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Abstract
In this paper, we introduce the category of brace triples in a braided monoidal setting and
prove that it is isomorphic to the category of s-Hopf braces, which are a generalization of
cocommutative Hopf braces. After that, we obtain a categorical isomorphism between the
category of finite cocommutative Hopf braces and a certain subcategory of the category of
cocommutative post-Hopf algebras, which supposes an expansion to the braided monoidal
setting of the equivalence obtained for the category of vector spaces over a field K by Y.
Li, Y. Sheng and R. Tang.
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1. Introduction
Hopf braces were born in [2] as the quantum version of skew braces, introduced by L.

Guarnieri and L. Vendramin in [9]. The importance of these objects is fundamentally due
to the fact that they provide solutions of the Quantum Yang-Baxter equation, that is a
relevant subject in mathematical physics (see [19] and [4]). Despite the simplicity of its
formulation, finding solutions of the Yang-Baxter equation is not an easy task. In fact,
the problem of classifying all the solutions of the equation is still open and different ap-
proaches have been proposed since the end of the last century. One of them was proposed
by Drinfel’d in [5], that consists of studying non-degenerate set-theoretical solutions. Re-
search into this kind of solutions with the involutive property was what gave rise to the
concept of brace introduced by Rump in [17] for which skew braces are a generalization.
So, a skew brace consists of two different group structures, (G, .) and (G, ⋆), satisfying the
following compatibility condition

g ⋆ (h.t) = (g ⋆ h).g−1.(g ⋆ t) (1.1)
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for all g, h, t ∈ G, where g−1 denotes the inverse of g with respect to the group structure
(G, .). These structures are useful to find non-degenerate solutions of the Yang-Baxter
equation not neccesarily involutive. The linearization of skew braces gives rise to the
notion of Hopf brace defined by I. Angiono, C. Galindo and L. Vendramin in [2]: If
(H, ϵ, ∆) is a coalgebra, a Hopf brace structure over H consists of two different Hopf
algebra structures,

H1 = (H, 1, ·, ϵ, ∆, λ), H2 = (H, 1◦, ◦, ϵ, ∆, S),

where λ and S denote the antipodes, satisfying the following compatibility condition

g ◦ (h · t) = (g1 ◦ h) · λ(g2) · (g3 ◦ t) ∀g, h, t ∈ H

which generalizes (1.1). Moreover, as was pointed in [2, Corollary 2.4], cocommutative
Hopf braces give rise to solutions of Yang-Baxter equation too.

On the other hand, without going into detail, it is not irrelevant to highlight the re-
lationship between Hopf braces and invertible 1-cocycles, which are nothing more than
coalgebra isomorphisms between two different Hopf algebras, π : H → B, such that B is
a H-module algebra. In [2, Theorem 1.12] it is proved that the category of Hopf braces
with H1 fixed is equivalent to the category of invertible 1-cocycles π : H1 → B. Moreover,
González Rodríguez and Rodríguez Raposo proved in [8] that this result remains valid in
the case that H1 is not fixed (see also [6]).

Therefore, motivated by the fact that cocommutative Hopf braces induce solutions of the
Quantum Yang-Baxter equation, in this paper we study another objects that characterise
the structure of Hopf braces in the cocommutative setting. So, given C a braided monoidal
category, in Section 3 we introduce the category of brace triples (see Definition 3.1) and
the category of s-Hopf braces (see Definition 3.6). Note that s-Hopf braces generalize
cocommutative Hopf braces because both categories are the same under cocommutativity
assumption (see Remark 3.9). After that, a functor from brace triples to s-Hopf braces is
constructed explicitly (see Theorem 3.10), and another from s-Hopf braces to brace triples
(see Theorem 3.17), ending the section with the main Theorem 3.18 where we prove that
the previous correspondence gives rise to a categorical isomorphism. As a consequence (see
Corollary 3.19), we obtain a categorical isomorphism between cocommutative Hopf braces
and cocommutative brace triples, that is to say, a cocommutative Hopf brace is no more
than a cocommutative Hopf algebra H together with a pair of morphisms, TH : H → H
and γH : H ⊗ H → H, satisfying some compatibility conditions between them and the
Hopf algebra structure over H.

In Section 4, we introduce the notion of post-Hopf algebra in a braided monoidal cate-
gory C (see Definition 4.1), which generalizes the one introduced by Y. Li, Y. Sheng and R.
Tang in [14] for a category of vector spaces over a field K (see also [3]). After proving some
interesting properties of these objects that can be deduced from the definition, we obtain
a functor from finite brace triples to post-Hopf algebras (see Theorem 4.6). At this point,
hypothesis of cocommutativity acquires significant importance and it is essential, together
with technical condition (4.13), to prove the existence of a functor from the category of
cocommutative post-Hopf algebras that satisfy (4.13) to the category of finite cocommu-
tative Hopf braces (see Theorem 4.15). Therefore, Theorem 4.16 is the main result of this
section, where we prove that this correspondence induces a categorical isomorphism be-
tween cocPost-Hopf⋆, the category of cocommutative post-Hopf algebras satisfying (4.13),
and finite cocommutative brace triples. So, as a consequence, cocPost-Hopf⋆, finite co-
commutative brace triples and finite cocommutative Hopf braces are isomorphic, which
suppose a generalization of [14, Theorem 2.13] to the braided monoidal setting.

In the following diagram it is possible to consult a summary of the categorical relation-
ships that can be seen along this paper. Detailed notation information will be introduced
throughout the paper.



Categorical isomorphisms for Hopf braces 3

BTf

P

��

� � // BT
F //≃ sHBr
G

oo

Post-Hopf cocBT
?�

OO

F ′
//≃ cocHBr

?�

OO

G′
oo

cocPost-Hopf⋆

Q

99
G′′◦Q

//
?�

OO

≃ cocBTf
P ′

oo ?�

OO

F ′′
//≃ cocHBrf

?�

OO

G′′
oo

Figure 1. Categorical relationships between HBr, BT and Post-Hopf.

2. Preliminaries
Throughout this paper we are going to denote by C a strict braided monoidal category

with tensor product ⊗, unit object K and braiding c.
As can be found in [15], a monoidal category is a category C together with a functor

⊗ : C×C → C, called tensor product, an object K of C, called the unit object, and families
of natural isomorphisms

aM,N,P : (M ⊗ N) ⊗ P → M ⊗ (N ⊗ P ), rM : M ⊗ K → M, lM : K ⊗ M → M,

in C, called associativity, right unit and left unit constraints, respectively, which satisfy
the Pentagon Axiom and the Triangle Axiom, i.e.,

aM,N,P ⊗Q ◦ aM⊗N,P,Q = (idM ⊗ aN,P,Q) ◦ aM,N⊗P,Q ◦ (aM,N,P ⊗ idQ),
(idM ⊗ lN ) ◦ aM,K,N = rM ⊗ idN ,

where for each object X in C, idX denotes the identity morphism of X. A monoidal
category is called strict if the previous constraints are identities. It is an important result
(see for example [13]) that every non-strict monoidal category is monoidal equivalent to
a strict one, so the strict character can be assumed without loss of generality. Then,
results proved in a strict setting hold for every non-strict monoidal category that include,
between others, the category K-Vect of vector spaces over a field K, the category R-Mod
of left modules over a commutative ring R or the category of sets, Set. For simplicity of
notation, given objects M , N , P in C and a morphism f : M → N , in most cases we will
write P ⊗ f for idP ⊗ f and f ⊗ P for f ⊗ idP .

A braiding for a strict monoidal category C is a natural family of isomorphisms
cM,N : M ⊗ N → N ⊗ M

subject to the conditions
cM,N⊗P = (N ⊗ cM,P ) ◦ (cM,N ⊗ P ), cM⊗N,P = (cM,P ⊗ N) ◦ (M ⊗ cN,P ).

A strict braided monoidal category C is a strict monoidal category with a braiding.
These categories were introduced by Joyal and Street in [11] (see also [12]) motivated by
the theory of braids and links in topology. Note that, as a consequence of the definition,
the equalities cM,K = cK,M = idM hold, for all object M of C. Moreover, if C is braided
with braiding c, then C is also braided with braiding c−1. We will denote by C the category
C with braiding c−1.

If the braiding satisfies that cN,M ◦ cM,N = idM⊗N , for all M , N in C, we will say that
C is symmetric. In this case, we call the braiding c a symmetry for the category C.

In the following definitions we sum up some basic notions in the braided monoidal
setting.
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Definition 2.1. An algebra in C is a triple A = (A, ηA, µA) where A is an object in
C and ηA : K → A (unit), µA : A ⊗ A → A (product) are morphisms in C such that
µA ◦ (A ⊗ ηA) = idA = µA ◦ (ηA ⊗ A), µA ◦ (A ⊗ µA) = µA ◦ (µA ⊗ A). Given two algebras
A = (A, ηA, µA) and B = (B, ηB, µB), a morphism f : A → B in C is an algebra morphism
if µB ◦ (f ⊗ f) = f ◦ µA, f ◦ ηA = ηB.

If A, B are algebras in C, the tensor product A ⊗ B is also an algebra in C where
ηA⊗B = ηA ⊗ ηB and µA⊗B = (µA ⊗ µB) ◦ (A ⊗ cB,A ⊗ B).

Definition 2.2. A coalgebra in C is a triple D = (D, εD, δD) where D is an object in C
and εD : D → K (counit), δD : D → D ⊗ D (coproduct) are morphisms in C such that
(εD ⊗ D) ◦ δD = idD = (D ⊗ εD) ◦ δD, (δD ⊗ D) ◦ δD = (D ⊗ δD) ◦ δD. If D = (D, εD, δD)
and E = (E, εE , δE) are coalgebras, a morphism f : D → E in C is a coalgebra morphism
if (f ⊗ f) ◦ δD = δE ◦ f , εE ◦ f = εD.

Given D, E coalgebras in C, the tensor product D ⊗ E is a coalgebra in C where
εD⊗E = εD ⊗ εE and δD⊗E = (D ⊗ cD,E ⊗ E) ◦ (δD ⊗ δE).

Definition 2.3. Let D = (D, εD, δD) be a coalgebra and A = (A, ηA, µA) an algebra in
C. By Hom(D, A) we denote the set of morphisms f : D → A in C. With the convolution
operation f ∗ g = µA ◦ (f ⊗ g) ◦ δD, Hom(D, A) is an algebra where the unit element is
ηA ◦ εD = εD ⊗ ηA.

Definition 2.4. Let A be an algebra. The pair (M, φM ) is a left A-module if M is an
object in C and φM : A ⊗ M → M is a morphism in C satisfying φM ◦ (ηA ⊗ M) = idM ,
φM ◦ (A ⊗ φM ) = φM ◦ (µA ⊗ M). Given two left A-modules (M, φM ) and (N, φN ),
f : M → N is a morphism of left A-modules if φN ◦ (A ⊗ f) = f ◦ φM .

The composition of morphisms of left A-modules is a morphism of left A-modules. Then
left A-modules form a category that we will denote by AMod.

