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Abstract: Kelley developed a robust measure of asymmetry based on quantiles. His proposal was an absolute index 

which, when divided by the median, results in its relative expression. If the additive complement is standardized 

with the semi-percentile range, the percentile coefficient of skewness (PCS) is obtained. Additionally, Kelley 

provided its standard error in case of normal distribution. However, no statistical software currently computes 

these measures. The aim of this methodological article is to determine their sampling distribution and facilitate 

their use. Three random samples of 10,000 data points were generated from three symmetric distributions: 

semicircular (platykurtic), normal (mesokurtic), and logistic (leptokurtic). By bootstrapping, the sampling 

distribution was obtained for absolute and relative indices, as well as the PCS. The sampling distributions of the 

absolute index and the PCS conformed to normality, while that of the relative index was leptokurtic with an 

excessive bootstrap standard error. Furthermore, a script was developed for the R program, adjusted based on these 

findings, to obtain point and interval estimates of these indices. The script was applied to a random sample as an 

example. It is concluded that dividing the absolute index by the semi-percentage range is a better standardization 

option than dividing by the median. 

Keywords: skewness; quantiles; bootstrap confidence interval; asymptotic standard error; normality. 

1. Introduction 

In 1923, the American psychologist Truman Lee Kelley (1884-1961) proposed a robust measure of 

skewness based on quantiles, which he had initially proposed in 1921 as a measure of dispersion [1]. 

The 1923 formulation was an absolute index that, when divided by the median, results in its relative 

expression, which is not bounded between -1 and 1 [2]. Moreover, his original measure of skewness is 

interpreted in the opposite way compared to the classical coefficients of Pearson [3-4], Bowley [5], Yule 

[6], and Fisher [7], so it went somewhat unnoticed, except among researchers in the field of psychology 

[8]. However, if the additive complement of the absolute index is standardized by dividing it by the 

semi-percentile range, the percentile coefficient of skewness is obtained, which is bounded between -1 

and 1. Additionally, Kelley [2] provided the standard error of the absolute index for a normal 

distribution, which can be adapted to its two standardized expressions, whether divided by the absolute 

value of the median or by the semi-percentile range. 

It has not been encountered so far, no statistical program computes this measure. The objective of this 

methodological article is to determine the sampling distribution of the absolute index and the two 

relative modalities proposed, as well as to facilitate the use of these indices by means of a script 

developed for the R program, which has been developed by the mathematical community and is freely 

available [9]. This script allows for the point and interval estimation, providing the information required 

to choose between the asymptotic or bootstrap confidence interval and, in the latter case, to decide 

among three estimation methods: normal, percentile, and bias-corrected and accelerated percentile. For 

this purpose, the assumptions of randomness and normality of the sample are tested. The sample is 

represented by a histogram with overlaid density and normal curves. In addition, the symmetry, 

skewness, and normality of the bootstrap sampling distribution are checked. 
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2. Kelley’s absolute index of skewness 

Kelley's absolute index of skewness is the signed distance from the mean percentile range to the median. 

It is calculated by subtracting from the median (minuend) the mean percentile range (subtrahend) and 

can be denoted as AIS. See Equation 1, where qp(x) represents the p-order sample quantile. It is 

interpreted oppositely to the traditional measures of skewness [3-7], as well as more contemporary 

measures by Bickel [9], Altinay [10], Singh, Gewali, and Khatiwada [11], and Eberl and Klar [12]. 

Negative values indicate that the right side of the distribution is longer than the left side or the presence 

of a long tail on the right, taking the median as the axis of symmetry. Conversely, positive values reveal 

that the left side of the distribution is longer than the right or the presence of a long tail on the left. 
x = {𝑥𝑖}𝑖=1

𝑛 = {𝑥1, 𝑥2, … , 𝑥𝑛} ⊆ X 

 𝐴𝐼𝑆̂(x) = 𝑑 (
𝑞0.1(x) + 𝑞0.90(x)

2
, 𝑞0.5(x) ) = 𝑞0.5(x) −

𝑞0.1(x) + 𝑞0.90(x)

2
 

(1) 

 The calculation of sample quantiles can be done by rules 6, 7, 8, or 9 in the R program [14]. The 

SPSS program calculates quantiles using rule 6, which is the most used method [15]. This rule expresses 

the order p of the quantile x(p) as the average or expected value of the i-th order statistic in a sample of 

size n drawn from a standard continuous uniform distribution U[0, 1]. This approach is used as a non-

informative prior distribution when estimating a probability in Bayesian inference [16]. Rule 7, which 

is the default in the R program, expresses the order p of the quantile x(p) as the mode of the i-th order 

statistic in a sample of size n [17]. Rule 8 is especially recommended when the distribution of the variable 

is unknown [18-19], as suggested by the simulation study of Hyndman and Fan [20] and the exploratory 

data analysis of Tukey [21]. This rule expresses the order p of the quantile x(p) as the median of the i-th 

order statistic in a sample of size n drawn from a standard continuous uniform distribution. For normal 

distributions, rule 9 [22] is recommended. In this rule, the quantile order is expressed as p = (i - a) / (n + 

1 - a - b), where a = b = 3/8, n is the sample size, and i denotes the unknown order of the quantile among 

the n sample data, so i = 0.375 + p × (n + 0.25). If i is an integer, after sorting the sample in ascending 

order, the data in that order is the quantile. If i is a number with decimals, the quantile is obtained by 

linear interpolation (Equation 2). 
x = {𝑥𝑖}𝑖=1

𝑛 = {𝑥1, 𝑥2, … , 𝑥𝑛} ⊆ X 
𝑥(1) ≤ 𝑥(2) ≤ ⋯ ≤ 𝑥(𝑖) ≤ ⋯ ≤ 𝑥(𝑛) 

𝑝 =
𝑖 − 𝑎

𝑛 + 1 − 𝑎 − 𝑏
⇒

𝑅𝑢𝑙𝑒 6 𝑎 = 𝑏 = 0 𝑖 = 𝑝(𝑛 + 1)

𝑅𝑢𝑙𝑒 7 𝑎 = 𝑏 = 1 𝑖 = 1 + 𝑝(𝑛 − 1)

𝑅𝑢𝑙𝑒 8 𝑎 = 𝑏 = 1/3 𝑖 = 1/3 + 𝑝(𝑛 + 1/3)

𝑅𝑢𝑙𝑒 9 𝑎 = 𝑏 = 3/8 𝑖 = 0.375 + 𝑝(𝑛 + 0.25)

 

𝑞𝑝(x) = {
𝑥(𝑖)                                                                𝑖 = ⌊𝑖⌋ = ⌈𝑖⌉

𝑥(⌊𝑖⌋) + (𝑖 − ⌊𝑖⌋)(𝑥(⌊𝑖⌋+1) − 𝑥(⌊𝑖⌋)) 𝑖 = ⌊𝑖⌋ + (𝑖 − ⌊𝑖⌋)
 

(2) 

In addition, Kelley [1-2] provided a formula for the standard error (se) or standard deviation in the 

sampling distribution of the AIS, assuming a normal distribution. See Equation 3, where PR(x) is the 

sample percentile range, qp(x) represents the sample quantile of order p, and n denotes the sample size. 

The constant 0.599143 is a scaling factor derived from theoretical calculations that model the dispersion 

of the inter-percentile range, divided by the square root of the sample size, in random samples from a 

standard normal distribution. This factor ensures that the calculated standard error aligns with the 

asymptotic behavior of percentiles in random samples of varying sizes drawn from a standard normal 

distribution [1]. 
x = {𝑥𝑖}𝑖=1

𝑛 = {𝑥1, 𝑥2, … , 𝑥𝑛} ⊆ X~ 𝑁(0,1) 

𝑠𝑒[𝐴𝐼𝑆̂(x)] = 0.599143 ×
𝑃𝑅(x)

√𝑛
= 0.599143 ×

𝑞0.9(x) − 𝑞0.1(x)

√𝑛
 

(3) 

For a random sample drawn from a normal distribution, or a large sample drawn from a variable with 

finite mean and variance, this formula for the standard error enables the asymptotic estimation of the 

confidence interval at a confidence level of (1 - α) × 100. See Equation 4, where LL represents the low 

limit and UL denotes the upper limit of the confidence interval. 
𝑃(𝐿𝐿 ≤ 𝐴𝐼𝑆 ≤ 𝑈𝐿) = 𝑃(𝐴𝐼𝑆(X) ∈ [𝐿𝐿, 𝑈𝐿]) = 1 − 𝛼 

𝐿𝐿 = 𝐴𝐼𝑆̂(x) − 𝑧
1−

𝛼
2

× 𝑠𝑒[𝐴𝐼𝑆̂(x)] (4) 
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𝑈𝐿 = 𝐴𝐼𝑆̂(x) + 𝑧
1−

𝛼
2

× 𝑠𝑒[𝐴𝐼𝑆̂(x)] 

𝑧
1−

𝛼
2

= Φ−1 (1 −
𝛼

2
) ; Φ−1 (1 −

0.05

2
) = Φ−1(0.975) ≈ 1.96 

In turn, for any type of distribution or a random variable with an unknown distribution, the confidence 

interval can be calculated using bootstrap with the extraction of 1000 or more samples, applying the 

bias-corrected and accelerated percentile, percentile, or normal method, unless the bootstrap standard 

error is too large. The bootstrap standard error should preferably be less than one-fourth of the sample 

interval. A value greater than half of the sample range indicates a very large error [23]. Additionally, 

for the method to be accurate, a random sample that is representative of the population and preferably 

not less than 30 data points is required. If the bootstrap sampling distribution of the skewness statistic 

follows a normal distribution, the normal method can be used, though the other two methods are not 

necessarily inadequate. If the distribution is symmetric (tested by the D'Agostino test [24], or another 

statistical test) with small skewness and acceleration (|bias| ≤ 0.05 and |a| ≤ 0.025, respectively), the 

percentile method can be applied, with the bias-corrected and accelerated method not being 

inappropriate. Otherwise, the bias-corrected and accelerated percentile method is the best choice [25-

26]. When more than one method is applicable, the one that provides the confidence interval with the 

smallest width can be chosen, as efficiency is a desirable property. 

