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ABSTRACT: In industrial manufacturing processes, detection of defects on the surfaces of metal 

plates supplied from iron and steel main industry manufacturers to be processed by machining and 

non-machining methods has an important place in estimating the values of the relevant plate such as 

safety and maintenance cost. With the developing technology and computer vision and deep learning 

applications finding a place in the industry, it has become possible to detect and classify metal plate 

surface defects more quickly and effectively with a lower error rate at an advanced technological 

level. Within the scope of this study, a deep learning model was created by using the TensorFlow 

library in the Python environment with using NEU Metal Surface Defects Dataset to detect metal 

plate surface defects. Then as an industrial application, a device prototype developed using Nvidia 

Jetson Nano and USB Camera, in order to test this model under real conditions. 

Keywords: Metal plate, Surface defect, Deep learning, Computer vision, Artificial intelligence, 

Machine learning 
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1. INTRODUCTION 

Metal plates are one of the materials used as the main construction material in sectors such as 

machinery, automotive, shipbuilding, energy, and home electronics. Metal plates are shaped by 

various machining or chipless manufacturing methods such as cutting, bending, welded joining and 

used in structures within the framework of certain design and engineering decisions. There are many 

standards like EN ISO 8501-1:2007, EN 10130, ASTM A480/A480M, ASTM E45 that must be 

followed for the metal plates used to meet sufficient quality criterias. Compliance with the standards 

in which the basic physical and chemical properties of the material, surface roughness and quantity, 

effect and acceptance values of surface defects are defined emerge as the basic quality requirement 

of the enterprises. 

One of the main problems seen in metal plates is the surface defects that have occurred on the 

plate surface. These defects may be caused by variables determined in various processes during the 

manufacturing phase of metal plates, as well as by different external factors such as environmental 

conditions, transportation, stacking. In this context, one of the quality control processes applied in 

enterprises is the inspection of surface defects of metal plates, and the rapid and accurate detection of 

these defects stands out as a critical condition for providing the necessary strength conditions in 

industrial production and increasing product quality. Within the scope of the control process, it can 

be decided to repair the metal plate or to discard it as a result of evaluations such as determining the 

presence of surface defects and their location on the plate, classifying them, determining their 

quantity, measuring the depth or height differences caused by the defect with various devices, 

determining the presence rate of the defects in the entire area and determining whether they are within 

tolerance. These defects have been described in the literature and generally classified in 6 main groups 

as crazing, inclusion, patches, pitted, rolled, scratches (Fu et al., 2019). 

Different methods can be preferred to detect surface defects. The most basic, simple, fast and 

easy-to-apply method is visual control. Although visual controls are carried out by experienced 

operators, it is obvious that it is a method that is quite open to subjective errors related to humans. In 

this method, it is possible to experience negativities such as overlooking, neglecting, and 

misclassification of critical defects. Overlooked intolerance surface defects can cause negativities that 

may threaten human life, such as thinning of the wall, notch effect or the risk of corrosion formation. 

Another method used for the detection of metal plate surface defects is the applications 

developed by using computer vision and deep learning models, which are among the sub-branches of 

artificial intelligence studies that are developing and becoming widespread today. This method can 

provide the detection of surface defects with much higher reliability and practicality than traditional 

methods. In this study, it was aimed to develop a deep learning model based on Convolutional Neural 

Network (CNN) for the detection of metal plate surface defects by deep learning. Convolutional 

Neural Networks are a subclass of deep learning models designed specifically to work on visual data. 

CNN’s are highly effective in areas such as image processing, video analysis, and medical imaging, 

and are often used successfully in tasks such as object recognition, facial recognition, automated 

vehicle driving systems (Mo et al., 2018). It will be ensured that the model to be developed with the 

study will be tested by using a large number of classified image data of metal surface defects in a data 

set. It is aimed to run the resulting model file on a mobile minicomputer and to detect and classify 

metal plate surface defects by detecting live images under real conditions with the camera connected 

to the computer. 

In the "Introduction" section, the reasons for the initiation of the study are presented, and in the 

"material, method" section, the methods applied during the execution of the study are discussed in 
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detail. The fundamentals of artificial intelligence and deep learning have been examined, and 

concepts such as libraries, layers, activation functions, optimizers, which are the sub-elements 

necessary for the construction of deep learning architecture using artificial neural networks, have 

been clarified in detail. In the "experimental studies" section, the details of how the deep learning 

model architecture is created, the training process of the model and the industrial application stages 

are revealed. In the "results and discussion" section, results and the value of the findings obtained 

was discussed and future studies were mentioned. Finally in the “conclusions” section, a summary of 

the results of the study is shared. 