Definition 2.5. We say that X is a bialgebra in C if (X, ηX , µX) is an algebra, (X, εX , δX)
is a coalgebra, and εX and δX are algebra morphisms (equivalently, ηX and µX are coal-
gebra morphisms). Moreover, if there exists a morphism λX : X → X in C, called the
antipode of X, satisfying that λX is the inverse of idX in Hom(X, X), i.e.,

idX ∗ λX = ηX ◦ εX = λX ∗ idX , (2.1)

we say that X is a Hopf algebra. A morphism of Hopf algebras is an algebra-coalgebra
morphism. Note that, if f : X → Y is a Hopf algebra morphism the following equality
holds:

λY ◦ f = f ◦ λX . (2.2)
With the composition of morphisms in C we can define a category whose objects are

Hopf algebras and whose morphisms are morphisms of Hopf algebras. We denote this
category by Hopf.

Note that if X = (X, ηX , µX , εX , δX , λX) is a Hopf algebra in C such that its antipode,
λX , is an isomorphism, then Xcop = (X, ηX , µX , εX , c−1

X,X ◦ δX , λ−1
X ) is a Hopf algebra in

C (see [16]).
A Hopf algebra is commutative if µX ◦cX,X = µX and cocommutative if cX,X ◦δX = δX .

It is easy to see that in both cases λX ◦ λX = idX .

If X is a Hopf algebra, relevant properties of its antipode, λX , are the following: It is
antimultiplicative and anticomultiplicative

λX ◦ µX = µX ◦ (λX ⊗ λX) ◦ cX,X , δX ◦ λX = cX,X ◦ (λX ⊗ λX) ◦ δX , (2.3)

and leaves the unit and counit invariant, i.e.,

λX ◦ ηX = ηX , εX ◦ λX = εX . (2.4)
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So, it is a direct consequence of these identities that, if X is commutative, then λX is an
algebra morphism and, if X is cocommutative, then λX is a coalgebra morphism.

In the following definition we recall the notion of left module (co)algebra.

Definition 2.6. Let X be a Hopf algebra. An algebra A is said to be a left X-module
algebra if (A, φA) is a left X-module and ηA, µA are morphisms of left X-modules, i.e.,

φA ◦ (X ⊗ ηA) = εX ⊗ ηA, φA ◦ (X ⊗ µA) = µA ◦ φA⊗A, (2.5)
where φA⊗A = (φA ⊗ φA) ◦ (X ⊗ cX,A ⊗ A) ◦ (δX ⊗ A ⊗ A) is the left action on A ⊗ A.

Definition 2.7. Let X be a Hopf algebra. A coalgebra D is said to be a left X-module
coalgebra if (D, φD) is a left X-module and εD, δD are morphisms of left X-modules, in
other words, the following equalities hold:

εD ◦ φD = εH ⊗ εD, δD ◦ φD = φD⊗D ◦ (H ⊗ δD). (2.6)
Equivalently, (D, φD) is a left X-module coalgebra if and only if φD is a coalgebra mor-
phism.

The following result will be interesting along this paper.

Theorem 2.8. Let X = (X, ηX , µX , εX , δX , λX) and H = (H, ηH , µH , εH , δH , λH) be Hopf
algebras in C such that there exists a morphism φH : X ⊗ H → H satisfying the following
conditions:

(i) φH ◦ (X ⊗ µH) = µH ◦ (φH ⊗ φH) ◦ (X ⊗ cX,H ⊗ H) ◦ (δX ⊗ H ⊗ H),
(ii) φH is a coalgebra morphism.

Then, φH ◦ (X ⊗ ηH) = εX ⊗ ηH holds.

Proof. The equality follows by:
φH ◦ (X ⊗ ηH)

=(φH ⊗ (εH ◦ φH)) ◦ (X ⊗ cX,H ⊗ H) ◦ (δX ⊗ ηH ⊗ ηH) (by (ii), naturality of c and (co)unit

properties)

=µH ◦ (φH ⊗ (ηH ◦ εH ◦ φH)) ◦ (X ⊗ cX,H ⊗ H) ◦ (δX ⊗ ηH ⊗ ηH) (by unit property)

=µH ◦ (φH ⊗ ((idH ∗ λH) ◦ φH)) ◦ (X ⊗ cX,H ⊗ H) ◦ (δX ⊗ ηH ⊗ ηH) (by (2.1))

=µH ◦ (φH ⊗ (µH ◦ (H ⊗ λH) ◦ (φH ⊗ φH) ◦ (X ⊗ cX,H ⊗ H) ◦ (δX ⊗ δH))) ◦ (X ⊗ cX,H

⊗ H) ◦ (δX ⊗ ηH ⊗ ηH) (by (ii))

=µH ◦ ((µH ◦ (φH ⊗ φH) ◦ (X ⊗ cX,H ⊗ H) ◦ (δX ⊗ H ⊗ H)) ⊗ (λH ◦ φH))
◦ (X ⊗ ((H ⊗ cX,H ⊗ H) ◦ (cX,H ⊗ δH))) ◦ (δX ⊗ ηH ⊗ ηH) (by naturality of c, coassociativity

of δX and associativity of µH)

=µH ◦ ((φH ◦ (X ⊗ µH)) ⊗ (λH ◦ φH)) ◦ (X ⊗ ((H ⊗ cX,H ⊗ H) ◦ (cX,H ⊗ δH))) ◦ (δX ⊗ ηH

⊗ ηH) (by (i))

=µH ◦ (H ⊗ λH) ◦ (φH ⊗ φH) ◦ (X ⊗ cX,H ⊗ H) ◦ (δX ⊗ (δH ◦ ηH)) (by naturality of c

and unit property)

=(idH ∗ λH) ◦ φH ◦ (X ⊗ ηH) (by (ii))

=ηH ◦ εH ◦ φH ◦ (X ⊗ ηH) (by (2.1))

=εX ⊗ ηH (by (ii) and (co)unit properties). □
Corollary 2.9. Let X = (X, ηX , µX , εX , δX , λX) and H = (H, ηH , µH , εH , δH , λH) be
Hopf algebras in C. If (H, φH) is a left X-module coalgebra and µH is a morphism of left
X-modules, then (H, φH) is a left X-module algebra.

In the braided setting the definition of Hopf brace is the following:
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Definition 2.10. Let H = (H, εH , δH) be a coalgebra in C. Let’s assume that there are
two algebra structures (H, η1

H , µ1
H), (H, η2

H , µ2
H) defined on H and suppose that there exist

two endomorphism of H denoted by λ1
H and λ2

H . We will say that

(H, η1
H , µ1

H , η2
H , µ2

H , εH , δH , λ1
H , λ2

H)
is a Hopf brace in C if:

(i) H1 = (H, η1
H , µ1

H , εH , δH , λ1
H) is a Hopf algebra in C.

(ii) H2 = (H, η2
H , µ2

H , εH , δH , λ2
H) is a Hopf algebra in C.

(iii) The following equality holds:

µ2
H ◦ (H ⊗ µ1

H) = µ1
H ◦ (µ2

H ⊗ ΓH1) ◦ (H ⊗ cH,H ⊗ H) ◦ (δH ⊗ H ⊗ H),
where

ΓH1 := µ1
H ◦ (λ1

H ⊗ µ2
H) ◦ (δH ⊗ H).

Following [7], a Hopf brace will be denoted by H = (H1, H2) or in a simpler way by H.

Definition 2.11. If H is a Hopf brace in C, we will say that H is cocommutative if
δH = cH,H ◦ δH , i.e., if H1 and H2 are cocommutative Hopf algebras in C.

Note that by [18, Corollary 5], if H is a cocommutative Hopf algebra in the braided
monoidal category C, the identity

cH,H ◦ cH,H = idH⊗H (2.7)
holds.

Definition 2.12. Given two Hopf braces H and B in C, a morphism f in C between the
two underlying objects is called a morphism of Hopf braces if both f : H1 → B1 and
f : H2 → B2 are Hopf algebra morphisms.

Hopf braces together with morphisms of Hopf braces form a category which we denote
by HBr. Moreover, cocommutative Hopf braces constitute a full subcategory of HBr which
we will denote by cocHBr.

Let H be a Hopf brace in C. Then
η1

H = η2
H , (2.8)

holds and, by [2, Lemma 1.7], in this braided setting the equality

ΓH1 ◦ (H ⊗ λ1
H) = µ1

H ◦ ((λ1
H ◦ µ2

H) ⊗ H) ◦ (H ⊗ cH,H) ◦ (δH ⊗ H) (2.9)
also holds. Moreover, in our braided context [2, Lemma 1.8] and [2, Remark 1.9] hold and
then we have that the algebra (H, η1

H , µ1
H) is a left H2-module algebra with action ΓH1

and µ2
H admits the following expression:

µ2
H = µ1

H ◦ (H ⊗ ΓH1) ◦ (δH ⊗ H). (2.10)
In addition, by [2, Lemma 2.2], ΓH1 is a coalgebra morphism when H is cocommutative.

Lemma 2.13. Let H be a Hopf brace in C. The equality
ΓH1 ◦ (H ⊗ λ2

H) ◦ δH = λ1
H (2.11)

holds.

Proof. The equality follows by:
ΓH1 ◦ (H ⊗ λ2

H) ◦ δH

=µ1
H ◦ (λ1

H ⊗ µ2
H) ◦ (δH ⊗ λ2

H) ◦ δH (by definition of ΓH1 )

=µ1
H ◦ (λ1

H ⊗ (idH ∗ λ2
H)) ◦ δH (by coassociativity of δH)

=λ1
H (by (2.1) and (co)unit properties). □
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To conclude this introductory section we will remember the notion of finite object in C,
since they are going to be of special interest throughout Section 4.
Definition 2.14. An object P in C is finite if there exists an object P ∗, called the dual
of P , and a C-adjunction P ⊗ − ⊣ P ∗ ⊗ − between the tensor functors.

We will denote by aP and bP the unit and the counit of the previous C-adjunction,
respectively. Finite objects in C constitute a full subcategory of C that we will denote
by Cf . Note that, for every finite object P in C, we have a natural algebra structure in
C over the tensor object P ∗ ⊗ P as we can see in the following lemma, whose proof is
straightforward.
Lemma 2.15. Let P be a finite object in C, then P ∗ ⊗ P is an algebra in C with product
and unit given by

µP ∗⊗P := P ∗ ⊗ bP (K) ⊗ P

and
ηP ∗⊗P := aP (K),

respectively.
Moreover, it is going to be useful the following lemma.

Lemma 2.16. If P is a finite object in C, then
(cP,P ∗ ⊗ P ) ◦ (P ⊗ aP (K)) = (P ∗ ⊗ c−1

P,P ) ◦ (aP (K) ⊗ P ). (2.12)

Proof. The equality (2.12) follows by:
(cP,P ∗ ⊗ P ) ◦ (P ⊗ aP (K))

=(P ∗ ⊗ (c−1
P,P ◦ cP,P )) ◦ (cP,P ∗ ⊗ P ) ◦ (P ⊗ aP (K)) (by the isomorphism condition for cP,P )

=(P ∗ ⊗ c−1
P,P ) ◦ (aP (K) ⊗ P ) (by naturality of c and cP,K = idK). □

3. Brace triples and Hopf braces
The aim of this part is to prove that we can characterise Hopf braces in C via another

structures. This new structures will be known as brace triples.
Definition 3.1. Consider H = (H, ηH , µH , εH , δH , λH) a Hopf algebra in C with λH an
isomorphism and let γH : H ⊗ H → H and TH : H → H be morphisms in C. We will say
that (H, γH , TH) is a brace triple if the following conditions hold:

(i) (γH ⊗ H) ◦ (H ⊗ cH,H) ◦ (δH ⊗ H) = (γH ⊗ H) ◦ (H ⊗ cH,H) ◦ ((cH,H ◦ δH) ⊗ H).
(ii) γH is a coalgebra morphism, i.e.:

(ii.1) δH ◦ γH = (γH ⊗ γH) ◦ (H ⊗ cH,H ⊗ H) ◦ (δH ⊗ δH),
(ii.2) εH ◦ γH = εH ⊗ εH .