3. Kelley’s relative index of skewness 

The so-called Kelley's relative index of skewness is obtained by dividing the absolute index by the 

median. This results in a quotient with the difference between the median and the mean percentile range 

in the numerator and the median in the denominator (Equation 5). Thus, it is standardized in a manner 

analogous to relative ranges. However, like these measures of variability, the denominator does not 

convert the quotient into a ratio with a range from -1 to 1, but instead allows it to vary from -∞ to ∞ [27]. 

This index can be denoted as RIS. 

𝑅𝐼𝑆̂(x) =
𝑞0.5(x) −

𝑞0.1(x) + 𝑞0.9(x)
2

𝑞0.5(x)
= 1 −

𝑞0.1(x) + 𝑞0.9(x)

2 × 𝑞0.5(x)
 (5) 

If the sampling distribution of the RIS were a normal distribution and the median were considered a 

constant instead of a random variable, the standard error of the AIS would be multiplied by the inverse 

of the absolute value of this constant, resulting in the standard error of the relative index (Equation 6). 

Consequently, an asymptotic confidence interval could be defined, as shown in Equation 4. 

𝑠𝑒[𝑅𝐼𝑆̂(x)] = 𝑠𝑒 [
𝐴𝐼𝑆̂(x)

𝑞0.5(x)
] =

1

|𝑞0.5(x)|
𝑠𝑒[𝐴𝐼𝑆̂(x)] =

0.599143

√𝑛
×

𝑃𝑅(x)

|𝑞0.5(x)|
 (6) 

To maintain the interpretative logic of the skewness coefficients established by Pearson [3-4] and settled 

by Bowley [5] and Yule [6], the order of the minuend and subtrahend in AIS can be reversed (Equation 

7). The index value remains the same, with only the sign changing. A positive sign in the additive 

opposite of AIS indicates positive or right-tailed skewness, while a negative sign indicates negative or 

left-tailed skewness. This reversal can also be applied to the additive opposite of RIS, changing only the 

sign (Equation 8). Additionally, the value of the asymptotic standard error remains unchanged in either 

index (Equations 9 and 10). These additive opposites can be denoted by AISr and RISr, where r 

represents the revised or reversed character of the index. 

1 − 𝐴𝐼𝑆(x) =
𝑞0.1(x) + 𝑞0.9(x)

2
− 𝑞0.5(x) =

𝑞0.1(x) + 𝑞0.9(x) − 2 × 𝑞0.5(x)

2
= 𝐴𝐼𝑆𝑟(x) (7) 

1 − 𝑅𝐼𝑆(x) =

𝑞0.1(x) + 𝑞0.9(x)
2

− 𝑞0.5(x)

𝑞0.5(x)
=

𝑞0.1(x) + 𝑞0.9(x)

2 × 𝑞0.5(x)
− 1 = 𝑅𝐼𝑆𝑟(x) (8) 

𝑠𝑒[1 − 𝐴𝐼𝑆(x)] = 𝑠𝑒[𝐴𝐼𝑆(x)] = 0.599143 ×
𝑃𝑅(x)

√𝑛
= 𝑠𝑒[𝐴𝐼𝑆𝑟(x)] (9) 

𝑠𝑒[1 − 𝑅𝐼𝑆(x)] = 𝑠𝑒[𝑅𝐼𝑆(x)] = 0.599143 ×
𝑃𝑅(x)

√𝑛
= 𝑠𝑒[𝑅𝐼𝑆𝑟(x)] (10) 
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In the latter case, if instead of standardizing using the median, it is divided by the semi-percentile range, 

as in Altinay's measure of skewness [11], it results in the percentile coefficient of skewness as the relative 

skewness index. This index is a ratio and is bounded between -1 and 1 (Equation 11). 

𝑅𝐼𝑆𝑟(x) =

𝑞0.1(x) + 𝑞0.9(x)
2

− 𝑞0.5(x)

𝑞0.9(x) − 𝑞0.1(x)
2

=
𝑞0.1(x) + 𝑞0.9(x) − 2 × 𝑞0.5(x)

𝑞0.9(x) − 𝑞0.1(x)
= 𝑃𝐶𝑆(x) (11) 

If the sampling distribution of the percentile coefficient of skewness were normal and the percentile 

range were considered a constant instead of a random variable, the standard error would be simplified 

to the expression shown in Equation 12, which would allow the definition of an asymptotic confidence 

interval as shown in Equation 4. 

𝑠𝑒 (
1 − 𝐴𝐼𝑆(x)

𝑃𝑅(x)
) =

1

𝑃𝑅(x)
𝑠𝑒[𝐴𝐼𝑆(x)] =

0.599143 × 𝑃𝑅(x) √𝑛⁄

𝑃𝑅(x) 2⁄
=

1.19828

√𝑛
 (12) 

 It should be noted that the percentile coefficient of skewness does not have a clear attribution of 

authorship. In 1975, Hinkley [28] used this coefficient to assess symmetry after applying the Box-Cox 

power transformation to sample data drawn from non-normal distributions, marking the first published 

use of this measure of skewness. In the field of economics [29-30] and other disciplines [31-32], it is 

attributed to Kelly, often without proper citation, likely causing confusion with the psychologist 

Truman Lee Kelley [33-34]. 

The percentile coefficient of skewness (PCS) deals with one of the infinite possibilities of Bowley's [5] 

generalization of the quartile coefficient of skewness given by Groeneveld and Meeden [35]. It is similar 

to the quartile coefficient of skewness except that it uses the 10th (q0.1) and 90th (q0.9) percentiles instead 

of the 1st (q0.25) and 3rd (q0.75) quartiles in the numerator and uses the percentile range (PR) instead of 

the interquartile range (IQR) in the denominator. Thus, PCS is a way of standardizing the additive 

opposite of Kelley's AIS. 

Using quantiles, AIS is a robust measure of skewness and can be applied to any type of distribution. 

The percentile coefficient of skewness is considered a better choice than the quartile coefficient of 

skewness by Bowley [5] and Yule [6] for platykurtic or thin-tailed distributions, such as the uniform, 

triangular, or semicircular distribution [29, 36]. 

4. Materials and Methods 

For the first objective of the study, which was to determine the sampling distribution of the three 

measures of skewness: AISr, RISr, and PCS, three random samples of 10,000 data points were generated 

using the inverse transform method [37]. Three continuous, symmetric distributions with finite 

moments were chosen to facilitate compliance with the central limit theorem [17], each with different 

kurtosis. The Wigner’s standard semicircular distribution SC(r = 1) was selected as the platykurtic 

distribution. This was generated from a beta distribution by applying the transformation: Y = 2rX - r = 

2X - 1, where the variable Y follows a semicircular distribution with unit radius (r = 1) and the variable 

X follows a Beta distribution with shape parameters: α = 2/3 and β = 3/2 [38]. The standard normal 

distribution with location parameter 0 and scale 1, N(0, 1). was taken as the mesokurtic distribution. The 

chosen leptokurtic distribution was the standard logistic distribution with location parameter 0 and 

scale 1, Logist(0, 1). 

From each of these three source samples of 10,000 data points, 1,000 samples of 10,000 data points were 

drawn with replacement. In each of these bootstrap samples, Kelley’s absolute and relative indices, as 

well as the percentile coefficient of skewness, were calculated. Thus, three bootstrap sampling 

distributions were obtained for each of the three measures of skewness. 

For each of these nine bootstrap sampling distributions, the presence of outliers was checked using 

Grubbs' test [39], symmetry by D'Agostino's test [24], mesokurtosis by Anscombe-Glynn test [40], and 

normality by the Anderson-Darling [41], Shapiro-Francia [42-43], and D'Agostino-Belanger-D'Agostino 

[44] tests. The difference between asymptotic and bootstrap standard errors was evaluated using the 

one-sample chi-square test [45]. 