 

2. MATERIALS AND METHODS 

A common feature of the case studies discussed to shape the methodology of the study in the 

preliminary research process is that they are based on the creation of a certain data set or its use by 

providing it ready-made. Since data collection specific to metal plate surface defects will require a 

long period of time on a yearly basis in order to encounter a sufficient number of defects to allow a 

healthy deep learning process to be carried out under the types of defects that occur, it was decided 

to bypass the data collection process, and instead of it, the open access NEU Metal Plate Surface 

Defects dataset (Song and Yan, 2019) is decided to be used. 

The necessary codes to work on the Visual Studio Code application were created and run in the 

Python programming language for processing the data in this dataset, setting up the deep learning 

model, carrying out the training process, obtaining the performance values and to test the results 

practically. This program consists of 6 main parts: preparation, data preprocessing, model creation 

and training, evaluation of training performance, testing of the model and finally exporting the model. 

To use the necessary libraries and activation functions during the preparation phase, it is 

ensured that they are called to the program and the locations of the training, test and verification 

clusters are specified. In the data pre-processing phase, data augmentation methods were applied by 

subjecting the image data in the data set to operations such as rotation, scrolling, mirroring, scaling, 

resizing, categorical classification. In the model creation and training phase, definitions were made 

about the use of the TensorFlow / Keras library, layer parameters were determined, the metrics to be 

used were selected, and the training process of the CNN model, which was developed by determining 

the number of cycles and iterations, was carried out. 

After the completion of the training, the necessary code pieces were added to create the 

accuracy and loss functions to reveal how successful the training process was. The model is exported 

from the compiler so that it can run on a computer-independent device. In this way, it has become 

possible to test the developed deep learning model in real industrial conditions using a minicomputer 

with a camera integrated with high image processing capacity. 

2.1 Artificial Intelligence 

Artificial intelligence is a branch of science and engineering that aims to enable computer 

systems to gain human-like capabilities. It is the set of abilities that computers gain by using 

algorithms, data, and computational power to enable them to perform tasks associated with human 

intelligence, such as visual perception, speech recognition, learning, decision-making, language 

understanding and problem solving. Artificial intelligence applications, which are divided into many 

different sub-branches such as machine learning, deep learning, natural language processing, expert 

systems, artificial neural networks and genetic algorithms, have become widely used in areas such as 

engineering, health, finance, automotive, education, media and industrial production. The concept of 
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artificial intelligence, which has occupied the thoughts of scientists such as ancient Greek and 

Egyptian philosophers since ancient times, was introduced in the early period of today, and the 

concept of "expert systems" that combine techniques such as logical thinking, symbolic calculation 

and problem solving to reveal human-like logical judgments and decision abilities (Turban and 

Watkins, 1986). With the combination of modern computer science based on the algorithmic 

perspective and a series of innovative ideas and discoveries based on statistical studies, the concept 

of artificial intelligence made further development in the mid-20th century. The Dartmouth 

Conference, which took place in 1956, was an important milestone for the introduction and 

development of the concept of artificial intelligence as a branch of science, which was officially put 

forward by scientists such as John McCarthy, Marvin Minsky, Nathaniel Rochester and Claude 

Shannon (Moor, 2006). The main goal of artificial intelligence-oriented scientific studies is that 

computer systems have human-like intelligence, and that they reach results and perform better than 

humans in many processes such as data analysis, pattern recognition, and making predictions, and as 

of today, an artificial intelligence structure equivalent to human intelligence has not yet been revealed 

and continues to develop in many ways (Shinde and Shah, 2018). 

2.2 Machine Learning and Deep Learning 

Machine learning (ML) is a sub-branch of artificial intelligence and refers to the ability of 

computers to perform certain tasks by providing learning using data. Machine learning structures, 

which have different structures from traditional programming logic, are structures that have the ability 

to create patterns by processing data and to make predictions and decisions by learning the 

relationships between these patterns, rather than operating based on pre-programmed rules. It is 

examined in 3 subcategories as supervised learning, unsupervised learning and reinforcement 

learning. Supervised learning is a type of machine learning that is mostly used in studies such as 

classification and regression, and enables the matching of input data with the right outputs by 

providing learning on labeled data. Unsupervised learning is based on the principle of discovering 

the differences by the learning model itself by applying it on unlabeled data, which is preferred in 

studies such as clustering and size reduction. Reinforcement learning, robotic education and game 

development are followed with a learning methodology based on a reward or punishment system, 

which is preferred. While the decision-maker is rewarded when he makes the right decisions, he 

provides learning by receiving negative signals in the wrong decisions. 

