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Abstract

A fractional viral model is proposed in this work, as fractional-order calculus is considered more
suitable than integer-order calculus for modeling virological systems with inherent memory and
long-range interactions. The model incorporates virus-to-cell infection, cell-to-cell transmission, cure
rate, and humoral immunity. Additionally, the non-lytic immunological mechanism, which prevents
viral reproduction and reduces cell infection, is included. Caputo fractional derivatives are utilized in
each compartment to capture long-term memory effects and non-local behavior. It is demonstrated
that the model has nonnegative and bounded solutions. Three equilibrium states are identified in
the improved viral model: the virus-clear steady state G◦, the immunity-free steady state G⋆

1 and the
infection steady state with humoral immunity G⋆

2 . The local stability of the equilibria is investigated
using the Routh-Hurwitz criteria and the Matignon condition, while the global stability is shown
through the Lyapunov approach and the fractional LaSalle invariance principle. Finally, the theoretical
conclusions are validated by numerous numerical simulations.
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1 Introduction

Modeling and simulation serve as the primary decision-making tools for managing viral infections.
Mathematical virology, namely compartmental models, is a key tool for understanding viral
prevalence dynamics [1–3] and immunological responses to infection. These immune responses
are crucial to preventing or combating infection. Specific immunity is represented by cellular and
humoral immunity, linked respectively to T cells (responsible for eliminating infected cells) and B
cells (responsible for neutralizing viruses). Several researchers have examined various models of
viral dynamics including humoral immunity and neglecting cellular immunity, or vice versa, for
example, [4–7]. Numerous viral models integrating cellular and humoral immune responses have
been proposed, see, e.g., [8–10].

The host immune response to a viral infection typically consists of two parts: a lytic component that
kills infected cells and a non-lytic component that inhibits viral replication via soluble mediators
released by immune cells [11]. In the current context, there are several viral systems that use both
lytic and non-lytic mechanisms [12–14]. In [15], the authors investigated the overall stability of a
viral system with both lytic and non-lytic cellular immunity. They also investigated the impact of
viral replication inhibition through the non-lytic effector pathway on viral infection. The following
system was suggested by Dhar et al. [16] to build up an infection model with a non-lytic humoral
immune response, they presented a thorough examination of local and global stability.

dM(t)
dt = Λ − µ1M(t)− βM(t)P(t)

1+αQ(t) + σN (t), t ≥ 0,

dN (t)
dt = βM(t)P(t)

1+αQ(t) − (µ2 + σ)N (t),

dP(t)
dt = θN (t)− µ3P(t)− ρP(t)Q(t),

dQ(t)
dt = vP(t)Q(t)− µ4Q(t),

(1)

here, M, N , P and Q present in this order, susceptible cells, infected cells, free virus and immune
response (B cells). Λ indicates the birth rate of M cells, θ designates the production rate of P , v
is the immune growth rate. µ1, µ2, µ3 and µ4 are the rates of natural mortality of M, N , P and
Q, respectively, ρ is the rate of viral neutralization by immunity, σ is the rate of cured infected
cells, and βMP

1+αQ is the infection function with non-lytic process, where α is the non-lytic force. The
findings in [16] are intriguing and aid in our understanding of the long-term impacts of infection
in the case of local characteristics of the integer derivative. This kind of mathematical approach
has certain limitations, and system (1) may be updated and improved by taking into account the
fractional derivative, which reflects non-local effects.

Fractional calculus is a fascinating field of practical mathematics that examines arbitrary order
integrals and derivatives [17, 18]. The idea of non-integer derivatives began in 1695 with Leibniz’s
inquiry into the meaning of half derivative, which can more precisely represent intricate epidemi-
ological processes. As a result, modelling accuracy is increased, particularly when it comes to
simulating the long-term behaviors and scaling characteristics of epidemiological systems [19, 20].
As well as, the fractional derivative improves our model by taking into account the memory
effect. Because it is a nonlocal operator, while the classical ordinary derivative is a local operator
that is unable to model the hereditary properties and memory effect [21–25]. In [26], Naim et al.
investigated the local and global stability of a fractional SEIR epidemic model with latent infection
and nonlinear incidence. In [27], the authors investigated how two delays affect the dynamics of a
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fractional viral system with non-lytic immune response. The model’s equilibria are calculated to
provide stability analysis and examine associated dynamical bifurcations.
The viral model (1) has another limitation, which is that it only considers the virus-cell mode of
infection. However, in a realistic setting, most viruses can be spread in two ways: by virus-cell
infection and by direct cell-cell contact. In fact, cell-to-cell transmission has a great impact on
virus infection [28], which can not be ignored. To account for the effects of both virus-to-cell and
cell-to-cell transmissions, many mathematical studies of virus models have been performed, see,
e.g., [29–31]. Hattaf et al. [32] proposed and studied a COVID-19 model that properly integrates
the two types of viral transmission, two classes of infected cells, antiviral treatment, and non-lytic
immune responses. Chen and Zhou [33] investigated the effects of general virus-to-cell and
cell-to-cell infection rates on the dynamics of HIV infection. The main contribution of this article
is to extend the model (1) to a new fractional-order system, dealing with the said limitation.
Specifically, we propose a fractional viral dynamic model that considers both virus-to-cell and
cell-to-cell transmission modes with non-lytic humoral immunity. The following new form serves
to illustrate the proposed model:

C
0 D

mM(t) = Λ − µ1M(t)− β1M(t)P(t)
1+α1Q(t) −

β2M(t)N (t)
1+α2Q(t) + σN (t), t ≥ 0,

C
0 D

mN (t) = β1M(t)P(t)
1+α1Q(t) + β2M(t)N (t)

1+α2Q(t) − (µ2 + σ)N (t),

C
0 D

mP(t) = θN (t)− µ3P(t)− ρP(t)Q(t),

C
0 D

mQ(t) = vP(t)Q(t)− µ4Q(t),

(2)

where C
0 D

m is the Caputo derivative with fractional order m ∈ (0, 1] [34]. β1 and β2 are the
infection rates of both types of infection which are inhibited by non-lytic immune responses at
rates 1 + α1Q and 1 + α2Q, respectively. Other parameters and variables of system (2) have the
same meaning as those of model (1).

Remark 1 Notably, the fractional-order formulation (2) transforms into a system of ordinary differential
equations when m = 1. As a result, when m = 1 and β2 = 0, the system (1) is a particular case of the
model (2). Also, if m = 1 and α1 = α2 = 0, we get the model investigated in [29].

This essay aims to investigate the stability of the fractional differential system (2). Our approach
provides a reliable prediction of viral behavior based on the model. To achieve our purpose, we
structure the rest of the manuscript as follows: Section 2 presents some preliminary findings
about fractional calculus. In Section 3, we establish the nonnegativity and boundedness of our
model’s solutions. We next define two key values to investigate the criteria for the existence of the
equilibria. Section 4 provides theoretical explanations for the stability of equilibria. In Section 5,
we use numerical simulations to examine how fractional order affects the system’s stability and
validate our findings. Section 6 focuses on the conclusion.

2 Preliminaries

Definition 1 [34] For H ∈ C1(R+, R), the Caputo derivative of order m ∈ (0, 1] is given by

C
0 D

mH(t) =


1

Γ(1−m)

∫t
0

H′(s)
(t−s)m ds, if 0 < m < 1,

H′(t), if m = 1,
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where Γ represents the Gamma function.

Lemma 1 [35] If H ∈ C([a, b] , R) and C
0 D

mH(t) ∈ C((a, b] , R), where m ∈ (0, 1], then we have

(i) H is non-decreasing on [a, b] if C
0 D

mH(t) ≥ 0 ∀t ∈ (a, b] ,
(ii) H is non-increasing on [a, b] if C

0 D
mH(t) ≤ 0 ∀t ∈ (a, b].

The following lemmas will be used to examine our model’s asymptotic stability globally.

Lemma 2 [36] Let x(t) ∈ C1 (R+, R+). Then, for all t ≥ 0, m ∈ (0, 1], and x∗ > 0, we get

C
0 D

m
(

x∗H
(

x(t)
x∗

))
≤
(

1 −
x∗

x(t)

)
C
0 D

mx(t),

where H is a nonnegative function with the formula H (x) = x − 1 − ln x, x > 0. The above inequality
becomes equality when m = 1.

Lemma 3 [37] Let x(t) ∈ C1 (R+, R+). Then, for every t ≥ 0, m ∈ (0, 1], we get

1
2

C
0 D

mx2(t) ≤ x(t) C
0 D

mx(t).

3 Boundedness and equilibrium

Nonnegativity and boundedness

When evaluating a biological model, the first step is to see if there is a unique and nonnegative
bounded solution. We present the following result to show these features.

Theorem 1 With any non-negative initial condition, the fractional model (2) is well-posed in the sens that
there is a unique nonnegative bounded solution.

Proof Using Theorem 3.1 and Remark 3.2 in [38], we may show that the solution to system (2)
exists and is unique. We now demonstrate that this solution is nonnegative. System (2) allows us
to observe that

C
0 D

mM
∣∣
M=0 = Λ + σN > 0,

C
0 D

mN
∣∣
N=0 = β1MP

1+α1Q ≥ 0,

C
0 D

mP
∣∣
P=0 = θN ≥ 0,

C
0 D

mQ
∣∣
Q=0 = 0 ≥ 0.

