various areas such as urban planning, land 

management, and structural deformation detection. The 

transfer of building models to GIS facilitates more 

accurate and efficient workflow execution. GIS plays a 

crucial role in the positioning, analysis, and management 

of buildings. The obtained building models assist in better 

planning and management of tasks, leading to increased 

efficiency and accuracy. In conclusion, this study 

successfully demonstrates the integration of remote 

sensing, photogrammetry, and GIS technologies. The 

obtained building models and analyses can provide 

significant contributions to various application areas and 

serve as inspiration for future research.   
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