The concept of deep learning (DL), on the other hand, is a machine learning technique 

performed using artificial neural networks and is generally used in studies that need to develop 

learning ability using large and complex data sets. There are many subtypes of deep learning, and the 

term "deep" in the concept of deep learning, which refers to the "concept of deep artificial neural 

networks", is related to the use of a large number of layers (Shinde and Shah, 2018). Deep learning 

is a sub-application of machine learning, and machine learning is under artificial intelligence 

applications, which is the widest scope. To give an example of the main areas where deep learning is 

successfully applied; We see that studies on applications such as image recognition and processing, 

natural language processing, autonomous driving, and voice recognition come to the fore. Model 

structures, called artificial neural networks, are mathematical models inspired by the functions of the 

human brain. Deep learning refers to the situation where these networks are made up of multiple 

layers (usually a large number of hidden layers). Thanks to these layers, deep learning models have 

the ability to perform an automatic feature extraction by starting from simple features on the data and 

progressing to more complex features (Sahu and Dash, 2021). 
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2.3 Key Elements for Deep Learning Application 

Deep learning applications are carried out in the computer environment using various 

programming languages. Within the scope of these studies, researchers need to master many subjects 

and make the necessary preparations for applications in order to reveal an efficient code structure and 

to operate it effectively. In this context, the correct and appropriate selection of the programming 

language, compiler environment, and hardware capacity of the computer to be used is important for 

a successful deep learning application. In addition, a good understanding of concepts such as many 

libraries, layers, activation functions, metrics that should be used under the deep learning architecture, 

learning the working principles, and determining the relationships and parameters affecting the 

operation correctly are important issues for model performance. We can explain the importance of 

these basic elements and the reasons for their preference by summarizing them as follows. 

Today, Python is the most widely used programming language in similar studies, and it was 

preferred to take this language as a basis in our study. In order to create a deep learning architecture 

on Python, it is necessary to first select a computer, operating system and compiler (IDE) to run this 

programming language on (Raschka and Mirjalili, 2019). 

In our study, it was possible to carry out code development experiments in different 

environments and compilers by using 2 different computers with Windows and Linux operating 

systems, Visual Studio Code, Kaggle and Google Colab compilers, and the Python program directly 

from the terminal on a Linux-based computer. In the deep learning architecture we are working on, it 

is aimed to use the Keras API (API, Application Programming Interface) and sub-APIs under the 

TensorFlow library. TensorFlow is an open-source machine learning library developed by the Google 

Brain team and published by Google. It is designed for complex data processing tasks and has been 

shown to be particularly effective in large-scale deep learning applications. Its main features include 

flexibility due to its support for various computational operations and its ability to run on different 

platforms, the ability to perform calculations in parallel and efficiently by converting operations into 

a structured graph using a data flow graph, and the ability to automatically adjust model parameters 

using optimization techniques such as gradient descent with automatic derivative calculation (Helms 

et al., 2018). 

Keras; TensorFlow is a high-level neural network API that runs on core libraries such as Theano 

and CNTK, offers a user-friendly and modular structure, enabling rapid prototyping of deep learning 

models (Manaswi, 2018). Thanks to Keras, which is integrated into TensorFlow, the application 

becomes user-friendly and provides practicality to practitioners. 

Groups with different features formed by artificial neural networks in a deep learning 

architecture can be defined as "layers". Deep learning models are made up of several layers of 

compute that process data from the input layer to the output layer. Layers act as filtering structures 

designed to learn a specific set of features from data. The characteristics of the layers used in the 

study and why they are preferred are explained in detail in the following sections. The types of layers 

used in deep learning studies are generally classified as input layers, hidden layers, and output layers. 

The neurons in each layer receive and process the incoming signals and transmit them to the next one. 

With these complex interactions between layers, the systematic working function of deep learning 

structures takes place (LeCun et al., 2015). 

The mathematical expressions used to calculate the output of each neuron in the network are 

called activation functions. Non-linear activation functions (e.g., ReLU, sigmoid, tanh) allow the 

model to learn nonlinear and more complex relationships. It is possible to process the data coming to 

a neuron in the artificial neural network by subjecting it to the mathematical process defined by the 
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specified activation function and to transform it as a different element for the next stage as the output 

of the neuron. The mathematical expression of the activation function and the way it works is very 

important for the performance of deep learning architecture. Instead of applying the trial-and-error 

method for the selection of the right activation function for the deep learning architecture built for 

each different purpose, choosing inspired by case studies will speed up the process. The activation 

functions used in the study are discussed in detail in the relevant section (Rasamoelina et al., 2020). 

Each neuron contains weights and biases that are applied to the input data. During the training 

of the network, these parameters are adjusted to provide the best performance over the data. Bias is a 

constant added to the activation function that the neuron will process, and it is useful to get results in 

different ranges by changing the function curve. Weight, on the other hand, is a numerical element of 

information that is processed in one neuron and transferred to another neuron to reveal a feature. The 

weights randomly selected at the beginning of the training process are optimized by the learning 

algorithm in accordance with the data set during the training process (Dung and Mizukawa, 2007). 