To facilitate the use of these measures of asymmetry, a script was developed for the R program, allowing 

for both point and interval estimation. The script adjusts the results based on the sampling distributions 
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of the three indexes studied. Both asymptotic and bootstrap confidence intervals are computed, 

enabling the testing of the normality of the random sample of the quantitative variable X to determine 

which interval to use. Three methods are included to obtain the bootstrap confidence intervals: normal, 

percentile, and bias-corrected and accelerated percentile. Thus, the symmetry (D'Agostino test [24]), 

mesokurtosis (Anscombe-Glynn test [40]), and normality (Shapiro-Francia [42-43] and D'Agostino-

Belanger-D'Agostino [44] tests) of the bootstrap sampling distribution are tested, and the bias and 

acceleration (a) are reported to select the appropriate method. As an example, the script was applied to 

a randomly generated sample of 60 data points. To make the example more meaningful, the sample 

data were generated to correspond to the proportional (monthly) return of stock prices in a volatile 

stock market, using a Cauchy distribution with a location parameter (x0) of 0.05, representing the 

population median, and a scale parameter (γ) of 0.38, constituting the population semi-interquartile 

range [46-47]. 

5. Results 

5.1. Sampling distribution of AISr, RISr and PCS 

The random samples of 10,000 data points (source samples) are plotted as histograms (50 bins of 

uniform width) with the curve of the theoretical or generating density function overlaid. Figure 1 shows 

the sample randomly drawn from the standard Wigner semicircular distribution (unit radius). Figure 2 

displays the sample randomly drawn from the standard normal distribution, and Figure 3 shows the 

sample randomly drawn from the standard logistic distribution. From these three source samples, 1,000 

samples of 10,000 data points each were drawn with replacement. In each of these samples, Kelley’s 

absolute and relative reversed indices, as well as the percentile coefficient of skewness, were calculated, 

thus obtaining the bootstrap sampling distribution of these measures of skewness. 

 
Figure 1. Histogram with the overlaid standard semicircular distribution curve. Source: prepared by the author. 
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Figure 2. Histogram with the overlaid standard normal curve. Source: prepared by the author. 

 
Figure 3. Histogram with the overlaid standard logistic curve. Source: prepared by the author. 

At the 5% significance level, the bootstrap sampling distributions of AISr showed no outliers by Grubb's 

test in the three samples generated from 10,000 data points from three symmetric distributions with 

different kurtosis. Their profiles were symmetric by the D'Agostino test and mesokurtic by the 

Anscombe-Glynn test. They were fitted to a normal distribution by the Anderson-Darling, Shapiro-

Francia, and D'Agostino-Pearson tests. Thus, the asymptotic and bootstrap standard errors were very 

similar, with absolute differences less than or equal to 0.0010, resulting in a non-significant difference 

in the bootstrap sampling distribution derived from the logistic distribution (Tables 1-3). Bootstrap 

standard errors were small, ranging from 0.007 to 0.026. In the normal Q-Q plots, an alignment of the 

points around the center line at 45 degrees can be seen, and in the histogram, the bell-shaped profile of 

the normal distribution can be observed, whether the bootstrap sampling distribution is derived from 

semicircular, normal, or logistically distributed data (Figures 4-6). 

The same results of good fit to normality were also observed in the bootstrap sampling distribution of 

PCS, with absolute differences between bootstrap and asymptotic standard errors less than or equal to 

0.0015, resulting in a non-significant difference in the bootstrap sampling distribution derived from the 
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sample generated from the logistic distribution. Bootstrap standard errors were small, ranging from 

0.011 to 0.012. See Tables 1-3 and Figures 7-9. 

However, the bootstrap sampling distributions of RISr deviated from normality, presenting outliers, 

skewness (positive with data from the semicircular and logistic distributions and negative with data 

from the normal distribution), and marked leptokurtosis (Tables 1-3). The profile of the normal Q-Q 

plot shows central flattening with a concave curvature at the left end and convex at the right end, which 

is typical of a strongly leptokurtic distribution. This non-normal, pointed profile can be observed in the 

histogram, whether the bootstrap sampling distribution is obtained from semicircular, normal, or 

logistically distributed data (Figures 10-11). Bootstrap standard errors were very large. The largest 

occurred with the mesokurtic distribution (bse = 38.998), followed by the leptokurtic (bse = 13.294) and 

platykurtic (bse = 4.897) distributions. Consequently, these estimates are not reliable. 

Table 1. Tests of randomness, symmetry and meso-kurtosis for the bootstrap sampling distribution of three 

measures of skewness. 

Type of Statistic of Grubbs’ test D’Agostino’s test Anscombe-Glynn test 

distribution skewness g u p-value √b1 z p-value b2 z p-value 

Semi- AISr 3.307 0.989 0.457 -0.060 -0.774 0.439 2.884 -0.687 0.492 

circle RISr 29.773 0.112 <0.001 26.136 44.543 <0.001 788.660 23.624 <0.001 

 PCS 3.302 0.990 0.467 -0.058 -0.748 0.454 2.887 -0.669 0.504 

Normal AISr 2.984 0.991 0.999 0.035 0.456 0.649 2.900 -0.571 0.568 

 RISr 29.376 0.135 <0.001 -25.454 -44.260 <0.001 747.730 23.566 <0.001 

 PCS 3.027 0.991 0.999 0.0247 0.321 0.749 2.905 -0.538 0.591 

Logistic AISr 3.596 0.987 0.155 -0.040 -0.519 0.604 3.014 0.203 0.839 

 RISr 18.725 0.649 <0.001 6.065 28.904 <0.001 168.091 21.445 <0.001 

 PCS 3.490, 0.988 0.233 -0.032 -0.417 0.677 2.999 0.106 0.915 
1 Note. Statistic: AISr = Reversed Absolute Index of Skewness, RISr = Reversed Relative Index of Skewness, and 

PCS = Percentile Coefficient of Skewness. Grubbs’ test for one outlier: g = Grubbs’ test statistic, u = normalized test 

statistic, and p-value = one-tailed p-value (alternative hypothesis: lowest or highest value is an outlier). 

D'Agostino skewness test: √b1 = measure of skewness based on the standardized third central moment, z = test 

statistic, and p-value = two-tailed p-value (alternative hypothesis: data have a skewness towards left or right tail). 

Anscombe-Glynn kurtosis test: b2 = measure of kurtosis based on the standardized fourth central moment. z = test 

statistic, and p-value = two-tailed p-value (alternative hypothesis: the value of kurtosis [β2] is not equal to 3). 

Probability values less than 0.05, indicating the statistical test's significance, are highlighted in bold. Source: 

prepared by the author. 

Table 2. Tests of normality for the bootstrap sampling distribution of three measures of skewness. 

Type of Statistic of Anderson-Darling Shapiro-Francia D’Agostino et al. 

distribution skewness AD p-value w p-value k2 p-value 

Semi- AISr 0.172 0.930 0.999 0.830 1.072 0.585 

circle RISr 285.900 < 0.001 0.088 < 0.001 2542.163 < 0.001 

 PCS 0.167 0.938 0.999 0.863 1.007 0.604 

Normal AISr 0.312 0.551 0.999 0.631 0.533 0.766 

 RISr 267.320 < 0.001 0.110 < 0.001 2514.260 < 0.001 

 PCS 0.319 0.534 0.999 0.675 0.392 0.822 

Logistic AISr 0.288 0.617 0.998 0.434 0.311 0.856 

 RISr 215.960 < 0.001 0.284 < 0.001 1295.340 < 0.001 

 PCS 0.2873 0.620 0.998 0.475 0.185 0.912 
1 Note. Statistic: AISr = Reversed Absolute Index of Skewness, RISr = Reversed Relative Index of Skewness, and 

PCS = Percentile Coefficient of Skewness Anderson-Darling normality test: AD = test statistic, and p-value 

(alternative hypothesis: sample was not drawn from a normal distribution). Shapiro-Francia normality test: w = 

test statistic, and p-value (the same alternative hypothesis). D’Agostino-Berlanger-D’Agostino Normality test: k2 = 

test statistic, and p-value (the same alternative hypothesis). Probability values less than 0.05, indicating the 

statistical test's significance, are highlighted in bold. Source: prepared by the author. 
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Table 3. Point estimation of skewness measures and bootstrap confidence interval, bias and comparison between 

bootstrap and asymptotic standard errors. 