(iii) γH ◦ (H ⊗ µH) = µH ◦ (γH ⊗ γH) ◦ (H ⊗ cH,H ⊗ H) ◦ (δH ⊗ H ⊗ H).
(iv) γH ◦ (H ⊗ γH) = γH ◦ ((µH ◦ (H ⊗ γH) ◦ (δH ⊗ H)) ⊗ H).
(v) γH ◦ (ηH ⊗ H) = idH .
(vi) TH is an isomorphism in C such that the following equalities are verified:

(vi.1) δH ◦ TH = cH,H ◦ (TH ⊗ TH) ◦ δH .
(vi.2) εH ◦ TH = εH

(vi.3) µH ◦ (H ⊗ γH) ◦ ((δH ◦ TH) ⊗ H) = µH ◦ (H ⊗ γH) ◦ (((TH ⊗ TH) ◦ δH) ⊗ H).
(vi.4) γH ◦ (H ⊗ TH) ◦ δH = λH .
(vi.5) γH ◦ (TH ⊗ H) ◦ δH = λ−1

H ◦ TH .
Remark 3.2. Given a brace triple (H, γH , TH), conditions (ii) and (iii) of Definition 3.1
imply that

γH ◦ (H ⊗ ηH) = εH ⊗ ηH (3.1)
holds by Theorem 2.8.
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Remark 3.3. Let (H, γH , TH) be a brace triple. Note that condition (vi.5) of Definition
3.1 is equivalent to

γH ◦ (H ⊗ T −1
H ) ◦ c−1

H,H ◦ δH = λ−1
H . (3.2)

In fact, on the one side, suppose that (vi.5) of Definition 3.1 holds. Then, we have that:

λ−1
H

=λ−1
H ◦ TH ◦ T −1

H (by the condition of isomorphism for TH)

=γH ◦ (TH ⊗ H) ◦ δH ◦ T −1
H (by (vi.5) of Definition 3.1)

=γH ◦ (TH ⊗ H) ◦ (T −1
H ⊗ T −1

H ) ◦ c−1
H,H ◦ δH (by (vi.1) of Definition 3.1 and the

isomorphism condition for TH and cH,H)

=γH ◦ (H ⊗ T −1
H ) ◦ c−1

H,H ◦ δH (by the condition of isomorphism for TH).

On the other side, suppose now that (3.2) holds. Then,

λ−1
H ◦ TH

=γH ◦ (H ⊗ T −1
H ) ◦ c−1

H,H ◦ δH ◦ TH (by (3.2))

=γH ◦ (H ⊗ T −1
H ) ◦ c−1

H,H ◦ cH,H ◦ (TH ⊗ TH) ◦ δH (by (vi.1) of Definition 3.1)

=γH ◦ (TH ⊗ H) ◦ δH (by the isomorphism condition for cH,H and TH).

Definition 3.4. Let (H, γH , TH) and (B, γB, TB) be brace triples and f : H → B a mor-
phism in C. We will say that f is a morphism of brace triples if f is a Hopf algebra
morphism and

f ◦ γH = γB ◦ (f ⊗ f) (3.3)
holds.

Brace triples and their morphisms form a category which we will denote by BT.

Remark 3.5. Suppose that (H, γH , TH) is a brace triple with H cocommutative. Under
this condition, note that (i) of Definition 3.1 always holds and take also into account that
(vi.1) becomes δH ◦ TH = (TH ⊗ TH) ◦ δH . This implies that (vi.3) always holds in the
cocommutative setting. Moreover, λ−1

H = λH (due to λH ◦ λH = idH), so this implies that
(vi.5) becomes γH ◦ (TH ⊗ H) ◦ δH = λH ◦ TH . Therefore, as a consequence of (vi.4) and
(vi.5), we obtain that

γH ◦ (H ⊗ TH) ◦ δH = λH = γH ◦ (TH ⊗ H) ◦ δH ◦ T −1
H .

Cocommutative brace triples constitute a full subcategory of BT which we will denote
by cocBT.

Definition 3.6. Let H be a Hopf brace in C. We will say that H is an s-Hopf brace if the
following conditions hold:

(i) (ΓH1 ⊗ H) ◦ (H ⊗ cH,H) ◦ (δH ⊗ H) = (ΓH1 ⊗ H) ◦ (H ⊗ cH,H) ◦ ((cH,H ◦ δH) ⊗ H).
(ii) λ1

H and λ2
H are isomorphisms in C such that the following conditions hold:

(ii.1) µ1
H ◦ (H ⊗ ΓH1) ◦ ((δH ◦ λ2

H) ⊗ H) = µ1
H ◦ (H ⊗ ΓH1) ◦ (((λ2

H ⊗ λ2
H) ◦ δH) ⊗ H).

(ii.2) ΓH1 ◦ (λ2
H ⊗ H) ◦ δH = (λ1

H)−1 ◦ λ2
H .

With the obvious morphisms, s-Hopf braces constitute a full subcategory of HBr, and
we will denote it by sHBr.

Remark 3.7. Let’s assume that C is symmetric. Under this assumption, condition (i) of
Definition 3.6 means that (H1, ΓH1) is in the cocommutativity class of H2 following the
notion introduced in [1, Definition 2.1 and Definition 2.2].
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Remark 3.8. Note that, for an s-Hopf brace H, condition (ii.2) of Definition 3.6 is
equivalent to

ΓH1 ◦ (H ⊗ (λ2
H)−1) ◦ c−1

H,H ◦ δH = (λ1
H)−1. (3.4)

Indeed, suppose that (ii.2) of Definition 3.6 holds, then:

(λ1
H)−1

=(λ1
H)−1 ◦ λ2

H ◦ (λ2
H)−1 (by the condition of isomorphism for λ2

H)

=ΓH1 ◦ (λ2
H ⊗ H) ◦ δH ◦ (λ2

H)−1 (by (ii.2) of Definition 3.6)

=ΓH1 ◦ (λ2
H ⊗ H) ◦ ((λ2

H)−1 ⊗ (λ2
H)−1) ◦ c−1

H,H ◦ δH (by (2.3) and the isomorphism condition

for λ2
H and cH,H)

=ΓH1 ◦ (H ⊗ (λ2
H)−1) ◦ c−1

H,H ◦ δH (by the condition of isomorphism for λ2
H).

On the other hand, we have that:

(λ1
H)−1 ◦ λ2

H

=ΓH1 ◦ (H ⊗ (λ2
H)−1) ◦ c−1

H,H ◦ δH ◦ λ2
H (by (3.4))

=ΓH1 ◦ (H ⊗ (λ2
H)−1) ◦ c−1

H,H ◦ cH,H ◦ (λ2
H ⊗ λ2

H) ◦ δH (by (2.3))

=ΓH1 ◦ (λ2
H ⊗ H) ◦ δH (by the isomorphism condition for λ2

H and cH,H).

Remark 3.9. Consider H a cocommutative s-Hopf brace. Under cocommutativity as-
sumption, note that (i) of Definition 3.6 always holds. In addition, δH◦λ2

H = (λ2
H⊗λ2

H)◦δH ,
so (ii.1) always holds too. Moreover, under cocommutativity conditions, λk

H is an involu-
tion for all k = 1, 2. Therefore, condition (ii.2) of Definition 3.6 is satisfied. Indeed:

ΓH1 ◦ (λ2
H ⊗ H) ◦ δH

=µ1
H ◦ (λ1

H ⊗ µ2
H) ◦ ((δH ◦ λ2

H) ⊗ H) ◦ δH (by definition of ΓH1 )

=µ1
H ◦ (λ1

H ⊗ µ2
H) ◦ (((λ2

H ⊗ λ2
H) ◦ δH) ⊗ H) ◦ δH (by (2.3) and cocommutativity of δH)

=µ1
H ◦ ((λ1

H ◦ λ2
H) ⊗ (λ2

H ∗ idH)) ◦ δH (by coassociativity of δH)

=µ1
H ◦ ((λ1

H ◦ λ2
H) ⊗ (ηH ◦ εH)) ◦ δH (by (2.1))

=λ1
H ◦ λ2

H (by (co)unit property).

So, under cocommutativity supposition, every Hopf brace is an s-Hopf brace, that is to
say, sHBr = cocHBr.

In this first result, we will prove that every brace triple induces an s-Hopf brace in C.

Theorem 3.10. Let (H, γH , TH) be a brace triple in C. Then HBT = (H, HBT) is an s-
Hopf brace in C being HBT the Hopf algebra structure defined by HBT = (H, ηH , µBT

H , εH , δH , TH),
where µBT

H := µH ◦ (H ⊗ γH) ◦ (δH ⊗ H).

Proof. At first we will prove that HBT is a Hopf algebra in C. Note that we already know
that (H, εH , δH) is a coalgebra in C and that ηH is a coalgebra morphism. We begin by
proving the unit property for µBT

H . Indeed, on the one side,

µBT
H ◦ (ηH ⊗ H)

=µH ◦ (H ⊗ γH) ◦ ((δH ◦ ηH) ⊗ H) (by definition of µBT
H )

=µH ◦ (ηH ⊗ (γH ◦ (ηH ⊗ H))) (by the condition of coalgebra morphism for ηH)

=µH ◦ (ηH ⊗ H) (by (v) of Definition 3.1)

=idH (by unit property),
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and, on the other side,

µBT
H ◦ (H ⊗ ηH)

=µH ◦ (H ⊗ (γH ◦ (H ⊗ ηH))) ◦ δH (by definition of µBT
H )

=µH ◦ (H ⊗ εH ⊗ H) ◦ (δH ⊗ ηH) (by (3.1))

=idH (by (co)unit property).