The loss function is used to evaluate model performance during the training of the model, to be 

an indicator of the optimization of parametric settings, and to optimize algorithms. It is used to 

measure how close their predictions are to the actual data. Designing the training process to minimize 

this loss is essential for a successful model training. There are varieties such as Mean Squared Error 

(MSE), Mean Absolute Error (MAE), Cross Entropy Loss, Hinge Loss, Poisson Loss, Huber Loss, 

each of which can be expressed mathematically separately. Details about the loss function used in the 

study are given in the relevant section (Wang et al., 2022). 

Optimization algorithms are used to improve the training process of the deep learning model 

and to obtain the best performance. It has basic tasks such as updating the model parameters, 

minimizing the loss function, adjusting the learning rate, preventing the problem of overfitting, and 

accelerating the training process. 

Different types of algorithms such as Stochastic Gradient Descent (SGD), Momentum, 

Adagrad, RMSProp (Root Mean Square Propagation), Adam (Adaptive Moment Estimation), 

Adadelta, Nadam (Nesterov-accelerated Adaptive Moment Estimation) are used, and in our study, it 

was decided to use the "Adam" optimizer due to its performance in similar studies. The relevant 

section provides the necessary explanations about the Adam optimizer (Haji and Abdulazeez, 2021). 

 

3. EXPERIMENTAL STUDY 

The establishment of deep learning architecture requires the application of theoretical 

knowledge in the field of practical experience, that is, the introduction of coding work. For this, it is 

essential to run the code by working on a Python compiler. During this coding study, it is possible to 

construct different architectures, to achieve high or low performance results by using different 

libraries or layers with different parameters, or to reveal application details. In addition, it is possible 

to optimize the accuracy and lost output values, which are the training result metrics, by trying 

different parametric values during the construction of the model. 

3.1 Dataset 

It is the dataset that contains the data on which the deep learning model will apply the feature 

layers. Depending on the type of deep learning study to be conducted, this data may include different 

types of data such as audio, image, numbers, lists, video footage, etc. In addition, the data files that 

make up the data set should consist of the same type of data and should have forms and features ready 

to be used in the training process. The dataset we will work on is the dataset containing image files 
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of a large number of metal plate surface defects, which have been shared as open source under the 

name of "NEU Metal Plate Surface Defects Dataset" (Song and Yan, 2019). Surface defect image 

files in 6 different categories are distributed in folders with different names and divided into training, 

test and verification sets. Each image file is a bitmap (BMP) file with a size of 200x200 pixels and a 

color depth of 8 bits. Thanks to Keras' ImageDataGenerator sub-API, there is no need for labeling for 

images, and tags can be matched automatically thanks to the nested folder structure (Lv et al., 2020). 

3.2 Preparation and Data Pre-Processing 

It is ensured that the libraries and layers to be used in coding are transferred to the program, 

called (imported), and the address definitions of the location where the training, test and verification 

sets are located in the computer environment are made at this stage. Importing basic Python libraries 

such as NumPy, Pandas, Matplotlib and TensorFlow into the program is essential to reveal the 

functions required in the working process of the Python program. At this point, in order to facilitate 

the operation of the program, instead of importing the entire large-sized library, it is generally 

preferred to import the small cube sub-modules needed in the code group. Thus, it is possible for the 

program to run faster with lower dimensional data. 

At this stage, a data generator is created for the training dataset. With this generator, various 

data boosting techniques have been applied on the images, such as scaling, random rotation, random 

panning in width and height, and horizontal flipping. With these techniques, it is possible to 

generalize the model and reduce the problem of overfitting. Scaling is also implemented for test and 

validation datasets through the creation of a data generator. In addition, the creation of image streams 

from data generators is ensured (Maharana et al., 2022). 

3.3 Setting Up the Model 

Tensorflow and Keras libraries and sub-APIs and sub-APIs and layers, such as Sequential, 

Conv2D, MaxPooling2D, Activation, Flatten, Dense, Dropout, were imported at this stage and 

parametric definitions were made (Sobhana et al., 2023). Figure 1 shows an example deep learning 

architecture image that matches the structure in our original model. 

 

 
Figure 1. A representative structure of deep learning architecture (Bbouzidi et al., 2024) 

 

Sequential is a class used to build models in Keras, and it is a library that allows layers to be 

ordered in relation to each other (Gulli and Pal, 2017). 

The Functional model structure, which is another type of Sequential, can provide multiple 

inputs and outputs and enables a more complex architectural setup. In our study, it was preferred to 
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use Sequential architectural structure. In Figure 2, ordered and functional API structures are shown 

schematically. 

 

 
Figure 2. Algorithmic expression of the Sequential and Functional API difference (Vansh, 2022) 

 

Conv2D is the convolution layer used to extract features from such data that has been shown to 

be successful on 2D data, such as image data. A representative comparison of the input data and the 

convolution kernel is presented in Figure 3. 