Distribution Statistic value Method LL UL bias a bse ase diff p-value 

Semi- AISr 0.004 norm -0.010 0.018 0.00002 0.00043 0.007 0.008 -0.0010 <0.001 

circle RISr -0.507 BCa -2.029 4.113 -0.0603 -0.00014 4.897 1.031 3.8669 <0.001 

 PCS 0.006 norm -0.015 0.026 0.00003 0.00044 0.011 0.012 -0.0015 <0.001 

Normal AISr 0.003 norm -0.023 0.029 -0.0004 0.00163 0.013 0.015 -0.0018 <0.001 

 RISr -0.255 BCa -3.759 12.332 -0.7699 -0.00212 38.998 1.374 37.6246 <0.001 

 PCS 0.002 norm -0.018 0.023 -0.0003 0.00162 0.011 0.012 -0.0015 <0.001 

Logistic AIS -0.004 norm -0.055 0.045 0.0011 0.00007 0.026 0.026 -0.0003 0.613 

 RIS 0.169 BCa -5.167 21.436 -0.1044 -0.00004 13.294 1.190 12.1045 <0.001 

 PCS -0.002 norm -0.025 0.021 0.0005 0.00009 0.012 0.012 -0.0002 0.461 
1 Note. Statistic: AISr = Reversed Absolute Index of Skewness, RISr = Reversed Relative Index of Skewness, and 

PCS = Percentile Coefficient of Skewness. Method: norm = normal from library(boot) and BCa = bias-corrected 

and accelerated bootstrap from library ‘bcajack’. LL = low limit and UL = upper limit of the 95% bootstrap 

confidence interval, bias = difference between the bootstrap estimate (mean in the bootstrap sampling distribution 

of the statistic) and the original sample estimate, bse = bootstrap standard error, ase = asymptotic standard error, 

diff = difference between errors: bse - ase, p-value = one-tailed p-value for chi-square test of a single variance 

(alternative hypothesis: bootstrap variance is lower (left tail) or higher (right tail) than the asymptotic variance 

expected from the normal approximation). Probability values less than 0.05, indicating the statistical test's 

significance, are highlighted in bold. Source: prepared by the author. 

 
Figure 4. Histogram and normal quantile-quantile plot of the bootstrap sampling distribution of AISr from the 

10,000-data sample drawn from a semicircle distribution. Source: prepared by the author. 
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Figure 5. Histogram and normal quantile-quantile plot of the bootstrap sampling distribution of RISr from the 

10,000-data sample drawn from a semicircle distribution. Source: prepared by the author. 

 
Figure 6. Histogram and normal quantile-quantile plot of the bootstrap sampling distribution of PCS from the 

10,000-data sample drawn from a semicircle distribution. Source: prepared by the author. 

 
Figure 7. Histogram and normal quantile-quantile plot of the bootstrap sampling distribution of AISr from the 

10,000-data sample drawn from a normal distribution. Source: prepared by the author. 
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Figure 8. Histogram and normal quantile-quantile plot of the bootstrap sampling distribution of RISr from the 

10,000-data sample drawn from a normal distribution. Source: prepared by the author. 

 
Figure 9. Histogram and normal quantile-quantile plot of the bootstrap sampling distribution of PCS from the 

10,000-data sample drawn from a normal distribution. Source: prepared by the author. 

 
Figure 10. Histogram and normal quantile-quantile plot of the bootstrap sampling distribution of AISr from the 

10,000-data sample drawn from a logistic distribution. Source: prepared by the author. 
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Figure 11. Histogram and normal quantile-quantile plot of the bootstrap sampling distribution of RISr from the 

10,000-data sample drawn from a logistic distribution. Source: prepared by the author. 

 
Figure 12. Histogram and normal quantile-quantile plot of the bootstrap sampling distribution of PCS from the 

10,000-data sample drawn from a logistic distribution. Source: prepared by the author. 

5.2. Script for point and interval estimation of AISr and PCS 

5.2.1. Content and structure of the script 

The randomness of the sample is a fundamental assumption for statistical inference [48], so the script 

starts by testing this assumption using the Wald-Wolfowitz runs test. Running the test in the R program 

requires downloading the 'randtests' library [49]. 

For this and the other inferential tests in the script, the significance level is set at 0.05, which is the most 

conventional value [50]. However, it can be modified considering the sample size [51]. It can be raised 

to 0.1 with small samples (20 to 29) or lowered to 0.01 with large samples (1000 or more). It can also be 

changed based on a theoretical approach [52] or to control for family-wise error rate [53]. 

The a posteriori statistical power (Φ) is calculated by bootstrapping. From the original sample, 1000 

samples are generated, and for each of these 1000 samples, the exact probability of the two-tailed test 

(p-value = 'exact') is calculated. However, one can switch to the asymptotic probability in the case of a 

large sample, where n0 (the number of data points smaller than the median or criterion) and n1 (the 
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number of data points larger than the median) are each greater than or equal to 20 (p-value = 'normal'). 

The number of probabilities less than the significance level, divided by the number of simulations, 

yields the statistical power or the probability of rejecting the null hypothesis when it is false [26]. See 

Equation 13, where I is the indicator function, B represents the number of simulations, and α denotes 

the significance level. 

𝜙 =
∑ 𝐼(𝑝𝑡𝑤𝑜−𝑠𝑖𝑑𝑒𝑑_𝑒𝑥𝑎𝑡 < 𝛼)𝐵

𝑖=

𝐵
 (13) 

The script continues by testing for normality. In case of a good fit, the use of the asymptotic error and 

confidence interval for AISr and PCS can be chosen. This distributional assumption is tested through 

four tests with different inferential foundations [54], and additionally, the statistical power is computed. 

Executing these tests in R requires loading the 'moments' [55] and 'nortest' [56] libraries. 

The normality check starts with the D'Agostino-Berlanger-D'Agostino K2 test [44] based on the sum of 

squares of the standardized values of skewness [24] and kurtosis [40], whose statistic converges in 

distribution to a chi-square distribution with two degrees of freedom. With this test, a posteriori 

statistical power is calculated with the complementary cumulative distribution function of a non-central 

chi-square distribution. 

The second normality test is the Lilliefors test [57], which assesses the maximum linear distance between 

the empirical and theoretical cumulative distribution functions. The third test is the Anderson-Darling 

test [41], which measures the standardized quadratic distance between these functions. The fourth and 

final test is the Shapiro-Francia test [42-43], based on the shared variance between empirical and 

theoretical quantiles. With these three tests, a posteriori statistical power is obtained through 

bootstrapping. They were chosen for their recommended power and adequacy [58-61]. 

The assessment of normality through inferential tests is complemented by graphical representation 

using a histogram with overlaid density and normal curves. The uniform amplitude and number of bins 

are determined using the Freedman-Diaconis optimization rule (breaks = "fd"), which imposes no 

distributional assumption. However, this can be switched to the Scott’s rule (breaks = "scott") if the data 

fit well to a normal distribution [62]. The density for the overlaid curve is computed using the 

Epanechnikov’s kernel function [63], known for its parabolic shape that minimizes integrated mean 

square error most effectively [64]. The bandwidth is computed using the Sheather-Jones procedure [65], 

which minimizes asymptotic integrated mean square error and is considered one of the most suitable 

methods for this purpose [66-67]. 

It should be noted that when running the script using the R program downloaded on your computer, 

the plot can be saved as a high-definition JPEG file. Simply expand the R graphics device window 

(ACTIVE), where in its toolbar under Files, you will find the 'Save As' function that offers this option 

[68]. 

After these checks, the script proceeds to the point and interval estimation of the additive complement 

of AIS and PCS. The additive complement of the IAS was chosen for two reasons: firstly, to maintain 

interpretative consistency with the classic index established by Pearson [3-4] — positive values indicate 

right-tailed skewness, and negative values indicate left-tailed skewness. Secondly, because PCS 

represents the standardized form of the additive complement of AIS once it is divided by the semi-

percentile range. Quantiles were calculated using R's rule 8 [18-19]. RISr is omitted from the script due 

to its excessive bootstrap standard error. However, its calculation with R applied to a sample of 60 data 

points is shown at the end of this Results section (sub-section 5.3). 

The confidence level is set at 95%, corresponding to the 5% significance level chosen for the inferential 

tests. For the bootstrap confidence intervals, 1000 random samples were created by sampling with 

replacement from the original sample, and the statistics AISr and PCS were calculated for each of these 

1000 samples [26]. Thus, bootstrap sampling distributions were generated for these two statistics. The 

symmetry of the bootstrap sampling distribution was assessed using the D'Agostino test [24], kurtosis 

was tested using the Anscombe-Glynn test [40], and normality was evaluated using the Shapiro-Francia 

test [42-43]. Additionally, bootstrap bias, bootstrap standard error (bse), jackknife acceleration (a), and 

the density histogram and Q-Q normal plot of the bootstrap sampling distributions were obtained [23]. 
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Bootstrap confidence intervals are calculated using three methods: normal (norm), percentile (perc), and 

bias-corrected and accelerated percentile (BCa). The choice of method depends on the characteristics of 

the bootstrap sampling distribution. The normal method is preferred when the distribution is 

approximately normal. If there is no normality, bias (|b| ≥ 0.05) and asymmetry (|a| ≥ 0.025 and 

significance D’Agostino’s skewness test [24]), then the BCa method is the best choice [25]. Alternatively, 

when there is no normality, but acceleration and bias are minimal, the percentile method remains 

suitable. To implement these methods, downloading the 'boot' library is necessary [69]. 