The associativity of µBT
H follows by

µBT
H ◦ (µBT

H ⊗ H)
=µH ◦ (H ⊗ γH) ◦ ((δH ◦ µH) ⊗ H) ◦ (H ⊗ γH ⊗ H) ◦ (δH ⊗ H ⊗ H) (by definition of µBT

H )

=µH ◦ (H ⊗ γH) ◦ (((µH ⊗ µH) ◦ (H ⊗ cH,H ⊗ H) ◦ (δH ⊗ (δH ◦ γH))) ⊗ H) ◦ (δH ⊗ H

⊗ H) (by the condition of coalgebra morphism for µH)

=µH ◦ (H ⊗ γH) ◦ (((µH ⊗ µH) ◦ (H ⊗ cH,H ⊗ H)) ⊗ H) ◦ (δH ⊗ ((γH ⊗ γH) ◦ (H ⊗ cH,H

⊗ H) ◦ (δH ⊗ δH))) ⊗ H) ◦ (δH ⊗ H ⊗ H) (by (ii.1) of Definition 3.1)

=µH ◦ (µH ⊗ (γH ◦ (µH ⊗ H))) ◦ (H ⊗ ((γH ⊗ H) ◦ (H ⊗ cH,H) ◦ ((cH,H ◦ δH) ⊗ H)) ⊗ γH

⊗ H) ◦ (H ⊗ H ⊗ cH,H ⊗ H ⊗ H) ◦ (((H ⊗ δH) ◦ δH) ⊗ δH ⊗ H) (by naturality of c and

coassociativity of δH)

=µH ◦ (µH ⊗ (γH ◦ (µH ⊗ H))) ◦ (H ⊗ ((γH ⊗ H) ◦ (H ⊗ cH,H) ◦ (δH ⊗ H)) ⊗ γH ⊗ H)
◦ (H ⊗ H ⊗ cH,H ⊗ H ⊗ H) ◦ (((H ⊗ δH) ◦ δH) ⊗ δH ⊗ H) (by (i) of Definition 3.1)

=µH ◦ ((µH ◦ (H ⊗ γH)) ⊗ (γH ◦ ((µH ◦ (H ⊗ γH) ◦ (δH ⊗ H)) ⊗ H))) ◦ (H ⊗ ((H ⊗ cH,H)
◦ (δH ⊗ H)) ⊗ H ⊗ H) ◦ (δH ⊗ δH ⊗ H) (by naturality of c and coassociativity of δH)

=µH ◦ (H ⊗ (µH ◦ (γH ⊗ γH) ◦ (H ⊗ cH,H ⊗ H) ◦ (δH ⊗ H ⊗ H))) ◦ (H ⊗ H ⊗ H ⊗ γH)
◦ (δH ⊗ δH ⊗ H) (by (iv) of Definition 3.1 and associativity of µH)

=µH ◦ (H ⊗ γH) ◦ (δH ⊗ (µH ◦ (H ⊗ γH) ◦ (δH ⊗ H)))) (by (iii) of Definition 3.1)

=µBT
H ◦ (H ⊗ µBT

H ) (by definition of µBT
H ).

Also, µBT
H is a coalgebra morphism. On the one hand, by the condition of coalgebra

morphism for µH , (ii.2) of Definition 3.1 and the counit property, it is straightforward to
compute that εH ◦ µBT

H = εH ⊗ εH and, on the other hand,

δH ◦ µBT
H

=δH ◦ µH ◦ (H ⊗ γH) ◦ (δH ⊗ H) (by definition of µBT
H )

=(µH ⊗ µH) ◦ (H ⊗ cH,H ⊗ H) ◦ (δH ⊗ (δH ◦ γH)) ◦ (δH ⊗ H) (by the condition of coalgebra

morphism for µH)

=(µH ⊗ µH) ◦ (H ⊗ cH,H ⊗ H) ◦ (δH ⊗ ((γH ⊗ γH) ◦ (H ⊗ cH,H ⊗ H) ◦ (δH ⊗ δH)))
◦ (δH ⊗ H) (by (ii.1) of Definition 3.1)

=(µH ⊗ µH) ◦ (H ⊗ ((γH ⊗ H) ◦ (H ⊗ cH,H) ◦ ((cH,H ◦ δH) ⊗ H)) ⊗ γH) ◦ (H ⊗ H ⊗ cH,H

⊗ H) ◦ (((H ⊗ δH) ◦ δH) ⊗ δH) (by naturality of c and coassociativity of δH)

=(µH ⊗ µH) ◦ (H ⊗ ((γH ⊗ H) ◦ (H ⊗ cH,H) ◦ (δH ⊗ H)) ⊗ γH) ◦ (H ⊗ H ⊗ cH,H ⊗ H)
◦ (((H ⊗ δH) ◦ δH) ⊗ δH) (by (i) of Definition 3.1)

=((µH ◦ (H ⊗ γH) ◦ (δH ⊗ H)) ⊗ (µH ◦ (H ⊗ γH) ◦ (δH ⊗ H))) ◦ (H ⊗ cH,H ⊗ H)
◦ (δH ⊗ δH) (by coassociativity of δH and naturality of c)

=(µBT
H ⊗ µBT

H ) ◦ (H ⊗ cH,H ⊗ H) ◦ (δH ⊗ δH) (by definition of µBT
H ).

So, HBT is a bialgebra in C. From now on, we will denote by ∗BT the convolution in
Hom(H, HBT).



Categorical isomorphisms for Hopf braces 11

The conditions for TH to be the antipode for HBT follows from the following facts. First
note that

idH ∗BT TH

=µBT
H ◦ (H ⊗ TH) ◦ δH (by definition of ∗BT)

=µH ◦ (H ⊗ γH) ◦ (δH ⊗ TH) ◦ δH (by definition of µBT
H )

=µH ◦ (H ⊗ (γH ◦ (H ⊗ TH) ◦ δH)) ◦ δH (by coassociativity of δH)

=idH ∗ λH (by (vi.4) of Definition 3.1)

=εH ⊗ ηH (by (2.1)).

On the other side,
TH ∗BT idH

=µBT
H ◦ (TH ⊗ H) ◦ δH (by definition of ∗BT)

=µH ◦ (H ⊗ γH) ◦ ((δH ◦ TH) ⊗ H) ◦ δH (by definition of µBT
H )

=µH ◦ (H ⊗ γH) ◦ (((TH ⊗ TH) ◦ δH) ⊗ H) ◦ δH (by (vi.3) of Definition 3.1)

=µH ◦ (TH ⊗ (γH ◦ (TH ⊗ H) ◦ δH)) ◦ δH (by coassociativity of δH)

=µH ◦ (TH ⊗ (λ−1
H ◦ TH)) ◦ δH (by (vi.5) of Definition 3.1)

=µH ◦ (H ⊗ λ−1
H ) ◦ c−1

H,H ◦ δH ◦ TH (by (vi.1) of Definition 3.1 and the condition of

isomorphism for cH,H)

=ηH ◦ εH ◦ TH (by (2.1) for Hcop)

=εH ⊗ ηH (by (vi.2) of Definition 3.1)

Therefore, HBT is a Hopf algebra in C.
To conclude the proof we have to show that (iii) of Definition 2.10 holds. Note that

ΓBT
H = γH (3.5)

holds. Indeed,
ΓBT

H

=µH ◦ (λH ⊗ µBT
H ) ◦ (δH ⊗ H) (by definition of ΓBT

H )

=µH ◦ (λH ⊗ (µH ◦ (H ⊗ γH) ◦ (δH ⊗ H))) ◦ (δH ⊗ H) (by definition of µBT
H )

=µH ◦ ((λH ∗ idH) ⊗ γH) ◦ (δH ⊗ H) (by associativity of µH and coassociativity of δH)

=γH (by (2.1) and (co)unit property).

Consequently,
µH ◦ (µBT

H ⊗ ΓBT
H ) ◦ (H ⊗ cH,H ⊗ H) ◦ (δH ⊗ H ⊗ H)

=µH ◦ ((µH ◦ (H ⊗ γH) ◦ (δH ⊗ H)) ⊗ γH) ◦ (H ⊗ cH,H ⊗ H) ◦ (δH ⊗ H ⊗ H)
(by definition of µBT

H and (3.5))

=µH ◦ (H ⊗ (µH ◦ (γH ⊗ γH) ◦ (H ⊗ cH,H ⊗ H) ◦ (δH ⊗ H ⊗ H))) ◦ (δH ⊗ H ⊗ H)
(by associativity of µH and coassociativity of δH)

=µH ◦ (H ⊗ γH) ◦ (δH ⊗ µH) (by (iii) of Definition 3.1)

=µBT
H ◦ (H ⊗ µH) (by definition of µBT

H ).

Finally, by (3.5) and thanks to axioms (i), (vi), (vi.3) and (vi.5) of Definition 3.1,
conditions (i), (ii), (ii.1) and (ii.2) of Definition 3.6 are obvious. □
Remark 3.11. When H is a cocommutative Hopf algebra, we recover [10, Remark 4.5].

Corollary 3.12. Let (H, γH , TH) be a brace triple in C. Then, (H, γH) is a left HBT-
module algebra.
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Proof. Thanks to the fact that HBT = (H, HBT) is a Hopf brace, we know that (H, ΓBT
H )

is a left HBT-module algebra. Due to being ΓBT
H = γH , as we have proved in the previous

result, we conclude that (H, γH) is a left HBT-module algebra. □

Remark 3.13. Let’s assume that C is symmetric. Under this assumption and thanks to
the previous corollary, axiom (i) of Definition 3.1 means that (H, γH) is in the cocommu-
tativity class of HBT.

Corollary 3.14. Let (H, γH , TH) be a cocommutative brace triple, then

TH ◦ TH = idH . (3.6)

Therefore, conditions (vi.4) and (vi.5) of Definition 3.1 are equivalent in the cocommuta-
tive setting.

Proof. As was proved in Theorem 3.10, TH is the antipode for the Hopf algebra HBT.
Then, if H is cocommutative, HBT is cocommutative too and, as a consequence, (3.6)
holds. □

Corollary 3.15. If f : (H, γH , TH) → (B, γB, TB) is a morphism of brace triples in C,
then

f ◦ TH = TB ◦ f.

Proof. It is enough to see that f : HBT → BBT is a Hopf algebra morphism. Due to
the fact that HBT and BBT are Hopf algebras in C with the same underlying coalgebra
structure and the same unit morphisms as H and B, respectively, it is enough to prove
that f is compatible with the products µBT

H and µBT
B . Indeed,

f ◦ µBT
H

=f ◦ µH ◦ (H ⊗ γH) ◦ (δH ⊗ H) (by definition of µBT
H )

=µB ◦ (f ⊗ f) ◦ (H ⊗ γH) ◦ (δH ⊗ H) (by the condition of algebra morphism for f : H → B)

=µB ◦ (B ⊗ γB) ◦ (((f ⊗ f) ◦ δH) ⊗ f) (by (3.3))

=µB ◦ (B ⊗ γB) ◦ (δB ⊗ B) ◦ (f ⊗ f) (by the condition of coalgebra morphism for f)

=µBT
B ◦ (f ⊗ f) (by definition of µBT

B ).

So, due to being f : HBT → BBT a Hopf algebra morphism in C, we can apply (2.2) what
concludes the proof. □

Theorem 3.10 implies that there exist a functor F : BT −→ sHBr defined on objects by
F ((H, γH , TH)) = HBT and on morphisms by the identity. To see that F is well-defined
on morphisms, we have to prove that if f is a morphism in BT, then f is a morphism in
HBr. To verify this fact, it is enough to compute that f ◦ µBT

H = µBT
B ◦ (f ⊗ f), what we

have just seen in the proof of Corollary 3.15.
Moreover, we can also construct a brace triple from every s-Hopf brace. First of all, we

are going to prove the following lemma.