 

 
Figure 3. Representative expression of the Conv2D convolution layer (Warden, 2015) 

 

MaxPooling2D is used in the architectural structure of deep learning models, it is the pooling 

layer that usually follows the convolution layers. Thanks to this layer, it is possible to reduce feature 

maps, while preserving important features and reducing data size (Mastromichalakis, 2023). In Figure 

4, the effect of applying Max Pooling is expressed on the image. 

 

 
Figure 4. Example demonstration of the effect of the MaxPooling2D digestion layer 

 

Flatten is the layer used for converting multidimensional feature maps into a one-dimensional 

vector. Preparation is made for the processing of the data in the "Dense" layer by providing a size 
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reduction transformation (Jin et al., 2015). The effects of the flattening layer are expressed in the 

image given in Figure 5. 

 

 
Figure 5. Example illustration of the size reduction transformation of the flatten layer 

 

Dense is the layer in which all the neurons in the previous layer are fully connected to each 

other. In this layer, parametric transformations are performed that express the complexity of a data 

set and help the model learn. The process of reducing the input data to a certain size and producing 

various feature outputs by using the representation of this data is carried out in this layer. Dense layers 

are commonly used in many tasks such as classification, regression, language processing, and so on, 

and they play an important role within the architecture to increase the complexity of the model and 

learn patterns in the data set. The image in Figure 6 schematically expresses the dense layer. 

 

 
Figure 6. The location of dense layers in the order of layers 

 

The so-called overfitting or overlearning condition refers to the situation in which a model loses 

its ability to make predictions in real-world data due to over-adaptation to training data and occurs 

when the model overreacts to noise or randomness in the training data. Underfitting or underlearning, 

on the other hand, means that the model fails by failing to catch even the basic patterns due to its 

simplicity and failing to show the expected performance (Rice et al., 2020). 

In Figure 7, the under-fitting, right-fit and over-fitting situations encountered in classification 

studies are shown on the graph depending on the time. 
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Figure 7. Representation of overfit, right-fit, underfit graphical representation 

 

Dropout is a layer used to ensure that the model is resistant to overfitting. Overfitting, right 

fitting and underfitting situations can be seen in Figure 7.  This layer is based on the principle of 

covering a certain proportion of neurons randomly determined in each iteration during the training of 

the model, that is, stopping their activity. Thanks to the neurons that remain dysfunctional, it is 

possible for the remaining network elements to gain the ability to learn more independently (Baldi 

and Sadowski, 2013). 

 

 
Figure 8. Representative expression of with and without dropout layers 

 

EfficientNetB7 is a ready-to-use model developed by the Google Brain team for use in 

computer vision studies, which has been previously trained on the ImageNet data set and allows large 

data sets consisting of complex images to be processed in a short time with high performance. For 

this reason, the use of this model was preferred in the study (Helms et al., 2018). 

Relu is an abbreviation of "Rectified Linear Unit" and is a popular activation function used in 

deep learning models. This function checks whether the value it receives as input is greater than zero, 

leaves the value as it is if it is greater than zero, and works to define it as zero if the value is less than 

zero. Its mathematical equation (1) and graphical representation are as follows (Agarwal et al., 2021). 

 

𝑅𝑒𝐿𝑈(𝑥) = 𝑚𝑎𝑥⁡(0, 𝑥) (1) 
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Figure 9. Graph of the ReLU activation function 

 

This function helps to speed up the training process of neural networks. Since the derivative is 

1 for values greater than zero, gradients are propagated quickly and efficiently. For values less than 

zero, it is possible for the model to work more efficiently by causing some neurons to remain 

dysfunctional and closed since the derivative is zero. 

 

 
Figure 10. Transformed matrix with the ReLU activation function applied 

 

Softmax function is a mathematical function that takes a set of real numbers, converts them to 

values between 0 and 1, and normalizes them by equalizing the sum of all outputs to 1. With the 

Softmax function, which is frequently used in the output layer in multi-class classification problems, 

the probability distribution for each class is revealed. The Softmax function works with the logic of 

normalization by starting by transforming each element with an exponential function and dividing it 

by the sum of these transformations. Mathematically, the Softmax i-th element for a vector "z" is 

calculated by the following equation (2) (M. Wang et al., 2018). 

 

Softmax(𝑧𝑖) =
𝑒𝑧𝑖

∑ 𝑒𝑧𝑗𝑗
 (2) 
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Figure 11. Graphical representation of the Softmax function 

 

Where z is the input vector, e is Euler's number (about 2.718), zi is the i-th element of the input 

vector, and addition is done over all the elements in the vector. In addition to modeling the probability 

of each class, this function is also used to ensure that the model's predictions are more stable and 

balanced (Kılıçarslan et al., 2021). 