Finally, the bootstrap probability of retaining the null hypothesis of symmetry, assessed using AISr and 

PCS, was calculated. This is obtained by counting how many values are less than or equal (left tail) and 

how many values are greater than or equal (right tail) to the parameter (null hypothesis of symmetry) 

among the 1000 data from the statistic's bootstrap sampling distribution of AISr or PCS. The smallest 

probability is chosen and multiplied by 2. If it is less than or equal to the significance level (α), the null 

hypothesis of symmetry holds in a two-tailed test, otherwise it is rejected [70]. 

A random sample of at least 20 data points [71] and preferably at least 30 data points [72] from a 

quantitative variable X is recommended for using this script. The script is divided into three 

independent parts to make it lighter to execute. What can be changed in the script to match the user's 

data is marked in blue, such as the sample or vector of scores. 

5.2.2. The script with its three parts 

# First part of the script: randomness and normality of the sample or vector of scores x. 

x <- c(0.532, -0.248, 1.342, -0.096, -0.022, 0.105, -4.243, -0.084, -2.281, 2.821, -0.002, 2.623, -0.559, -1.586, 

0.177, -0.074, 0.421, 0.101, 0.683, -0.005, -0.087, -0.499, -0.754, 0.043, -0.664, -0.445, -2.677, -1.197, 0.537, 

0.239, 0.006, -0.070, -0.506, -0.234, 0.079, 5.489, -0.310, 0.357, 0.641, 0.388, 0.233, 1.431, 1.417, 0.919, 0.247, 

0.227, 0.392, 3.590, 0.470, -0.132, 0.105, 2.120, -0.228, 0.203, -1.910, 0.338, 0.211, -0.322, -0.080, 0.963) 

 

cat("Testing the randomness of the sample x using the Wald-Wolfowitz runs test", "\n") 

library(randtests) 

runse <- runs.test(x, alternative = "two.sided", threshold = median(x), pvalue = 'exact') 

runsa <- runs.test(x, alternative = "two.sided", threshold = median(x), pvalue = 'normal') 

alpha <- 0.05 

ww_power <- function(x, alpha, B = 1000) {n <- length(x) 

p_values <- numeric(B) 

for (i in 1:B) {bootstrap_sample <- sample(x, replace = TRUE) 

result <- runs.test(x, alternative = "two.sided", threshold = median(x), pvalue = 'exact') 

p_values[i] <- result$p.value} 

power <- mean(p_values < alpha) 

return(power)} 

set.seed(123) 

power <- ww_power(x, alpha) 

cat("Wald-Wolfowitz runs test. Criterion: median", "\n") 

cat("Number of runs: r =", runse$runs, "\n") 

cat("n_0 = #(x_i < mdn(x)) =", runse$parameter["n1"],"y", "n_1 = #(x_i > mdn(x)) =", 

runse$parameter["n2"], "\n") 

cat("n = n_0 + n_1 =", runse$parameter["n"], "\n") 

cat("Two-tailed exact probability value: p =", round(runse$p.value, 3), "\n") 

cat("Mean: M(R|n_0, n_1) =", runse$mu, "y", " Standard deviation: DE(R|n_0, n_1) =", 

round(sqrt(runse$var), 3), "\n") 

cat("Standardized number of runs: z_r =", round(runse$statistic, 3), "\n") 

cat("Two-tailed asymptotic probability value: p =", round(runsa$p.value, 3), "\n") 

cat("Statistical power for the Wald-Wolfowitz runs test using bootstrap simulation: ϕ =", power, "\n") 

cat("Testing for normality using four tests with different rationales:", "\n") 

library(moments) 
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agostino <- agostino.test(x, alternative = "two.sided") 

ag <- anscombe.test(x, alternative = "two.sided") 

K2 <- (agostino$statistic["z"]^2 + ag$statistic["z"]^2) 

p <- pchisq(K2, df = 2, lower.tail = FALSE) 

power_K2 <- 1 - pchisq(qchisq(alpha, df = 2, lower.tail = FALSE), df = 2, ncp = K2, lower.tail = TRUE, 

log.p = FALSE) 

cat("Test for normality using the D'Agostino-Berlanger-D'Agostino test.", "\n") 

cat("Test statistic: k^2(x) =", round(K2, 3), "\n") 

cat("Asymptotic probability value in a two-tailed test: p_value =", round(p, 3), "\n") 

if (p < alpha) {cat(sprintf("The null hypothesis of normality is rejected at a significance level of %.2f using 

K squared test.", alpha), "\n") 

} else {cat(sprintf("The null hypothesis of normality is maintained at a significance level of %.2f using K 

squared test.", alpha), "\n")} 

cat("The right-tailed statistical power for the alternative hypothesis of non-normality for the K squared 

test: ϕ =", round(power_K2, 4), "\n") 

library(nortest) 

lillie.test(x) 

result_lillie <- lillie.test(x) 

if (result_lillie$p.value < alpha) {cat(sprintf("The null hypothesis of normality is rejected at a significance 

level of %.2f using Lilliefors test.", alpha), "\n") 

} else {cat(sprintf("The null hypothesis of normality is maintained at a significance level of %.2f using 

Lilliefors test.", alpha), "\n")} 

lillie_power <- function(x, alpha, B = 1000) {n <- length(x) 

p_values <- numeric(B) 

for (i in 1:B) {bootstrap_sample <- sample(x, replace = TRUE) 

result <- lillie.test(bootstrap_sample) 

p_values[i] <- result$p.value} 

power <- mean(p_values < alpha) 

return(power)} 

set.seed(123) 

power <- lillie_power(x, alpha) 

cat("Statistical power for the Lilliefors normality test using bootstrap simulation: ϕ =", power, "\n") 

 

ad.test(x) 

result_ad <- ad.test(x) 

if (result_ad$p.value < alpha) {cat(sprintf("The null hypothesis of normality is rejected at a significance 

level of %.2f using Anderson-Darling test.", alpha), "\n") 

} else {cat(sprintf("The null hypothesis of normality is maintained at a significance level of %.2f using 

Anderson-Darling test.", alpha), "\n")} 

ad_power <- function(x, alpha, B = 1000) {n <- length(x) 

p_values <- numeric(B) 

for (i in 1:B) {bootstrap_sample <- sample(x, replace = TRUE) 

result <- ad.test(bootstrap_sample) 

p_values[i] <- result$p.value} 

power <- mean(p_values < alpha) 

return(power)} 

set.seed(123) 

power <- ad_power(x, alpha) 

cat("Statistical power for the Anderson-Darling normality test using bootstrap simulation: ϕ =", power, 

"\n") 
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sf.test(x) 

result_sf <- sf.test(x) 

if (result_sf$p.value < alpha) {cat(sprintf("The null hypothesis of normality is rejected at a significance 

level of %.2f using Shapiro-Francia test.", alpha), "\n") 

} else {cat(sprintf("The null hypothesis of normality is maintained at a significance level of %.2f using 

Shapiro-Francia test.", alpha), "\n")} 

sf_power <- function(x, alpha, B = 1000) {n <- length(x) 

p_values <- numeric(B) 

for (i in 1:B) {bootstrap_sample <- sample(x, replace = TRUE) 

result <- sf.test(bootstrap_sample) 

p_values[i] <- result$p.value} 

power <- mean(p_values < alpha) 

return(power)} 

set.seed(123) 

power <- sf_power(x, alpha) 

cat("Statistical power for the Shapiro-Francia normality test using bootstrap simulation: ϕ =", power, 

"\n") 

 

# Histogram with overlaid density and normal curves 

# breaks = "scott" in case of normality or breaks = "sturges" in the case of symmetry 

hist(x, breaks = "fd", col = "darkolivegreen2", border = "black", freq = FALSE, main = "Histogram with 

overlaid normal and density curves", xlab = " X values", ylab = "Density", ylim = c(0, 0.8), cex.main = 1.5, 

cex.lab = 1.5, cex.axis = 1.2) 

lines(density(x, kernel = "epanechnikov", bw = "sj"), col = "darkblue", lwd = 4) 

x_values <- seq(mean(x) - 4 * sd(x), mean(x) + 4 * sd(x), length = 1000) 

y_values <- dnorm(x_values, mean = mean(x), sd = sd(x)) 

lines(x_values, y_values, col = "red", lwd = 4) 

 

# Second part of the script: AISr 

x <- c(0.532, -0.248, 1.342, -0.096, -0.022, 0.105, -4.243, -0.084, -2.281, 2.821, -0.002, 2.623, -0.559, -1.586, 

0.177, -0.074, 0.421, 0.101, 0.683, -0.005, -0.087, -0.499, -0.754, 0.043, -0.664, -0.445, -2.677, -1.197, 0.537, 

0.239, 0.006, -0.070, -0.506, -0.234, 0.079, 5.489, -0.310, 0.357, 0.641, 0.388, 0.233, 1.431, 1.417, 0.919, 0.247, 

0.227, 0.392, 3.590, 0.470, -0.132, 0.105, 2.120, -0.228, 0.203, -1.910, 0.338, 0.211, -0.322, -0.080, 0.963) 