Lemma 3.16. Let H be a Hopf brace in C. If ΓH1 satisfies condition (i) of Definition 3.6,
then ΓH1 is a coalgebra morphism.
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Proof. On the one hand, it is straightforward to see that εH ◦ ΓH1 = εH ⊗ εH . Let’s see
that δH ◦ ΓH1 = (ΓH1 ⊗ ΓH1) ◦ (H ⊗ cH,H ⊗ H) ◦ (δH ⊗ δH). Indeed:

δH ◦ ΓH1

=δH ◦ µ1
H ◦ (λ1

H ⊗ µ2
H) ◦ (δH ⊗ H) (by definition of ΓH1 )

=(µ1
H ⊗ µ1

H) ◦ (H ⊗ cH,H ⊗ H) ◦ ((δH ◦ λ1
H) ⊗ (δH ◦ µ2

H)) ◦ (δH ⊗ H) (by the condition of

coalgebra morphism for µ1
H)

=(µ1
H ⊗ µ1

H) ◦ (H ⊗ cH,H ⊗ H) ◦ ((cH,H ◦ (λ1
H ⊗ λ1

H) ◦ δH) ⊗ ((µ2
H ⊗ µ2

H) ◦ (H ⊗ cH,H

⊗ H) ◦ (δH ⊗ δH))) ◦ (δH ⊗ H) (by the condition of coalgebra morphism for µ2
H and (2.3))

=(H ⊗ (µ1
H ◦ (λ1

H ⊗ H))) ◦ (((ΓH1 ⊗ H) ◦ (H ⊗ cH,H) ◦ ((cH,H ◦ δH) ⊗ H)) ⊗ µ2
H)

◦ (H ⊗ cH,H ⊗ H) ◦ (δH ⊗ δH) (by coassociativity of δH , naturality of c and definition of ΓH1 )

=(H ⊗ (µ1
H ◦ (λ1

H ⊗ H))) ◦ (((ΓH1 ⊗ H) ◦ (H ⊗ cH,H) ◦ (δH ⊗ H)) ⊗ µ2
H) ◦ (H ⊗ cH,H

⊗ H) ◦ (δH ⊗ δH) (by (i) of Definition 3.6)

=(ΓH1 ⊗ ΓH1) ◦ (H ⊗ cH,H ⊗ H) ◦ (δH ⊗ δH) (by coassociativity of δH and naturality of c). □

Theorem 3.17. If H is an object in sHBr, then (H1, ΓH1 , λ2
H) is a brace triple.

Proof. It is a consequence of the following facts: By (i) of Definition 3.6 and previous
lemma, conditions (i) and (ii) of Definition 3.1 hold. Moreover, it is well known that
(H1, ΓH1) is a left H2-module algebra. This property together with (2.10) implies that
axioms (iii), (iv) and (v) of Definition 3.1 also hold. Identities (vi), (vi.1) and (vi.2) of
Definition 3.1 follow by (ii) of Definition 3.6 and equations (2.3) and (2.4). The remaining
axioms, (vi.3), (vi.4) and (vi.5) of Definition 3.1, are consequence of (ii.1) of Definition
3.6, equation (2.11) and (ii.2) of Definition 3.6, respectively. □

As a consequence of the previous theorem, we obtain a functor G : sHBr −→ BT acting
on objects by G(H) = (H1, ΓH1 , λ2

H) and on morphisms by the identity. To see that G1 is
well-defined on morphisms, we have to compute that if f : H → B is a morphism in sHBr,
then f ◦ ΓH1 = ΓB1 ◦ (f ⊗ f). Indeed:

f ◦ ΓH1

=f ◦ µ1
H ◦ (λ1

H ⊗ µ2
H) ◦ (δH ⊗ H) (by definition of ΓH1 )

=µ1
B ◦ ((f ◦ λ1

H) ⊗ (f ◦ µ2
H)) ◦ (δH ⊗ H) (by the condition of algebra morphism for f : H1 → B1)

=µ1
B ◦ (λ1

B ⊗ µ2
B) ◦ (((f ⊗ f) ◦ δH) ⊗ f) (by the condition of algebra morphism for f : H2 → B2

and (2.2))

=µ1
B ◦ (λ1

B ⊗ µ2
B) ◦ (δB ⊗ B) ◦ (f ⊗ f) (by the condition of coalgebra morphism for f)

=ΓB1 ◦ (f ⊗ f) (by definition of ΓB1 ).

Next theorem is the main result of this section. We will prove that functors F and G
induce a categorical isomorphism between sHBr and BT.

Theorem 3.18. The categories sHBr and BT are isomorphic.

Proof. First of all, it results clear that G ◦ F = idBT. Indeed, consider (H, γH , TH) a
brace triple, we obtain that:

(G ◦ F )((H, γH , TH))
=G(HBT) (by definition of functor F )

=(H, ΓBT
H , TH) (by definition of functor G)

=(H, γH , TH) (by (3.5)).
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On the other side, consider H an object in sHBr. We have that:

(F ◦ G)(H)
=F ((H1, ΓH1 , λ2

H)) (by definition of functor G)

=(H1, HBT) (by definition of functor F ),

where, in this particular case,

µBT
H

=µ1
H ◦ (H ⊗ ΓH1) ◦ (δH ⊗ H) (by definition of µBT

H )

=µ2
H (by (2.10)).

Therefore, HBT = H2, and then F ◦ G = idsHBr. □

Corollary 3.19. Categories cocHBr and cocBT are isomorphic.

Proof. It is enough to take into account Remarks 3.5 and 3.9 and the previous theorem.
The isomorphism in this case is given by functors F ′ and G′ which are the restrictions of
F and G to cocBT and cocHBr, respectively.

BT
F //≃ HBr
G

oo

cocBT
F ′

//?�

OO

≃ cocHBr
G′

oo
?�

OO

□

4. Post-Hopf algebras and Hopf braces
In this section we introduce the notion of post-Hopf algebra in the braided monoidal

context. In particular, for the category of vector spaces over a field K, we obtain the
concept of post-Hopf algebra presented in [14], where the authors get an equivalence
between Hopf braces and these objects under cocommutativity assumption. Besides being
working in a more general setting, in this section we prove that the categories of finite
cocommutative Hopf braces and cocommutative post-Hopf algebras satisfying condition
(4.13) are isomoprhic. As a consequence of this result together with Corollary 3.19, we
also deduce that finite cocommutative brace triples are isomorphic to post-Hopf algebras
verifying (4.13).

Definition 4.1. A post-Hopf algebra in C is a pair (H, mH) where H is a finite Hopf
algebra in C and mH : H⊗H → H is a morphism in C that satisfies the following conditions:

(i) mH is a coalgebra morphism, which means that the following equalities are satis-
fied:
(i.1) δH ◦ mH = (mH ⊗ mH) ◦ (H ⊗ cH,H ⊗ H) ◦ (δH ⊗ δH),
(i.2) εH ◦ mH = εH ⊗ εH .

(ii) mH ◦ (H ⊗ mH) = mH ◦ ((µH ◦ (H ⊗ mH) ◦ (δH ⊗ H)) ⊗ H), which is called the
“weighted” associativity.

(iii) mH ◦ (H ⊗ µH) = µH ◦ (mH ⊗ mH) ◦ (H ⊗ cH,H ⊗ H) ◦ (δH ⊗ H ⊗ H).
(iv) The morphism

αH := (H∗ ⊗ mH) ◦ (cH,H∗ ⊗ H) ◦ (H ⊗ aH(K)) : H → H∗ ⊗ H

is convolution invertible in Hom(H, H∗ ⊗ H), which means that there exists a
morphism βH : H → H∗ ⊗ H such that

(H∗ ⊗ bH(K) ⊗ H) ◦ (αH ⊗ βH) ◦ δH = εH ⊗ aH(K) = (H∗ ⊗ bH(K) ⊗ H) ◦ (βH ⊗ αH) ◦ δH .
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Remark 4.2. Given a post-Hopf algebra (H, mH), conditions (i) and (iii) of Definition
4.1 imply that

mH ◦ (H ⊗ ηH) = εH ⊗ ηH (4.1)
holds by Theorem 2.8.

Definition 4.3. Let (H, mH) and (B, mB) be post-Hopf algebras in C and let f : H → B
be a morphism in C. We will say that f is a post-Hopf algebra morphism if f is a Hopf
algebra morphism and the condition

f ◦ mH = mB ◦ (f ⊗ f) (4.2)
holds.

Post-Hopf algebras and their morphisms form a category and we will denote it by Post-
Hopf. When H is cocommutative, we will say that (H, mH) is a cocommutative post-Hopf
algebra in C. Cocommutative post-Hopf algebras constitute a full subcategory of Post-Hopf
which we will denote by cocPost-Hopf.

Lemma 4.4. Let (H, mH) be an object in Post-Hopf. It is verified that

mH ◦ c−1
H,H = (bH(K) ⊗ H) ◦ (H ⊗ αH). (4.3)

Therefore,
mH = (bH(K) ⊗ H) ◦ (H ⊗ αH) ◦ cH,H . (4.4)

Proof. Let’s start proving (4.3):
(bH(K) ⊗ H) ◦ (H ⊗ αH)

=(bH(K) ⊗ mH) ◦ (H ⊗ ((cH,H∗ ⊗ H) ◦ (H ⊗ aH(K)))) (by definition of αH)

=(bH(K) ⊗ (mH ◦ c−1
H,H)) ◦ (H ⊗ aH(K) ⊗ H) (by (2.12))

=mH ◦ c−1
H,H (by the adjunction properties).

So, composing on the right with cH,H , we obtain (4.4). □
Lemma 4.5. Let (H, mH) be an object in Post-Hopf, then

mH ◦ (ηH ⊗ H) = idH . (4.5)

Proof. First of all, note that the morphism mH ◦ (ηH ⊗ H) is idempotent. Indeed,
mH ◦ (H ⊗ mH) ◦ (ηH ⊗ ηH ⊗ H)

=mH ◦ ((µH ◦ (H ⊗ mH) ◦ (δH ⊗ H) ◦ (ηH ⊗ ηH)) ⊗ H) (by (ii) of Definition 4.1)

=mH ◦ ((µH ◦ (H ⊗ mH) ◦ (ηH ⊗ ηH ⊗ ηH)) ⊗ H) (by the condition of coalgebra

morphism for ηH)

=mH ◦ ((mH ◦ (ηH ⊗ ηH)) ⊗ H) (by unit property)

=(εH ◦ ηH) ⊗ (mH ◦ (ηH ⊗ H)) (by (4.1))

=mH ◦ (ηH ⊗ H) (by (co)unit property).

Therefore, the equality
(bH(K)⊗bH(K)⊗H)◦(H⊗((αH ⊗αH)◦(ηH ⊗ηH))) = (bH(K)⊗H)◦(H⊗(αH ◦ηH)) (4.6)

holds because
(bH(K) ⊗ bH(K) ⊗ H) ◦ (H ⊗ ((αH ⊗ αH) ◦ (ηH ⊗ ηH)))

=mH ◦ (H ⊗ mH) ◦ (ηH ⊗ ηH ⊗ H) (by (4.3) and naturality of c)

=mH ◦ (ηH ⊗ H) (by the idempotent character of mH ◦ (ηH ⊗ H))

=(bH(K) ⊗ H) ◦ (H ⊗ (αH ◦ ηH)) (by (4.3) and naturality of c).
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Then, using the previous equalities and the finite character of H, we have that

(H∗ ⊗ bH(K) ⊗ H) ◦ (αH ⊗ αH) ◦ (ηH ⊗ ηH)
=(H∗ ⊗ bH(K) ⊗ bH(K) ⊗ H) ◦ (aH(K) ⊗ (αH ◦ ηH) ⊗ (αH ◦ ηH)) (by the adjunction

properties)

=(H∗ ⊗ bH(K) ⊗ H) ◦ (aH(K) ⊗ (αH ◦ ηH)) (by (4.6))

=αH ◦ ηH (by the adjunction properties).