3.4 Optimization and Compilation 

In the optimization and compilation phase, which is one of the processes that should be applied 

before model training, the optimizer must be defined first. The optimizer of choice in the study is the 

Adam optimizer. Adam optimizer is an effective stochastic gradient descent algorithm that is widely 

used in the fields of machine learning and deep learning. The name "Adam" is an abbreviation for 

"Adaptive Moment Estimation". This optimizer provides adaptive learning rates for each parameter 

by calculating the unique learning speeds of each parameter. This feature allows different parameters 

to be updated more evenly and effectively, and often helps to achieve faster and more efficient results 

than different optimization algorithms. One of the main advantages of the Adam optimizer is that it 

uses both the first moment (average) and the second moment (variance) values, as shown in the 

following equations (3,4,5,6). Thus, it is possible for the algorithm to dynamically adjust the learning 

speed according to the size of the gradients. 

 

𝑣𝑡 = 𝛽1 ∗ 𝑣𝑡−1 − (1 − 𝛽1) ∗ ⁡𝑔𝑡 (3) 

 

𝑠𝑡 = 𝛽2 ∗ 𝑠𝑡−1 − (1 − 𝛽2) ∗ ⁡𝑔𝑡
2 (4) 

 

∆𝜔𝑡 = −𝜂
𝑣𝑡

√𝑠𝑡 + 𝜖
∗ ⁡𝑔𝑡 (5) 

 

𝜔𝑡+1 = 𝜔𝑡 +⁡∆𝜔𝑡 (6) 

 

𝑣𝑡 refers to the moving exponential average of time-varying gradients. 𝑠𝑡 stands for the 

exponential moving average of the square of the gradients. 𝛽1, 𝛽2 are the exponential deceleration 

rates for the first and second moment estimates of gradients. Values can be taken as 0.9 for 𝛽1 and 
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0.999 for 𝛽2. 𝜂 (Learning Rate) refers to the speed of the learning process. This value is typically set 

with a low initial value (for example, 0.001). 𝑔𝑡 refers to the gradient of the parameters that the 

algorithm tries to optimize at time t. 

Adam uses learning rates that can be individually adapted for each parameter. In each training 

step, the first moment estimate of the gradients (moving average of the gradients) and the second 

moment estimate (the moving average of the squares of the gradients) are calculated first. 

Subsequently, these calculated values are initially used to update the parameters by correcting the 

gradients and gradient squares with bias-correlation steps against low estimates (Bock and Weiß, 

2019). 

3.5 Metrics 

In this study, the categorical cross-entropy function, which is highly preferred in multiclass 

classification problems, is used as the loss function. This function (7,8) is used to maximize the 

agreement between the probability distributions predicted by the model and the actual labels. In 

Figure 12, this issue is schematized. 

 

 
Figure 12. Loss function expression in CNN architecture (Swasthik, 2020) 

 

𝐶𝐸 = −∑𝑡𝑖⁡

𝐶

𝑖

log(𝑓(𝑠)𝑖) (7) 

 

𝐶𝐸 = − ∑ 𝑡𝑖⁡

𝐶′=2

𝑖=1

log(𝑓(𝑠𝑖)) = −𝑡1 log(𝑓(𝑠1)) − (1 − 𝑡1) log(1 − 𝑓(𝑠1)) (8) 

 

𝑐 Represents the number of classes. This is the number of different categories that the model 

tries to predict. ti, represents the actual labels. These values are usually 0 or 1; If it belongs to a class, 

it is encoded as 1, if not, it is encoded as 0. f(si) refers to the probabilities that the model predicts. log 

is a logarithm function. In cross-entropy loss, the logarithm of the estimated probabilities is taken. 

Logarithms play an important role in measuring the accuracy of the predictions made by the model; 

Correct predictions reduce loss, while incorrect predictions increase loss (Barz and Denzler, 2020). 

In the study, accuracy metric was used to evaluate the performance of the model. Accuracy 

indicates the ratio of the model's correct predictions to total predictions and is often considered a 

measure of success in classification problems. Accuracy ratio can be calculated with the equation (9) 

below accorting to values determined in the matrix (Figure 13). 
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Figure 13. Confusion matrix 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (9) 

 

The table above is a confusion matrix used to evaluate the performance of the classification 

model. The confusion matrix is used to show the classification success of the model in detail by 

comparing the predictions of the model with the actual values. The terms used here are; TP (True 

Positive) is the number of cases that the model predicts as positive and that are actually positive. That 

is, it refers to the number of positive cases that are correctly classified. FP (False Positive) is the 

number of cases that the model predicted as positive but were actually negative. This can also be 

referred to as a false alarm. FN (False Negative) is the number of cases that the model predicted as 

negative but were actually positive. This can also be considered a missed opportunity. TN (True 

Negative) is the number of cases that the model predicts as negative and that are actually negative. 

That is, it is the negative cases that are correctly classified (Maxwell et al., 2021). 

3.6 Model Training 

After the optimization process, the training process of the model is started within the scope of 

a certain number of batches and epochs. The cycle can be schematized as seen in Figure 14. 