 

library(boot) 

library(moments) 

library(nortest) 

alpha <- 0.05 

 

cat("Point estimate of the additive opposite of Kelley's absolute skewness index", "\n") 

n <- length(x) 

q0.1 <- quantile(x, 0.10, type = 8) 

q0.5 <- quantile(x, 0.50, type = 8) 

q0.9 <- quantile(x, 0.90, type = 8) 

AISr = (q0.1 + q0.9) / 2 - q0.5 

cat("Sample size: n =", n,"\n") 

cat("Quantile of order 0.1 by the rule 8: q_0.1(x) =",round(q0.1, 3),"\n") 

cat("Quantile of order 0.5 by the rule 8: q_0.5(x) =",round(q0.5, 3),"\n") 

cat("Quantile of order 0.1 by the rule 8: q_0.9(x) =",round(q0.9, 3),"\n") 

cat("Additive opposite of Kelley's absolute asymmetry index: AISr = ",round(AISr, 3),"\n") 
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cat("Asymptotic confidence interval of the additive opposite of Kelley's absolute skewness index", "\n") 

ase <- 0.599143 * (quantile(x, 0.9, type = 8) - quantile(x, 0.10, type = 8)) / sqrt(length(x)) 

LL = AISr - qnorm(1-alpha/2) * ase 

UL = AISr + qnorm(1-alpha/2) * ase 

cat("Asymptotic standard error of AISr: ase(AISr) =", round(ase, 3), "\n") 

cat("Asymptotic confidence interval", (1 - alpha) * 100, "% for AISr: 95% CI (", round(LL, 3),",", round(UL, 

3),")\n") 

 

# Acceleration (jackknife) 

AISr_jack <- numeric(n) 

for (i in 1:n) {x_jack <- x[-i] 

AISr_jack[i] <- quantile((quantile(x_jack, 0.10, type = 8) + quantile(x_jack, 0.90, type = 8))/2 - x_jack, 0.50, 

type = 8)} 

acel <- sum((mean(AISr_jack) - AISr_jack)^3) / (6 * sum((mean(AISr_jack) - AISr_jack)^2)^(3/2)) 

cat("Aceleración (jackknife): a =", round(acel, 6), "\n") 

set.seed(123) 

b <- boot(data = x, function(x, i) {(quantile(x[i], 0.10, type = 8) + quantile(x[i], 0.90, type = 8))/2 - 

quantile(x[i], 0.50, type = 8)}, R=1000) 

boot_est <- mean(b$t) 

cat("Bootstrap estimation: m(b$t) =", round(boot_est, 3), "\n") 

agostino_boot <- agostino.test(b$t, alternative = "two.sided") 

ag_boot <- anscombe.test(b$t, alternative = "two.sided") 

print(agostino_boot) 

print(ag_boot) 

cat("D'Agostino-Berlanger-D'Agostino normality test", "\n") 

K2 <- (agostino_boot$statistic["z"]^2 + ag_boot$statistic["z"]^2) 

p <- pchisq(K2, df = 2, lower.tail = FALSE) 

cat("K^2 =", round(K2, 3), "\n") 

cat("p_value =", round(p, 3), "\n") 

sf.test(b$t) 

b 

plot(b) 

boot.ci(b, conf = 0.95, type = c("bca", "perc", "norm")) 

p_boot_left <- mean(b$t < 0) 

p_boot_right <- mean(b$t > 0) 

p_boot <- min(p_boot_left, p_boot_right) 

cat("One-tailed bootstrap probability value for the null hypothesis of symmetry: p =", round(p_boot, 3), 

"\n") 

if (p_boot < alpha) {cat(sprintf("The null hypothesis of normality is rejected at a significance level of %.2f 

using bootstrap probability.", alpha), "\n") 

} else {cat(sprintf("The null hypothesis of normality is maintained at a significance level of %.2f using 

bootstrap probability.", alpha), "\n")} 

 

# Third part of the script: PCS 

 

x <- c(0.532, -0.248, 1.342, -0.096, -0.022, 0.105, -4.243, -0.084, -2.281, 2.821, -0.002, 2.623, -0.559, -1.586, 

0.177, -0.074, 0.421, 0.101, 0.683, -0.005, -0.087, -0.499, -0.754, 0.043, -0.664, -0.445, -2.677, -1.197, 0.537, 

0.239, 0.006, -0.070, -0.506, -0.234, 0.079, 5.489, -0.310, 0.357, 0.641, 0.388, 0.233, 1.431, 1.417, 0.919, 0.247, 

0.227, 0.392, 3.590, 0.470, -0.132, 0.105, 2.120, -0.228, 0.203, -1.910, 0.338, 0.211, -0.322, -0.080, 0.963) 

 

library(bcaboot) 
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library(boot) 

library(moments) 

library(nortest) 

 

cat("Point estimate of the percentile coefficient of skewness", "\n") 

PCS <- (quantile(x, 0.10, type = 8) + quantile(x, 0.90, type = 8) - 2* quantile(x, 0.50, type = 8)) / (quantile(x, 

0.90, type = 8) - quantile(x, 0.10, type = 8)) 

cat("Percentage coefficient of skewness: PCS(x) = ", PCS,"\n") 

 

cat("Asymptotic confidence interval of percentile coefficient of skewness", "\n") 

ase <- 1.198286 / sqrt(length(x)) 

alpha <- 0.05 

LL <- PCS - qnorm(1 - alpha / 2) * ase 

UL <- PCS + qnorm(1- alpha / 2) * ase 

cat("Asymptotic standard error of PCS: ase(PCS) =", round(ase, 3), "\n") 

cat("Asymptotic confidence interval", (1 - alpha) * 100, "% for PCS: 95% CI (", round(LL, 3),",", round(UL, 

3),")\n") 

 

cat("Bootstrap confidence interval of the percentile coefficient of skewness", "\n") 

# Aceleración (jackknife) 

n <- length(x) 

PCS_jack <- numeric(n) 

for (i in 1:n) {x_jack <- x[-i] 

PCS_jack[i] <- (quantile(x_jack, 0.10, type = 8) + quantile(x_jack, 0.90, type = 8) - 2 * quantile(x_jack, 0.50, 

type = 8)) / (quantile(x_jack, 0.90, type = 8) - quantile(x_jack, 0.10, type = 8))} 

acel <- sum((mean(PCS_jack) - PCS_jack)^3) / (6 * sum((mean(PCS_jack) - PCS_jack)^2)^(3/2)) 

cat("Acceleration (jackknife): a =", round(acel, 9), "\n") 

library(boot) 

set.seed(123) 

b<-boot(data=x, function(x, i) {(quantile(x[i], 0.10, type = 8) + quantile(x[i], 0.90, type = 8) - 2*quantile(x[i], 

0.50, type = 8))/(quantile(x[i], 0.90, type = 8) - quantile(x[i],0.10, type = 8))}, R=1000) 

boot_est <- mean(b$t) 

cat("Bootstrap estimation: m(b$t) =", round(boot_est, 3), "\n") 

agostino_boot <- agostino.test(b$t, alternative = "two.sided") 

ag_boot <- anscombe.test(b$t, alternative = "two.sided") 

print(agostino_boot) 

print(ag_boot) 

cat("D'Agostino-Berlanger-D'Agostino normality test", "\n") 

K2 <- (agostino_boot$statistic["z"]^2 + ag_boot$statistic["z"]^2) 

p <- pchisq(K2, df = 2, lower.tail = FALSE) 

cat("K^2 =", round(K2, 3), "\n") 

cat("p_value =", round(p, 3), "\n") 

sf.test(b$t) 

b 

plot(b) 

boot.ci(b, conf = 0.95, type=c("bca", "perc", "norm")) 

p_boot_left <- mean(b$t < 0) 

p_boot_right <- mean(b$t > 0) 

p_boot <- min(p_boot_left, p_boot_right) 

cat("One-tailed bootstrap probability value for the null hypothesis of symmetry: p =", round(p_boot, 3), 

"\n") 
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if (p_boot < alpha) {cat(sprintf("The null hypothesis of normality is rejected at a significance level of %.2f 

using bootstrap probability.", alpha), "\n") 

} else {cat(sprintf("The null hypothesis of normality is maintained at a significance level of %.2f using 

bootstrap probability.", alpha), "\n")} 

5.2.3. The output of the script applied to the vector of scores x 

 The 60 sample data points, shown in blue in the script, were simulated from a Cauchy distribution 

with parameters: x0 = 0.05 (location parameter corresponding to the median) and γ = 0.38 (scale 

parameter corresponding to the semi-interquartile range) [73]. To give the data a concrete context within 

the field of social sciences, they are considered to correspond to stock price return data in volatile 

markets. For this type of data, the Cauchy distribution probability model has been found to exhibit good 

predictive ability [46-47]. The data were rounded to three decimal places. Next, the script for random 

sample generation is presented, which is stable due to having a fixed seed [74]. 