Using the fact in Lemma 1, it is concluded that the solutions of system (2) are nonnegative. We
now look at the solutions’ boundedness. Define

B(t) = M(t) +N (t) +
µ2

2θ
P(t) +

ρµ2

2θv
Q(t).
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Thus,

C
0 D

mB(t) = Λ − µ1M(t)−
µ2

2
N (t)−

µ2µ3

2θ
P(t)−

ρµ2µ4

2θv
Q(t)

≤ Λ − µB(t),

where µ = min
{

µ1, µ2
2 , µ3, µ4

}
. Then, according to Lemma 3 in [39], we obtain

B(t) ≤
(
B (0)−

Λ
µ

)
Om(−µtm) +

Λ
µ

=
Λ
µ
(1 −Om(−µtm)) + B (0)Om(−µtm),

where

Om(z) =
∞∑

j=0

zj

Γ(mj + 1)
, z ∈ C,

is the Mittag-Leffler function for parameter m > 0 [40]. Since 0 < Om(−µtm) ≤ 1 (see Lemma 2
in [41]), so one achieves

B(t) ≤ Λ
µ
+ B (0) .

Therefore, we get the boundedness of M, N , P and Q.

Equilibrium points

This part provides the equilibrium points. To find the equilibrium, set the right-hand side of each
equation in the proposed model (2) to zero [31].
In system (2), there is always a virus-clear equilibrium determined by G◦ = (M◦, 0, 0, 0), where
M◦ = Λ

µ1
. Model (2) has the following basic reproduction number [29]:

C0 =
(β1θ + β2µ3)M◦

µ3 (µ2 + σ)
.

If C0 > 1, there is an immunity-free equilibrium for system (2) as follows:

G⋆
1 = (M⋆

1,N ⋆
1 ,P⋆

1 , 0) =
(
M◦

C0
,

µ1

µ2
(C0 − 1)M⋆

1,
θ

µ3
N ⋆

1 , 0
)

.

The formula in the below equation, which stands for the threshold parameter of the humoral
immune response, can be denoted by C1 as follows:

C1 =
Λθv (β1θ + β2µ3)

µ2µ3µ4 (β1θ + β2µ3) + µ1µ3θv (µ2 + σ)
.

Theorem 2 If C1 > 1, system (2) has a unique immunity-activated equilibrium G∗
2 = (M∗

2,N ∗
2 ,P∗

2 ,Q∗
2).



Naim et al. | 99

Proof Assume that C1 > 1. Suppose that (M,N ,P ,Q) is any positive equilibrium of (2), so

P =
µ4

v
,

N =
Λ − µ1M

µ2
,

Q =
vθN−µ3µ4

ρµ4
=

vθ (Λ − µ1M)− µ2µ3µ4

ρµ2µ4
,

and

µ2µ4β1M
v (Λ − µ1M) (1 + α1Q)

+
β2M

1 + α2Q
− (µ2 + σ) = 0.

We have N > 0 and Q > 0 implies that M < Λvθ−µ2µ3µ4
µ1vθ . Hence, no biological equilibrium if

M ≥ Λvθ−µ2µ3µ4
µ1vθ or Λvθ−µ2µ3µ4

µ1vθ ≤ 0. It is easily proved that C1 > 1 implies Λvθ−µ2µ3µ4
µ1vθ > 0. Then,

we take the function U defined on I =
[
0, Λvθ−µ2µ3µ4

µ1vθ

]
by

U (M) =
µ2µ4β1M

v (Λ − µ1M) (1 + α1 f (M))
+

β2M
1 + α2 f (M)

− (µ2 + σ) ,

where f (M) =
vθ(Λ−µ1M)−µ2µ3µ4

ρµ2µ4
≥ 0 in I . Since

f ′ (M) = −
µ1vθ

ρµ2µ4
< 0,

and

U ′(M) =
µ2µ4β1

v
(Λ − µ1M) (1 + α1 f (M)− α1M f ′ (M)) + µ1M (1 + α1 f (M))

(Λ − µ1M)2 (1 + α1 f (M))2

+β2
1 + α2 f (M)− α2M f ′ (M)

(1 + α2 f (M))2 ,

then U ′(M) > 0. Additionally, we have

U (0) = − (µ2 + σ) < 0,

U (Λvθ − µ2µ3µ4

µ1vθ
) =

(
µ2µ4 (β1θ + β2µ3)

µ1vθ
+ µ2 + σ

)
(C1 − 1) > 0.

Thus, the equation U (M) = 0 admits a unique solution M∗
2 ∈

(
0, Λvθ−µ2µ3µ4

µ1vθ

)
. This demonstrates

that model (2) has a unique equilibrium G∗
2 = (M∗

2, Λ−µ1M∗
2

µ2
, µ4

v ,
vθ(Λ−µ1M∗

2)−µ2µ3µ4
ρµ2µ4

) when C1 > 1.