 

 
Figure 14. Representation of the model training process in the form of a flow diagram (Glasmacher, 2022) 

 

Batch size specifies the number of instances that the model will use for training in each iteration. 

The batch_size parameter allows the model to make its updates more frequently, helping the training 

process go faster. The epoch number, on the other hand, indicates how many full cycles the training 

process will be run. For example, if 30 epochs are specified in the model, it means that the training 

data set will be processed by the model 30 times from start to finish. Figure 15 schematizes the 

iterations within 1 epoch. 
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Figure 15. Formal expression of the concepts of Batch and Epoch 

 

The duration of this process can take quite a long time, in the order of hours or days, depending 

on the complexity of the model and data set, and the performance of the computer hardware (Smith 

et al., 2018). 

3.7 Accuracy and Loss Values, Confusion Matrix 

The success indicator of a deep learning model can be considered as the convergence of the 

accuracy rate to 1 and the convergence of the loss rate to 0 as the number of iterations progresses in 

the training process. It is important to record the accuracy and loss values obtained during the 

iterations and to graph them at the end of the training in order to visualize the model performance 

(Figure 16, 17). The loss and accuracy values reached as of the last iteration emerged as follows for 

the model we created and trained within the scope of our study. 

 

 
Figure 16. “Accuracy – Epoch” graph created at the end of the training 
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Figure 17. “Loss – Epoch” graph created at the end of the training 

 

As a result of the training of the model, a confusion matrix was Created. The actual label values 

and the numbers of the estimated impact values were presented in the confusion matrix shown in 

Figure 18. 

 

 
Figure 18. Confusion Matrix obtained after model training 

3.8 Testing the Model 

After the training process of the model was completed, the test process was applied. At this 

stage, the performance of the model on the test data set was evaluated by visualizing. First, 9 images 

were randomly selected from the test data set and the model was provided with prediction. The 

prediction results were then compared with the actual labels. The images are visualized in a 3x3 

matrix layout, and actual class information is added to each along with the model's prediction. If the 

prediction is correct, the label is shown in blue, and if it is incorrect, the classification accuracy of the 
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model is easily understood visually. As a result of testing whether the sample images randomly taken 

from the test set were correctly predicted, the following result was reached. In the first test, it was 

seen that all 9 images examined were correctly estimated and can be seen in Figure 19. 

 

 
Figure 19. Estimation of 9 randomly selected images from the test set. Incorrect predictions are expressed in red and 

correct predictions are expressed in blue writing, in this test all predictions are correct 

 

In addition, the model was installed on the Nvidia Jetson Nano device and run in the python 

environment. This device is a developer computer with high graphics processing capability and can 

be used to analyze instant live video data with external cameras that can be integrated onto it. In the 

Linux environment, which is the operating system of the device, the model file was converted to the 

required format (.onnx) in order to run the relevant Python code, and the Python program was coded 

and run, where both the live image and how many errors were detected with how many probabilities 

can be read on the screen connected to the device, by performing the error classification function by 

detecting live images with the camera using this model file on the device (Oranen, 2021). Under real 

conditions, the errors on the samples were detected with a camera and tested in real time and the 

model was verified to work successfully as shown in Figure 20. As an example, the Patches error 

could be detected more than once with a performance rate of more than 90%. 
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Figure 20. Testing the model with a camera 

 

4. RESULTS AND DISCUSSION 

After the completion of the training of the model, the status of the training performance was 

revealed by the metrics used. These metrics are accuracy and loss graphs and confusion matrix. 

Accuracy and loss graphs were created using the accuracy values reached at the end of each of the 30 

cycles conducted in the model training. The values that make up the chart are given in the table below. 

 

Epoch Accuracy 
Validation Accuracy 

(Val_Accuracy) 

1 0.2111 0.5588 

2 0.6227 0.7647 

3 0.7344 0.7353 

4 0.7618 0.7353 

5 0.8407 0.8235 

6 0.8917 0.8529 

7 0.8878 0.8529 

8 0.8999 0.8971 

9 0.8958 0.6324 

10 0.8746 0.9118 

11 0.9257 0.8971 

12 0.9470 0.9412 

13 0.9261 0.8971 

14 0.9306 0.9412 

15 0.9572 0.9118 

16 0.9607 0.9706 

17 0.9455 0.9559 

18 0.9722 0.9559 

19 0.9550 0.9559 

20 0.9471 0.9853 

21 0.9403 0.9559 

22 0.9568 0.9706 

23 0.9616 0.7941 

24 0.9664 0.9559 

25 0.9564 0.9853 

26 0.9598 0.9412 

27 0.9769 0.9412 

28 0.9489 0.9265 

29 0.9644 0.9853 

30 0.9159 0.9559 
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The tests carried out with the numerical and graphical results obtained have shown that the 

model creation and training work has sufficient reliability. The "Test loss" obtained using the test 

dataset was 0.1437525451183319, while the "Test accuracy" was 0.96875. In other words, it is 

understood that the success of the model has reached the level of 96.88%. The confidence interval 

was calculated as CI=[0.92621,1.01139] by using the test accuracy and test loss values obtained at 

the end of the testing of the model. A 95% confidence interval is acceptable between 0.926 and 1.0, 

as the confidence interval cannot be greater than 1. It is also aimed to calculate the p-value in order 

to support the successful result. However, in order to calculate the p-value, there must be two different 

groups of comparable results. Since validation results are obtained during the training process, it may 

be misleading to use them for calculating the p-value together with the test results. However, since 

we do not have any other comparison elements, it was decided to obtain the p value using validation 

data. 