 

set.seed(123) 

x <- rcauchy(60, location = 0.05, scale = 0.38) 

print(round(x, 3)) 

 

Considering a significance level of 5%, the sample of variable X, composed of 60 data, is random by the 

Wald-Wolfowitz runs test (r = 27, n0 = 30, n1 = 30, z(r) = -1.042, two-tailed exact probability value: p = 

0.298, ϕ = 0). It deviates from normality by the D'Agostino-Berlanger-D'Agostino (k2(x) = 17.457, p < 

0.001, ϕ = 0.9705), Lilliefors (d = 0.194, p < 0.001, ϕ = 1), Anderson-Darling (AD = 3.4071, p < 0.001, ϕ = 1), 

and Shapiro-Francia (w = 0.838, p < 0.001, ϕ = 1) tests. In the histogram with the overlaid density and 

normal curves (Figure 13), a leptokurtic profile is seen, rather symmetrical and with a peak in the center 

of the distribution. It is thinned in the shoulder zone, but thickened in the tail zone. 

 
Figure 13. Histogram of X values with overlaid density and normal curves. Source: prepared by the author from 

the script in sub-section 5.2.2, executed with the R program. 

The reversed absolute index of skewness (AISr) reaches a value of 0.106, close to 0 (Table 4). When the 

asymptotic confidence interval is calculated at the 95% level, 0 is within the interval (95% CI (-0.267, 

0.479); ase = 0.190), indicating expected symmetry. However, since the sample of X values does not 

conform to a normal distribution and is assumed to follow a Cauchy distribution, which lacks finite 

moments, such an interval is inappropriate and should not be reported. Instead, bootstrap estimation 

should be used, with a small standard error (bse = 0.430), making it reliable. 

The bootstrap confidence intervals for the three methods include zero, with the most efficient, having 

the smallest width, obtained through the percentile method. Its width measures 1.606, compared to 
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1.664 for the BCa method and 1.685 for the normal method (Table 5). At a 5% significance level, the 

bootstrap sampling distribution (b$t) exhibits symmetry according to the D'Agostino test and 

mesokurtosis according to the Anscombe-Glynn test, while conforming to normality according to the 

D'Agostino-Berlanger-D'Agostino test (Table 6). The histogram displays a bell-shaped profile, and the 

normal quantile-quantile plot shows good alignment of the data at 45 degrees, except for slight 

deviations at the extreme points (Figure 14). The Shapiro-Francia test confirms normality at a 1% 

significance level (Table 6), and the skewness and kurtosis values (Table 4) exceed 0.05. Therefore, the 

BCa confidence interval is deemed the most appropriate (Table 5). Consistent with the bootstrap 

confidence interval, the null hypothesis of normality is upheld at a 5% significance level using bootstrap 

probability (Table 5). 

Table 4. Point estimation, bootstrap estimation, bootstrap bias, bootstrap standard error, and jackknife 

acceleration. 

Statistic point_est boot_est boot_bias boot_se jack_a 

AISr 0.106 0.158 0.052 0.430 -0.053 

PCS 0.086 0.115 0.029 0.295 -0.055 

RISr 1.174 4.470 3.296 71.923 -0.038 
1 Note. Statistic: AISr = Reversed Absolute Index of Skewness, CPS = Percentile Coefficient of Skewness, and RISr 

= Reversed Relative Index of Skewness, point_est = statistic value or point estimation in the original sample (t0), 

boot_est = mean(b$t) = bootstrap estimation or mean of the statistic in the 1000 bootstrap samples, boot_bias = 

boot_est - t0 = bootstrap = bootstrap bias estimation or difference between the bootstrap estimate and point 

estimation in the original sample,  boot_se = sd(b$t) = bootstrap standard error or standard deviation of the 

statistic in the 1000 bootstrap samples, jack_a = jackknife acceleration or measure of the rate of change in the 

standard deviation (σ[t0]) of the estimate (t0 = f(x)) as the data changes. Source: prepared by the author from the 

script in sub-section 5.2.2, executed with the R program. 

Table 5. Bootstrap confidence interval for the three statistics and bootstrap probability for null hypothesis of 

symmetry. 

Statistic of Bootstrap confidence interval at 95% Bootstrap 

skewness norm perc BCa p_value 

AISr (-0.789, 0.896) (-0.629, 0.977) (-0.742, 0.922) 0.356 

PCS (-0.521, 0.634) (-0.468, 0.612) (-0.531, 0.556) 0.356 

RISr (-143.09, 138.84) (-115.42, 158.42) (-219.02, 51.65) 0.336 
1 Note. Statistic: AISr = Reversed Absolute Index of Skewness, CPS = Percentile Coefficient of Skewness, and RISr 

= Reversed Relative Index of Skewness. Confidence intervals using the normal (norm), percentile (perc), and bias-

corrected and accelerated percentile (BCa) methods. Calculations based on 1000 extractions with replacement 

from the original sample. Probability values less than 0.05, indicating the statistical test's significance, are 

highlighted in bold. Source: prepared by the author from the script in sub-section 5.2.2, executed with R. 

Table 6. Skewness and normality in the bootstrap sampling distribution of the three statistics of skewness. 

Statistic 

of 

D’Agostino: 

skewness test 

Anscombe-Glynn: 

kurtosis test 

DBD 

test 

Shapiro-Francia 

Royston 

skewness √b1 z p b2 z p k2 p w p 

AISr 0.108 1.400 0.162 2.846 -0.976 0.329 2.912 0.233 0.996 0.010 

PCS -0.233 -2.989 0.003 2.240 -8.221 <0.001 76.522 <0.001 0.982 <0.001 

RISr 1.282 13.135 <0.001 44.534 18.365 <0.001 509.83 <0.001 0.441 <0.001 
1 Note. Statistic: AISr = Reversed Absolute Index of Skewness, CPS = Percentile Coefficient of Skewness, and RISr 

= Reversed Relative Index of Skewness, D’Agostino skewness test: √b1 = measure of skewness based on the third 

standardized central moment, z = test statistic or standardized value of √b1, p = probability value in a two-tailed 

test. Anscombe-Glynn kurtosis test: b2 = measure of kurtosis based on the fourth standardized central moment, z = 

test statistic or standardized value of b2, p = probability value in a two-tailed test, D’Agostino-Berlanger-

D’Agostino DBD normality test: k2 = test statistic, p = probability value, Shapiro-Francia normality test using 

Royston’s procedure: w = test statistic based on the square of the correlation between theoretical and empirical 

quantiles and p = probability value. Probability values less than 0.05, indicating the statistical test's significance, 
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are highlighted in bold. Source: prepared by the author from the script in sub-section 5.2.2, executed with the R 

program. 

 
Figure 14. Histogram and normal quantile-quantile plot of the bootstrap sampling distribution for AISr derived 

from the 60-data sample of variable X. Source: prepared by the author from the script in sub-section 5.2.2, 

executed with the R program. 

 The percentile coefficient of skewness reached a value of 0.086, close to 0 (Table 4). The asymptotic 

confidence interval includes 0 (95% CI: (-0.217, 0.389), ase = 0.155). However, given the non-normal 

distribution assumed to follow a Cauchy distribution, this interval is not appropriate. All three 

bootstrap confidence intervals include 0 and are reliable, with small standard errors (bse = 0.295) and 

bias (0.029 < 0.05). The interval with the smallest width is obtained by the percentile method (w = 1.080), 

followed closely by the BCa method (w = 1.087), and finally the normal method (w = 1.155) (Table 5). 

The bootstrap sampling distribution of the statistic shows negative skewness and platykurtosis (Table 

6), resulting in a histogram with thickened shoulders and shortened tails, and an elongated S-shape in 

the normal quantile-quantile plot (Figure 15). Given the bootstrap sampling distribution's deviation 

from normality due to negative skewness and high kurtosis (|a| = 0.055 > 0.025), the BCa method is 

considered the most appropriate (Table 5). Consistent with the bootstrap confidence interval, the null 

hypothesis of normality is upheld at a significance level of 0.05 using bootstrap probability (Table 5). 

 
Figure 15. Histogram and normal quantile-quantile plot of the bootstrap sampling distribution for PCS derived 

from the 60-data sample of variable X. Source: prepared by the author from the script in sub-section 5.2.2, 

executed with the R program. 
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5.3. Calculation of RISr in the sample of 60 data points using R 

In the script, the option to compute the bootstrap confidence interval using the BCa method with the 

'bcajack' library [72] was included due to potential memory limitations or timeouts when using the 'boot' 

library. The acceleration value is derived from computations with the 'bcajack' library, but the display 

of the resulting bootstrap confidence interval using the BCa method is disabled: # print(bcajack_results). 

To activate it, uncomment boot.ci(b, conf = 0.95, type = c("bca", "perc", "norm")) by adding the symbol # 

in front and remove it from print(bcajack_results). This package requires significantly fewer 

computational resources compared to the 'boot' library for computing the bootstrap confidence interval 

using the BCa method. 