As a consequence, if βH is the convolution inverse of αH in Hom(H, H∗ ⊗ H), we deduce
the following:

(H∗ ⊗ bH(K) ⊗ bH(K) ⊗ H) ◦ (βH ⊗ αH ⊗ αH) ◦ ((δH ◦ ηH) ⊗ ηH)
=(H∗ ⊗ bH(K) ⊗ bH(K) ⊗ H) ◦ (βH ⊗ αH ⊗ αH) ◦ (ηH ⊗ ηH ⊗ ηH) (by the condition of

coalgebra morphism for ηH)

=(H∗ ⊗ bH(K) ⊗ H) ◦ (βH ⊗ αH) ◦ (ηH ⊗ ηH) (by (4.6))

=(H∗ ⊗ bH(K) ⊗ H) ◦ (βH ⊗ αH) ◦ δH ◦ ηH (by the condition of coalgebra morphism for ηH)

=(εH ◦ ηH) ⊗ aH(K) (by (iv) of Definition 4.1)

=aH(K) (by the (co)unit properties)

and, on the other hand:

(H∗ ⊗ bH(K) ⊗ bH(K) ⊗ H) ◦ (βH ⊗ αH ⊗ αH) ◦ ((δH ◦ ηH) ⊗ ηH)
=(εH ◦ ηH) ⊗ ((H∗ ⊗ bH(K) ⊗ H) ◦ (aH(K) ⊗ (αH ◦ ηH))) (by (iv) of Definition 4.1)

=αH ◦ ηH (by (co)unit properties and the adjunction properties).

So, by the two previous equalities, we obtain that

αH ◦ ηH = aH(K). (4.7)

Therefore, we conclude the proof as follows:

idH

=(bH(K) ⊗ H) ◦ (H ⊗ aH(K)) (by the adjunction properties)

=(bH(K) ⊗ H) ◦ (H ⊗ (αH ◦ ηH)) (by (4.7))

=(bH(K) ⊗ mH) ◦ (H ⊗ ((cH,H∗ ⊗ H) ◦ (ηH ⊗ aH(K)))) (by definition of αH)

=(bH(K) ⊗ (mH ◦ c−1
H,H)) ◦ (H ⊗ aH(K) ⊗ ηH) (by (2.12))

=mH ◦ (ηH ⊗ H) (by naturality of c and the adjunction properties). □

The goal of the following results will consist of building a post-Hopf algebra from a brace
triple. Suppose that (H, γH , TH) is a brace triple in C with H finite. Note that conditions
(ii), (iii) and (iv) of Definition 3.1 imply that γH satisfies (i), (iii) and (ii) of Definition
4.1, respectively. So, in order to construct a post-Hopf algebra from a brace triple, it is
enough to prove that αH = (H∗ ⊗γH)◦(cH,H∗ ⊗H)◦(H ⊗aH(K)) is convolution invertible
in Hom(H, H∗ ⊗ H).

Theorem 4.6. Let (H, γH , TH) be a brace triple in C with H finite. The morphism αH =
(H∗ ⊗γH)◦(cH,H∗ ⊗H)◦(H ⊗aH(K)) is invertible for the convolution in Hom(H, H∗ ⊗H)
with inverse

βH := αH ◦ T −1
H .
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Proof. On the one side,
(H∗ ⊗ bH(K) ⊗ H) ◦ (βH ⊗ αH) ◦ δH

=(H∗ ⊗ bH(K) ⊗ H) ◦ (((H∗ ⊗ γH) ◦ (cH,H∗ ⊗ H) ◦ (T −1
H ⊗ aH(K))) ⊗ ((H∗ ⊗ γH)

◦ (cH,H∗ ⊗ H) ◦ (H ⊗ aH(K)))) ◦ δH (by definition of αH and βH)

=(H∗ ⊗ (γH ◦ c−1
H,H ◦ (γH ⊗ H))) ◦ (((cH,H∗ ⊗ H) ◦ (T −1

H ⊗ aH(K))) ⊗ H) ◦ δH (by (2.12)

and the adjunction properties)

=(H∗ ⊗ (γH ◦ (H ⊗ γH))) ◦ (((H∗ ⊗ c−1
H,H) ◦ (cH,H∗ ⊗ H) ◦ (T −1

H ⊗ cH,H∗)) ⊗ H)
◦ (δH ⊗ aH(K)) (by naturality of c)

=(H∗ ⊗ γH) ◦ (((H∗ ⊗ µBT
H ) ◦ (cH,H∗ ⊗ H) ◦ (H ⊗ cH,H∗)) ⊗ H) ◦ ((c−1

H,H ◦ (T −1
H ⊗ H) ◦ δH)

⊗ aH(K)) (by naturality of c and (iv) of Definition 3.1)

=(H∗ ⊗ γH) ◦ (cH,H∗ ⊗ H) ◦ ((µBT
H ◦ c−1

H,H ◦ (T −1
H ⊗ H) ◦ δH) ⊗ aH(K)) (by naturality of c)

=(H∗ ⊗ γH) ◦ (cH,H∗ ⊗ H) ◦ ((ηH ◦ εH) ⊗ aH(K)) (by (2.1) for Hcop
BT )

=εH ⊗ aH(K) (by naturality of c and (v) of Definition 3.1).

On the other side,
(H∗ ⊗ bH(K) ⊗ H) ◦ (αH ⊗ βH) ◦ δH

=(H∗ ⊗ bH(K) ⊗ H) ◦ (((H∗ ⊗ γH) ◦ (cH,H∗ ⊗ H) ◦ (H ⊗ aH(K))) ⊗ ((H∗ ⊗ γH) ◦ (cH,H∗

⊗ H) ◦ (T −1
H ⊗ aH(K)))) ◦ δH (by definition of αH and βH)

=(H∗ ⊗ (γH ◦ c−1
H,H)) ◦ (((H∗ ⊗ γH) ◦ (cH,H∗ ⊗ H) ◦ (H ⊗ aH(K))) ⊗ T −1

H ) ◦ δH (by (2.12)

and the adjunction properties)

=(H∗ ⊗ (γH ◦ (H ⊗ γH) ◦ (c−1
H,H ⊗ H))) ◦ (((cH,H∗ ⊗ H) ◦ (H ⊗ cH,H∗)) ⊗ H)

◦ (((H ⊗ T −1
H ) ◦ δH) ⊗ aH(K)) (by naturality of c)

=(H∗ ⊗ γH) ◦ (cH,H∗ ⊗ H) ◦ ((µBT
H ◦ (T −1

H ⊗ H) ◦ c−1
H,H ◦ δH) ⊗ aH(K)) (by naturality of c

and (iv) of Definition 3.1)

=(H∗ ⊗ γH) ◦ (cH,H∗ ⊗ H) ◦ ((ηH ◦ εH) ⊗ aH(K)) (by (2.1) for Hcop
BT )

=εH ⊗ aH(K) (by naturality of c and (v) of Definition 3.1). □

Previous theorem can be interpreted in a functorial way as follows: If we denote by BTf

the subcategory of brace triples whose underlying Hopf algebra is finite, then there exists
a functor P : BTf −→ Post-Hopf acting on objects by P ((H, γH , TH)) = (H, γH) and on
morphisms by the identity.

Theorem 4.7. Let (H, mH) be an object in cocPost-Hopf, then

Ĥ = (H, ηH , µ̂H , εH , δH)
is a bialgebra in C, where µ̂H := µH ◦ (H ⊗ mH) ◦ (δH ⊗ H).

Proof. Note that we already know that (H, εH , δH) is a coalgebra in C and that ηH is a
coalgebra morphism. Then, firstly, we have to compute that (H, ηH , µ̂H) is an algebra in
C. Indeed, let’s start proving the unit property. On the one hand,

µ̂H ◦ (ηH ⊗ H)
=µH ◦ (H ⊗ mH) ◦ ((δH ◦ ηH) ⊗ H) (by definition of µ̂H)

=µH ◦ (H ⊗ mH) ◦ (ηH ⊗ ηH ⊗ H) (by the condition of coalgebra morphism for ηH)

=mH ◦ (ηH ⊗ H) (by unit properties)

=idH (by (4.5))
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and, on the other hand,

µ̂H ◦ (H ⊗ ηH)
=µH ◦ (H ⊗ mH) ◦ (δH ⊗ ηH) (by definition of µ̂H)

=µH ◦ (H ⊗ εH ⊗ ηH) ◦ δH (by (4.1))

=idH (by (co)unit properties).

The associativity of µ̂H follows by:

µ̂H ◦ (µ̂H ⊗ H)
=µH ◦ (H ⊗ mH) ◦ ((δH ◦ µH ◦ (H ⊗ mH) ◦ (δH ⊗ H)) ⊗ H) (by definition of µ̂H)

=µH ◦ (µH ⊗ (mH ◦ (µH ⊗ H))) ◦ (H ⊗ cH,H ⊗ H ⊗ H) ◦ (δH ⊗ (δH ◦ mH) ⊗ H)
◦ (δH ⊗ H ⊗ H)(by the condition of coalgebra morphism for µH)

=µH ◦ (µH ⊗ (mH ◦ (µH ⊗ H))) ◦ (H ⊗ cH,H ⊗ H ⊗ H) ◦ (δH ⊗ ((mH ⊗ mH) ◦ (H ⊗ cH,H

⊗ H) ◦ (δH ⊗ δH)) ⊗ H) ◦ (δH ⊗ H ⊗ H) (by (i.1) of Definition 4.1)

=µH ◦ ((µH ◦ (H ⊗ mH)) ⊗ (mH ◦ (µH ⊗ H) ◦ (H ⊗ mH ⊗ H))) ◦ (((H ⊗ H ⊗ cH,H ⊗ H

⊗ H) ◦ (H ⊗ cH,H ⊗ cH,H ⊗ H) ◦ (((δH ⊗ δH) ◦ δH) ⊗ δH)) ⊗ H) (by naturality of c)

=µH ◦ ((µH ◦ (H ⊗ mH) ◦ (δH ⊗ H)) ⊗ (mH ◦ (µH ⊗ H)))
◦ (H ⊗ ((cH,H ⊗ mH) ◦ (H ⊗ cH,H ⊗ H) ◦ (δH ⊗ H ⊗ H)) ⊗ H) ◦ (δH ⊗ δH ⊗ H)
(by coassociativity and cocommutativity of δH)

=µH ◦ ((µH ◦ (H ⊗ mH) ◦ (δH ⊗ H)) ⊗ (mH ◦ ((µH ◦ (H ⊗ mH) ◦ (δH ⊗ H)) ⊗ H)))
◦ (((H ⊗ cH,H ⊗ H) ◦ (δH ⊗ δH)) ⊗ H) (by naturality of c)

=µH ◦ ((µH ◦ (H ⊗ mH) ◦ (δH ⊗ H)) ⊗ (mH ◦ (H ⊗ mH))) ◦ (((H ⊗ cH,H ⊗ H)
◦ (δH ⊗ δH)) ⊗ H) (by (ii) of Definition 4.1)

=µH ◦ (H ⊗ (µH ◦ (mH ⊗ mH) ◦ (H ⊗ cH,H ⊗ H) ◦ (δH ⊗ H ⊗ H))) ◦ (H ⊗ H ⊗ H ⊗ mH)
◦ (δH ⊗ δH ⊗ H) (by coassociativity of δH and associativity of µH)

=µH ◦ (H ⊗ mH) ◦ (δH ⊗ (µH ◦ (H ⊗ mH) ◦ (δH ⊗ H))) (by (iii) of Definition 4.1)

=µ̂H ◦ (H ⊗ µ̂H) (by definition of µ̂H).