The values obtained at the end of the T-Test were "T-Statistic: -2.9503" and "P-Value: 0.0046". 

Since the value of 0.0046 is considerably smaller than the generally accepted significance value of 

0.05, it can be said that there is a statistically significant difference between the two groups. If the T-

statistic value is negative, it means that the Validation results are lower than the Test results. In other 

words, it is possible to say that the model exhibits a higher success in the Test set, that is, it produces 

a more successful result in real-world conditions that it does not encounter in the training process. On 

the other hand, some important parameters such as learning rate, number of batches, number of 

epochs, and optimizer type used in the establishment of the CNN model are factors that can affect the 

performance of the model. These values were selected based on the mean values used in the sample 

studies found in the literature, and the evaluation of the effects of different parameters on the model 

can be considered as a new study. 

This study has many similarities and differences with similar studies in the literature. For 

example, in a similar study, innovative improvements were made to the Faster R-CNN algorithm, 

such as restructuring the network structure and using a deformed convolution network, to improve 

the detection of small and complex steel surface defects. In this way, the detection accuracy was 

increased by 12.8% to 75.2% (Zhao et al., 2021). 

Another study is developing a CCVAE model that generates data for each type of defect using 

a Convolutional Variational Autoencoder (CVAE) to generate sufficient data for rare defects. This 

improves the generalization performance of DCNN-based classification, enabling defect detection 

with high accuracy in industrial applications (Yun et al., 2020). 

In another application, a combination of improved ResNet50 and improved Faster R-CNN 

algorithms is proposed to enable automatic detection of steel surface defects. This method aims to 

overcome the limitations of traditional and existing deep learning-based methods by offering a 98.2% 

accuracy rate and faster uptime (Wang et al., 2021). 

This model is ready for both academic and industrial use. At the end of the training process of 

the model, the final model file, which includes the weights and configuration properties learned, is 

saved out of the code as an external file. By using the weights in this file, it has become possible to 

make industrial-level applications using different data sets and real test samples (metal plates). In 

order to test the model in real conditions, it was decided to use the Nvidia Jetson Nano Developer Kit 

hardware to be used in the application development phase. It has been shown that these and similar 

devices can exhibit sufficient success for beginner and intermediate industrial applications. 

It will be useful to work with a larger data set to increase the level of performance of the study. 

In addition, it may be possible to obtain a lower loss rate with a higher accuracy, as different results 
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are obtained when model training is reconsidered using different layers, activation functions and 

parametric values. In this context, studies can be carried out on the use of different parameters to 

shorten the training time of the model. For example, the model can be retrained using different values 

for filter sizes and quantities, either individually or in different combinations. Thus, optimization can 

be made for model training in a shorter time with lower batch and epoch values. On the industrial 

application side of the study, application performance will increase when higher resolution cameras 

and industrial computers with higher image processing capabilities are used. The prototype devices 

to be developed can be equipped with many functions at the simple or advanced robotic level to record 

and transmit data, make statistical evaluations, perform mechanical marking or repair. 

In this context, the study has been presented to the literature as a basic study in order to shed 

light on scientific, technological or industrial studies to be carried out in the future. 

 

5. CONCLUSION 

In this study, the developed model demonstrated sufficient reliability and robustness, 

confirming its readiness for both academic and industrial applications. The final model file, 

incorporating the learned weights and configuration properties, enables industrial-level applications 

with varied data sets and real test samples, such as metal plates. The use of the Nvidia Jetson Nano 

Developer Kit for real-world testing confirmed its capability for beginner and intermediate industrial 

applications. Future work with larger datasets could enhance the model's performance. Moreover, 

retraining the model with different layers, activation functions, and parametric values could yield 

lower loss rates and higher accuracy. Optimizing training time by adjusting filter sizes, quantities, 

batch, and epoch values is another avenue for improving the model. Industrial applications could 

benefit from higher resolution cameras and more powerful image processing computers. Enhanced 

prototype devices could incorporate functions for data recording, statistical evaluations, mechanical 

marking, or repairs at both simple and advanced robotic levels. This study contributes to the literature 

as a foundational work, providing valuable insights for future scientific, technological, and industrial 

research. 
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