 

x <- c(0.532, -0.248, 1.342, -0.096, -0.022, 0.105, -4.243, -0.084, -2.281, 2.821, -0.002, 2.623, -0.559, -1.586, 

0.177, -0.074, 0.421, 0.101, 0.683, -0.005, -0.087, -0.499, -0.754, 0.043, -0.664, -0.445, -2.677, -1.197, 0.537, 

0.239, 0.006, -0.070, -0.506, -0.234, 0.079, 5.489, -0.310, 0.357, 0.641, 0.388, 0.233, 1.431, 1.417, 0.919, 0.247, 

0.227, 0.392, 3.590, 0.470, -0.132, 0.105, 2.120, -0.228, 0.203, -1.910, 0.338, 0.211, -0.322, -0.080, 0.963) 

 

library(bcaboot) 

library(boot) 

library(moments) 

library(nortest) 

 

cat("Point estimate of the additive opposite of Kelley's relative index of skewness", "\n") 

RISr <- (quantile(x, 0.10, type = 8) + quantile(x, 0.90, type = 8)) / (2 * quantile(x, 0.50, type = 8)) - 1 

cat("Opposite additive Kelley's relative index of skewness: RISr(x) =",round(RISr, 3),"\n") 

 

cat("Bootstrap confidence interval of the additive opposite of Kelley's relative index of skewness", "\n") 

# Acceleration (jackknife) 

set.seed(123) 

bcajack_results <- bcajack(x, B = 1000, function(x, i) {(quantile(x[i], 0.10, type = 8) + quantile(x[i], 0.90, 

type = 8)) / (2* quantile(x[i], 0.50, type = 8)) - 1}, alpha = 0.025, verbose = TRUE) 

acel <- bcajack_results$stats[1, "a"] 

cat("Acceleration (jackknife): a =", round(acel, 6), "\n") 

set.seed(123) 

b <- boot(data=x, function(x, i) {(quantile(x[i], 0.10, type = 8)+quantile(x[i], 0.90, type = 8))/(2* 

quantile(x[i], 0.50, type = 8)) - 1}, R=1000) 

boot_est <- mean(b$t) 

cat("Bootstrap estimation: m(b$t) =", round(boot_est, 3), "\n") 

agostino_boot <- agostino.test(b$t, alternative = "two.sided") 

ag_boot <- anscombe.test(b$t, alternative = "two.sided") 

print(agostino_boot) 

print(ag_boot) 

cat("D'Agostino-Berlanger-D'Agostino normality test", "\n") 

K2 <- (agostino_boot$statistic["z"]^2 + ag_boot$statistic["z"]^2) 

p <- pchisq(K2, df = 2, lower.tail = FALSE) 

cat("K^2 =", round(K2, 3), "\n") 

cat("p_value =", round(p, 3), "\n") 

sf.test(b$t) 

b 

plot(b) 

boot.ci(b, conf = 0.95, type = c("bca", "perc", "norm")) 

# print(bcajack_results) # Remove the '#' symbol if the 'boot' library cannot calculate the BCa confidence 

interval 
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p_boot_izq <- mean(b$t < 0) 

p_boot_der <- mean(b$t > 0) 

p_boot <- min(p_boot_izq, p_boot_der) 

cat("One-tailed bootstrap probability value for the null hypothesis of symmetry: p =", round(p_boot, 3), 

"\n") 

alpha <- 0.05 

if (p_boot < alpha) {cat(sprintf("The null hypothesis of normality is rejected at a significance level of %.2f 

using Bootstrap probability.", alpha), "\n") 

} else {cat(sprintf("The null hypothesis of normality is maintained at a significance level of %.2f using 

bootstrap probability.", alpha), "\n")} 

 

Kelley's reversed relative index of skewness (RISr) reaches a value of 3.296 (Table 4). The bootstrap 

sampling distribution of the RISr statistic (b$t) exhibits positive skewness and strong leptokurtosis, 

indicating departure from normality (Table 6). The histogram displays a pointed profile with thinned 

shoulders and elongated tails. The normal quantile-quantile plot flattens in the central area and deviates 

on both sides, forming a concave curvature to the left and a convex curvature to the right, describing a 

broad-shouldered shape (Figure 16). Moreover, it shows considerable bias and an acceleration greater 

than 0.025 (Table 4), making the BCa method the most appropriate for the bootstrap confidence interval, 

which includes 0 at a 95% level (Table 5). The interval width is notably large (w = 270.67), similar to 

intervals obtained with the other two methods: 273.84 with the percentile method and 281.93 with the 

normal method (Table 5), due to a very large bootstrap standard error (bse = 71.923) (Table 4), rendering 

it unreliable. Consistent with the bootstrap confidence interval, the null hypothesis of normality is 

upheld at a 5% significance level using bootstrap probability (Table 5), although this statistic should 

ultimately be disregarded due to its lack of reliability. 

 
Figure 16. Histogram and normal quantile-quantile plot of the bootstrap sampling distribution for RISr derived 

from the 60-data sample of variable X. Source: prepared by the author from the script in this sub-section 5.3, 

executed with the R program. 

6.  Discussion 

From the design of this study, source samples of 10,000 data points were generated using inverse 

transform sampling [37] from three continuous, symmetric distributions with different kurtosis levels 

(platykurtic, mesokurtic, and leptokurtic). The bootstrap sampling distribution of the absolute index 

and percentile coefficient of skewness converges to a normal distribution, whereas that of the relative 

index of skewness deviates due to pronounced leptokurtosis. Therefore, when developing the R script 

to obtain point and interval estimates for these indices, it includes errors and asymptotic intervals for 

the absolute index and percentile coefficient. The script allows for checking normality and considering 
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the sample distribution of variable X to choose between asymptotic or bootstrap alternatives. In cases 

of normality or near-normality (symmetry, mesokurtosis, and a bell-shaped profile) with a large sample 

size, the asymptotic confidence interval is highly suitable. It's worth noting that asymptotic and 

bootstrap standard errors for these two statistics are very similar across the three simulated 

distributions, all of which are symmetric and have finite moments. 

Furthermore, the script allows computation of the bootstrap confidence interval for these two measures 

of skewness using three methods: normal, percentile, and BCa [25, 69]. To determine the most suitable 

method, the script checks the symmetry, kurtosis, and normality of the bootstrap sampling distribution, 

along with acceleration, skewness, and error statistics. The normal method is preferred if the 

distribution is normal [69]. If the distribution is non-normal but exhibits symmetry, low skewness, and 

low acceleration (< 0.05 and < 0.025, respectively), the percentile method is suitable, especially if it 

provides a narrower interval than the BCa method. For non-normal distributions with significant 

skewness and kurtosis, along with substantial bias and acceleration, the BCa method is recommended 

[72]. If the error is very large—greater than a quarter of the variable's range or the sample size—the 

interval is questionable and should be approached with caution, or better discarded together with point 

estimate [23, 25-26]. 

In the example presented, originating from a distribution without finite moments [46-47], the 

asymptotic approximation cannot be applied. Moreover, due to the excessive bootstrap standard error, 

the RISr should be disregarded. Given the non-small bias and acceleration, and the less-than-ideal fit to 

normality of the bootstrap sampling distribution, the BCa method is the optimal choice for obtaining 

confidence intervals [72]. This method provides intervals with amplitudes very similar to those from 

the percentile method, which would otherwise be somewhat inadequate [25]. It can be concluded that 

both indices are reliable, given their small standard errors, and that the sample stems from a symmetric 

distribution, as evidenced by bootstrap confidence intervals encompassing 0 and bootstrap probability 

values exceeding the significance level of 0.05 (AISr = 0.052, 95% BCa bootstrap CI (-0.742, 0.922), two-

tailed bootstrap p-value = 0.356; PCS = 0.029, 95% BCa bootstrap CI (-0.531, 0.556), two-tailed bootstrap 

p-value = 0.356). This significance level is appropriate for a sample size of 60, allowing for valid inference 

due to its random nature. Specifically, this conclusion holds true because the sample originates from a 

symmetric distribution, such as the Cauchy distribution [46]. 

Limitations of the study include the exclusion of asymmetric distributions with finite moments, such as 

gamma, loglogistic, or lognormal distributions [16]. Additionally, we did not vary the size of the source 

sample to assess convergence to normality (e.g., increments from 30 to 900 by 100, and from 1000 to 

10000 by 1000). Instead, the study focused on three symmetric distributions with varying kurtosis and 

very large source samples, chosen to effectively represent the source distribution [17]. 

The question arises whether the script is applicable to ordinal variables. If the variable has a large 

number of ordered categories and assumes normality, a common practice in psychology and other 

social sciences, it could be feasible [75]. These skewness measures rely on quantiles, which are calculated 

robustly using R's method 8. However, using a rounding method (such as the 1 to 3 rules in R) for 

quantile calculation warrants further study [14, 20]. 

7. Conclusions 

The sampling distribution of Kelley's absolute index of skewness converges to a normal distribution. Its 

additive complement, divided by the semi-percentile rank which corresponds to the coefficient of 

percentile skewness, serves as its appropriate standardization. The sampling distribution of this 

coefficient also converges to a normal distribution. It is inappropriate to standardize the absolute index 

using the median. The R script developed can be practically and didactically useful for point and 

interval estimation of both the absolute index and its standardized form. 
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