Finally, we will prove that µ̂H is a coalgebra morphism. By the condition of coalgebra
morphism for µH , (i.2) of Definition 4.1 and the counit property, it is straightforward to
compute that εH ◦ µ̂H = εH ⊗ εH . Moreover,

δH ◦ µ̂H

=δH ◦ µH ◦ (H ⊗ mH) ◦ (δH ⊗ H) (by definition of µ̂H)

=(µH ⊗ µH) ◦ (H ⊗ cH,H ⊗ H) ◦ (δH ⊗ (δH ◦ mH)) ◦ (δH ⊗ H) (by the condition of coalgebra

morphism for µH)

=(µH ⊗ µH) ◦ (H ⊗ cH,H ⊗ H) ◦ (δH ⊗ ((mH ⊗ mH) ◦ (H ⊗ cH,H ⊗ H) ◦ (δH ⊗ δH)))
◦ (δH ⊗ H) (by (i.1) of Definition 4.1)

=((µH ◦ (H ⊗ mH)) ⊗ (µH ◦ (H ⊗ mH))) ◦ (H ⊗ ((H ⊗ cH,H ⊗ H) ◦ (cH,H ⊗ cH,H)) ⊗ H)
◦ (((δH ⊗ δH) ◦ δH) ⊗ δH) (by naturality of c)

=((µH ◦ (H ⊗ mH) ◦ (δH ⊗ H)) ⊗ (µH ◦ (H ⊗ mH))) ◦ (H ⊗ ((cH,H ⊗ H) ◦ (H ⊗ cH,H)
◦ (δH ⊗ H)) ⊗ H) ◦ (δH ⊗ δH) (by cocommutativity and coassociativity of δH)

=((µH ◦ (H ⊗ mH) ◦ (δH ⊗ H)) ⊗ (µH ◦ (H ⊗ mH) ◦ (δH ⊗ H))) ◦ (H ⊗ cH,H ⊗ H)
◦ (δH ⊗ δH) (by naturality of c)

=(µ̂H ⊗ µ̂H) ◦ (H ⊗ cH,H ⊗ H) ◦ (δH ⊗ δH) (by definition of µ̂H). □
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Corollary 4.8. If (H, mH) is an object in cocPost-Hopf, then (H, mH) is a left Ĥ-module
algebra-coalgebra, i.e., a left Ĥ-module bialgebra.

Proof. It is a consequence of the following facts: Thanks to conditions (ii) of Definition 4.1
and (4.5), (H, mH) is a left Ĥ-module. Moreover, by (4.1) and (iii) of Definition 4.1, ηH and
µH are morphisms of left Ĥ-modules, respectively. To finish, mH is a coalgebra morphism
by (i) of Definition 4.1 which implies that (H, mH) is a left Ĥ-module coalgebra. □

Along the following results, we are going to study some properties about the morphism
λ̂H := (bH(K) ⊗ H) ◦ (cH∗,H ⊗ H) ◦ (H∗ ⊗ cH,H) ◦ (βH ⊗ λH) ◦ δH

=(bH(K) ⊗ H) ◦ (H ⊗ βH) ◦ cH,H ◦ (H ⊗ λH) ◦ δH (by naturality of c)

with the final objective of proving that it is the antipode for Ĥ. We are going to denote
by ∗̂ the convolution in Hom(H, Ĥ).

Remark 4.9. First of all, note that
λ̂H = (bH(K) ⊗ H) ◦ (λH ⊗ βH) ◦ δH (4.8)

when (H, mH) is a cocommutative post-Hopf algebra. Indeed,

λ̂H = (bH(K) ⊗ H) ◦ (cH∗,H ⊗ H) ◦ (H∗ ⊗ cH,H) ◦ (βH ⊗ λH) ◦ δH

=(bH(K) ⊗ H) ◦ (λH ⊗ βH) ◦ cH,H ◦ δH (by naturality of c)

=(bH(K) ⊗ H) ◦ (λH ⊗ βH) ◦ δH (by cocommutativity of δH).

Lemma 4.10. If (H, mH) is a cocommutative post-Hopf algebra in C, then

mH ◦ (H ⊗ λ̂H) ◦ δH = λH . (4.9)
As a consequence,

idH ∗̂ λ̂H = εH ⊗ ηH . (4.10)

Proof. Let’s start proving (4.9):

mH ◦ (H ⊗ λ̂H) ◦ δH

=mH ◦ (H ⊗ ((bH(K) ⊗ H) ◦ (λH ⊗ βH) ◦ δH)) ◦ δH (by (4.8))

=(bH(K) ⊗ H) ◦ (H ⊗ αH) ◦ cH,H ◦ (H ⊗ ((bH(K) ⊗ H) ◦ (λH ⊗ βH) ◦ δH)) ◦ δH (by (4.4))

=((bH(K) ◦ (λH ⊗ H∗)) ⊗ (bH(K) ◦ cH∗,H) ⊗ H) ◦ (H ⊗ cH∗,H∗ ⊗ cH,H) ◦ (H ⊗ H∗ ⊗ cH,H∗

⊗ H) ◦ (((cH∗,H ⊗ H) ◦ (H∗ ⊗ cH,H) ◦ (αH ⊗ H)) ⊗ βH) ◦ (H ⊗ δH) ◦ δH (by naturality of c)

=((bH(K) ◦ (λH ⊗ H∗)) ⊗ H) ◦ (H ⊗ ((H∗ ⊗ bH(K) ⊗ H) ◦ (βH ⊗ αH))) ◦ (H ⊗ cH,H)
◦ (cH,H ⊗ H) ◦ (H ⊗ δH) ◦ δH (by naturality of c)

=((bH(K) ◦ (λH ⊗ H∗)) ⊗ H) ◦ (H ⊗ ((H∗ ⊗ bH(K) ⊗ H) ◦ (βH ⊗ αH) ◦ δH)) ◦ δH

(by naturality of c and cocommutativity and coassociativity of δH)

=((bH(K) ◦ (λH ⊗ H∗)) ⊗ H) ◦ (H ⊗ (εH ⊗ aH(K))) ◦ δH (by (iv) of Definition 4.1)

=λH (by counit property and the adjunction properties).

From the previous identity we obtain the following:
idH ∗̂ λ̂H

=µ̂H ◦ (H ⊗ λ̂H) ◦ δH (by definition of ∗̂ )

=µH ◦ (H ⊗ mH) ◦ (δH ⊗ λ̂H) ◦ δH (by definition of µ̂H)

=µH ◦ (H ⊗ (mH ◦ (H ⊗ λ̂H) ◦ δH)) ◦ δH (by coassociativity of δH)

=idH ∗ λH (by (4.9))

=εH ⊗ ηH (by (2.1)). □
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The aim of the following results will be to prove that the convolution in the opposite
direction is also the identity element, i.e., λ̂H ∗̂ idH = εH ⊗ ηH .

Lemma 4.11. If (H, mH) is a cocommutative post-Hopf algebra in C, then
α̃H := (bH(K) ⊗ H) ◦ (H ⊗ αH) : H ⊗ H → H

is a coalgebra morphism.

Proof. From (i.1) of Definition 4.1, (2.7) and the naturality of c we can deduce that
δH ◦ mH ◦ cH,H = ((mH ◦ cH,H) ⊗ (mH ◦ cH,H)) ◦ (H ⊗ cH,H ⊗ H) ◦ (δH ⊗ δH) (4.11)

holds. Therefore, we obtain that:
δH ◦ α̃H

=(bH(K) ⊗ δH) ◦ (H ⊗ αH) (by definition of α̃H)

=δH ◦ mH ◦ cH,H (by (2.7) and (4.3))

=((mH ◦ cH,H) ⊗ (mH ◦ cH,H)) ◦ (H ⊗ cH,H ⊗ H) ◦ (δH ⊗ δH) (by (4.11))

=(α̃H ⊗ α̃H) ◦ (H ⊗ cH,H ⊗ H) ◦ (δH ⊗ δH) (by (2.7), (4.3) and definition of α̃H).

Moreover, by (4.3) and (i.2) of Definition 4.1, it is easy to prove that εH ◦α̃H = εH ⊗εH . □
Let (H, mH) be a post-Hopf algebra in C and consider now the morphism

β̃H := (bH(K) ⊗ H) ◦ (H ⊗ βH) : H ⊗ H → H.

Lemma 4.12. Let (H, mH) be a post-Hopf algebra in C. It is satisfied that

εH ◦ β̃H = εH ⊗ εH . (4.12)

Proof.
εH ◦ β̃H

=((εH ◦ β̃H) ⊗ εH) ◦ (H ⊗ δH) (by counit properties)

=(bH(K) ⊗ εH ⊗ εH) ◦ (H ⊗ βH ⊗ H) ◦ (H ⊗ δH) (by definition of β̃H)

=(bH(K) ⊗ (εH ◦ α̃H)) ◦ (H ⊗ βH ⊗ H) ◦ (H ⊗ δH) (by the condition of coalgebra

morphism for α̃H)

=(bH(K) ⊗ εH) ◦ (H ⊗ ((H∗ ⊗ bH(K) ⊗ H) ◦ (βH ⊗ αH) ◦ δH)) (by definition of α̃H)

=((bH(K) ⊗ εH) ◦ (H ⊗ aH(K))) ⊗ εH (by (iv) of Definition 4.1)

=εH ⊗ εH (by the adjunction properties). □

Let (H, mH) be a post-Hopf algebra and suppose that β̃H satisfies that

δH ◦ β̃H = (β̃H ⊗ β̃H) ◦ (H ⊗ cH,H ⊗ H) ◦ (δH ⊗ δH). (4.13)

Note that if (4.13) holds, then β̃H is a coalgebra morphism by the previous lemma.

Lemma 4.13. Let (H, mH) be a cocommutative post-Hopf algebra in C, then

εH ◦ λ̂H = εH . (4.14)
In addition, if the identity (4.13) holds, then

δH ◦ λ̂H = (λ̂H ⊗ λ̂H) ◦ δH , (4.15)

i.e. λ̂H is a coalgebra morphism,
λ̂H ◦ λ̂H = idH , (4.16)

and
λ̂H ∗̂ idH = εH ⊗ ηH . (4.17)
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Proof. First of all, note that it is straightforward to prove that εH ◦ λ̂H = εH using (4.8),
(4.12), (2.4) and counit property. Moreover

δH ◦ λ̂H

=δH ◦ β̃H ◦ (λH ⊗ H) ◦ δH (by (4.8) and definition of β̃H)

=(β̃H ⊗ β̃H) ◦ (H ⊗ cH,H ⊗ H) ◦ (δH ⊗ δH) ◦ (λH ⊗ H) ◦ δH (by (4.13))

=(β̃H ⊗ β̃H) ◦ (H ⊗ cH,H ⊗ H) ◦ (((λH ⊗ λH) ◦ δH) ⊗ δH) ◦ δH

(by (2.3) and cocommutativity of δH)

=((β̃H ◦ (λH ⊗ H)) ⊗ (β̃H ◦ (λH ⊗ H))) ◦ (H ⊗ (cH,H ◦ δH) ⊗ H) ◦ (H ⊗ δH) ◦ δH

(by naturality of c and coassociativity of δH)

=((β̃H ◦ (λH ⊗ H) ◦ δH) ⊗ (β̃H ◦ (λH ⊗ H) ◦ δH)) ◦ δH

(by cocommutativity and coassociativity of δH)

=(λ̂H ⊗ λ̂H) ◦ δH (by (4.8) and definition of β̃H).

As a consequence, we can prove that λ̂H ◦ λ̂H = idH . Indeed,

λ̂H ◦ λ̂H

=µ̂H ◦ ((ηH ◦ εH) ⊗ (λ̂H ◦ λ̂H)) ◦ δH (by (co)unit properties)

=µ̂H ◦ ((idH ∗̂ λ̂H) ⊗ (λ̂H ◦ λ̂H)) ◦ δH (by (4.10))

=µ̂H ◦ (H ⊗ (µ̂H ◦ (λ̂H ⊗ (λ̂H ◦ λ̂H)) ◦ δH)) ◦ δH

(by coassociativity of δH and associativity of µ̂H)

=µ̂H ◦ (H ⊗ ((idH ∗̂ λ̂H) ◦ λ̂H)) ◦ δH (by (4.15))

=µ̂H ◦ (H ⊗ (ηH ◦ εH ◦ λ̂H)) ◦ δH (by (4.10))

=µ̂H ◦ (H ⊗ (ηH ◦ εH)) ◦ δH (by (4.14))

=idH (by (co)unit properties).

To finish, we will see that λ̂H ∗̂ idH = εH ⊗ ηH . Indeed,

λ̂H ∗̂ idH

=µ̂H ◦ (λ̂H ⊗ H) ◦ δH (by definition of ∗̂ )

=µ̂H ◦ (λ̂H ⊗ (λ̂H ◦ λ̂H)) ◦ δH (by (4.16))

=(idH ∗̂ λ̂H) ◦ λ̂H (by (4.15))

=ηH ◦ εH ◦ λ̂H (by (4.10))

=εH ⊗ ηH (by (4.14)). □

Theorem 4.14. Let (H, mH) be a cocommutative post-Hopf algebra in C. If the identity
(4.13) holds, then Ĥ = (H, ηH , µ̂H , εH , δH , λ̂H) is a cocommutative Hopf algebra in C.
This particular Hopf algebra structure is called the subadjacent Hopf algebra of (H, mH).

Proof. It is a direct consequence of Theorem 4.7 and equalities (4.10) and (4.17). □

So, we have deduced that it is possible to obtain from any cocommutative post-Hopf
algebra satisfying (4.13) another Hopf algebra structure whose underlying coalgebra is the
same as that of H. Therefore, at this point it is natural to wonder whether Ĥ = (H, Ĥ)
is a Hopf brace in C. The following theorem solves this question.
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Theorem 4.15. Let (H, mH) be a cocommutative post-Hopf algebra in C. If the identity
(4.13) is satisfied, then

Ĥ = (H, Ĥ)

is a cocommutative Hopf brace in C.

Proof. By Theorem 4.14, to prove that Ĥ = (H, Ĥ) is a Hopf brace we only have to show
that (iii) of Definition 2.10 holds. Note that

Γ̂H = mH . (4.18)

Indeed,

Γ̂H

=µH ◦ (λH ⊗ µ̂H) ◦ (δH ⊗ H) (by definition of Γ̂H)

=µH ◦ (λH ⊗ (µH ◦ (H ⊗ mH) ◦ (δH ⊗ H))) ◦ (δH ⊗ H) (by definition of µ̂H)

=µH ◦ ((λH ∗ idH) ⊗ mH) ◦ (δH ⊗ H) (by coassociativity of δH and associativity of µH)

=µH ◦ ((ηH ◦ εH) ⊗ mH) ◦ (δH ⊗ H) (by (2.1))

=mH (by (co)unit property).

So, we obtain the following:

µH ◦ (µ̂H ⊗ Γ̂H) ◦ (H ⊗ cH,H ⊗ H) ◦ (δH ⊗ H ⊗ H)
=µH ◦ ((µH ◦ (H ⊗ mH) ◦ (δH ⊗ H)) ⊗ mH) ◦ (H ⊗ cH,H ⊗ H) ◦ (δH ⊗ H ⊗ H)

(by definition of µ̂H and (4.18))

=µH ◦ (H ⊗ (µH ◦ (mH ⊗ mH) ◦ (H ⊗ cH,H ⊗ H) ◦ (δH ⊗ H ⊗ H))) ◦ (δH ⊗ H ⊗ H)
(by associativity of µH and coassociativity of δH)

=µH ◦ (H ⊗ mH) ◦ (δH ⊗ µH) (by (iii) of Definition 4.1)

=µ̂H ◦ (H ⊗ µH) (by definition of µ̂H). □

It is possible to interpret the previous result in the following sense: If cocPost-Hopf⋆

denotes the full subcategory of cocommutative post-Hopf algebras such that (4.13) holds,
and cocHBrf denotes the category of finite cocommutative Hopf braces, then a functor
Q : cocPost-Hopf⋆ −→ cocHBrf exists which acts on objects by Q((H, mH)) = Ĥ and on
morphisms by the identity. To see that Q is well-defined on morphisms, we have to prove
that if f : (H, mH) → (B, mB) is a morphism in cocPost-Hopf, then f is a morphism of
Hopf braces between Ĥ and B̂. Indeed:

f ◦ µ̂H

=f ◦ µH ◦ (H ⊗ mH) ◦ (δH ⊗ H) (by definition of µ̂H)

=µB ◦ (f ⊗ f) ◦ (H ⊗ mH) ◦ (δH ⊗ H) (by the condition of algebra morphism for f : H → B)

=µB ◦ (B ⊗ mB) ◦ (((f ⊗ f) ◦ δH) ⊗ f) (by (4.2))

=µB ◦ (B ⊗ mB) ◦ (δB ⊗ B) ◦ (f ⊗ f) (by the condition of coalgebra morphism for f)

=µ̂B ◦ (f ⊗ f) (by definition of µ̂B).

The following theorem is the main result of this section.

Theorem 4.16. The categories cocPost-Hopf⋆ and cocBTf are isomorphic.
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Proof. At first, let’s consider the following commutative diagram of functors:

cocPost-Hopf⋆ Q // cocHBrf

G′′

��

≃

cocBTf ,

P ′

ddHHHHHHHHHHHHHHHHHHHHHH

F ′′

OO

where F ′′ and G′′ are the restrictions of functors F ′ and G′ introduced in Corollary 3.19
to the subcategories of finite objects, and P ′ is the restriction of functor P to cocBTf .

To begin with, we are going to see that P ′ is well-defined on objects. That is to say, we
have to prove that if (H, γH , TH) is a finite cocommutative brace triple, then the post-Hopf
algebra (H, γH) satisfies (4.13). In this situation, by Theorem 4.6 and (3.6),

βH = αH ◦ TH , (4.19)

and then,
β̃H = α̃H ◦ (H ⊗ TH). (4.20)

Therefore, (4.13) follows by:

δH ◦ β̃H

=δH ◦ α̃H ◦ (H ⊗ TH) (by β̃H = α̃H ◦ (H ⊗ TH))

=(α̃H ⊗ α̃H) ◦ (H ⊗ cH,H ⊗ H) ◦ (δH ⊗ (δH ◦ TH)) (by Lemma 4.11)

=(α̃H ⊗ α̃H) ◦ (H ⊗ cH,H ⊗ H) ◦ (δH ⊗ ((TH ⊗ TH) ◦ δH)) (by (vi.1) of Definition 3.1

and cocommutativity of δH)

=(β̃H ⊗ β̃H) ◦ (H ⊗ cH,H ⊗ H) ◦ (δH ⊗ δH) (by naturality of c and (4.20)).

Taking into account functors P ′, Q and G′′, on the one hand, we have that

(P ′ ◦ (G′′ ◦ Q))((H, mH))
=(P ′ ◦ G′′)(Ĥ) (by definition of Q)

=P ′((H, mH , λ̂H)) (by definition of G′′ and (4.18))

=(H, mH) (by definition of P ′).

So, P ′ ◦ (G′′ ◦ Q) = idcocPost-Hopf⋆ . On the other hand,

((G′′ ◦ Q) ◦ P ′)((H, γH , TH))
=(G′′ ◦ Q)((H, γH)) (by definition of P ′)

=G′′(Ĥ) (by definition of Q)

=(H, γH , λ̂H) (by definition of G′′ and (4.18))

=(H, γH , TH),

where the last equality is due to the fact that λ̂H = TH . Indeed, firstly note that

λ̂H

=(bH(K) ⊗ H) ◦ (λH ⊗ βH) ◦ δH (by (4.8))

=(bH(K) ⊗ H) ◦ (λH ⊗ (αH ◦ TH)) ◦ δH (by Theorem 4.6 and (3.6))

=γH ◦ cH,H ◦ (λH ⊗ TH) ◦ δH (by (4.3) and (2.7))

=γH ◦ (TH ⊗ λH) ◦ δH (by naturality of c and cocommutativity of δH).
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As a result,

idH ∗BT λ̂H

=µBT
H ◦ (H ⊗ λ̂H) ◦ δH (by definition of ∗BT)

=µH ◦ (H ⊗ γH) ◦ (δH ⊗ (γH ◦ (TH ⊗ λH) ◦ δH)) ◦ δH

(by definition of µBT
H and previous equality)

=µH ◦ (H ⊗ (γH ◦ ((µH ◦ (H ⊗ γH) ◦ (δH ⊗ H)) ⊗ H))) ◦ (δH ⊗ ((TH ⊗ λH) ◦ δH)) ◦ δH

(by (iv) of Definition 3.1)

=µH ◦ (H ⊗ (γH ◦ (µH ⊗ λH) ◦ (H ⊗ (γH ◦ (H ⊗ TH) ◦ δH) ⊗ H))) ◦ (δH ⊗ δH) ◦ δH

(by coassociativity of δH)

=µH ◦ (H ⊗ (γH ◦ ((idH ∗ λH) ⊗ λH) ◦ δH)) ◦ δH

(by (vi.4) of Definition 3.1 and coassociativity of δH)

=idH ∗ λH (by (2.1), counit property and (v) of Definition 3.1)

=εH ⊗ ηH (by (2.1)),

which implies, due to the uniqueness of the antipode for the Hopf algebra HBT, that
λ̂H = TH . Hence, (G′′ ◦ Q) ◦ P ′ = idcocBTf . □

Corollary 4.17. Categories cocBTf , cocHBrf and cocPost-Hopf⋆ are isomorphic.

Proof. It is a direct consequence of the previous theorem and Corollary 3.19. □
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