4 Stability analysis

Stability analysis is among the main areas of research in mathematical biology. Here, we examine
stability analysis of the three equilibrium points G◦, G⋆

1 and G⋆
2 of system (2).
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Local stability

This subsection presents results regarding the local stability of the suggested model’s steady
points.
The provided matrix

J =


−µ1 −

β1P
1+α1Q −

β2N
1+α2Q −

β2M
1+α2Q + σ −

β1M
1+α1Q

α1β1MP
(1+α1Q)2 +

α2β2MN
(1+α2Q)2

β1P
1+α1Q + β2N

1+α2Q
β2M

1+α2Q − (µ2 + σ)
β1M

1+α1Q −
α1β1MP
(1+α1Q)2 −

α2β2MN
(1+α2Q)2

0 θ −µ3 − ρQ −ρP
0 0 vQ −µ4 + vP

 , (3)

is defined the Jacobian matrix at any equilibrium G = (M,N ,P ,Q).

Theorem 3 For every m ∈ (0, 1], G◦ is locally asymptotically stable if C0 < 1. G◦ is unstable if C0 > 1.

Proof For Jacobian matrix (3) at G◦, the characteristic polynomial is

(λ + µ1) (λ + µ4)
[
λ2 + (µ2 + σ − β2M◦ + µ3) λ + µ3 (µ2 + σ)− (β1θ + β2µ3)M◦

]
= 0. (4)

It is obvious that Eq. (4) has two real roots that are negative, λ1 = −µ1 and λ2 = −µ4, then∣∣arg(λ1,2)
∣∣ = π > mπ

2 for any m ∈ (0, 1]. The following equation governs the other two roots of
(4)

λ2 + c1λ + c0 = 0, (5)

where

c1 = µ3 + (µ2 + σ)

(
1 − C0 +

β1θM◦

µ3 (µ2 + σ)

)
,

c0 = µ3 (µ2 + σ) (1 − C0) .

Based to the Routh-Hurwitz criterion [42], if C0 < 1 is true, Eq. (5) has two roots λi (i = 3, 4) with
negative real parts. Thus,

∣∣arg(λ3,4)
∣∣ > π

2 ≥ mπ
2 for any m ∈ (0, 1] when C0 < 1. If C0 > 1, then

Eq. (4) has a positive real root λ∗, then |arg(λ∗)| = 0 < mπ
2 for all m ∈ (0, 1]. As a result, Lemma 1

in [26] states that G◦ is unstable if C0 > 1 and locally asymptotically stable if C0 < 1.

Theorem 4 G⋆
1 is locally asymptotically stable for all m ∈ (0, 1] if C1 < 1 < C0. If C1 > 1, G⋆

1 is unstable.

Proof At G⋆
1 , the characteristic polynomial of the Jacobian matrix (3) is

(λ + µ4 − vP⋆
1 )
(

λ3 + e2λ2 + e1λ + e0

)
= 0, (6)

where

e2 = µ1 + µ3 + β1P⋆
1 +

β1M⋆
1P⋆

1
N ⋆

1
+ β2N ⋆

1 ,

e1 = µ1

(
µ3 +

β1N ⋆
1 P⋆

1
N ⋆

1

)
+ (β1P⋆

1 + β2N ⋆
1 ) (µ2 + µ3) ,

e0 = µ2µ3 (β1P⋆
1 + β2N ⋆

1 ) .
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One of the roots of Eq. (6) is

λ1 = vP⋆
1 − µ4 =

(
µ4 +

µ1vθ

µ2µ3
M⋆

1

)
(C1 − 1) .

Thus, |arg(λ1)| = π > mπ
2 for every m ∈ (0, 1] if C1 < 1 and |arg(λ1)| = 0 < mπ

2 for all m ∈ (0, 1]
if C1 > 1. The following equation governs the other roots of (6)

λ3 + e2λ2 + e1λ + e0 = 0. (7)

It is simple to say that e2 > 0, e1 > 0 and e0 > 0. Therefore,

e2e1 −e0 =

(
µ1 + β1P⋆

1 +
β1M⋆

1P⋆
1

N ⋆
1

+ β2N ⋆
1

)
e1 +µ1µ3

(
µ3 +

β1M⋆
1P⋆

1
N ⋆

1

)
+µ2

3 (β1P⋆
1 + β2N ⋆

1 ) > 0.

Therefore, according to the Routh-Hurwitz criteria, all roots λi (i = 2, 3, 4) of (7) have negative
real part, and for all m ∈ (0, 1],

∣∣arg(λ2,3,4)
∣∣ > π

2 ≥ mπ
2 if C0 > 1. Thus, G⋆

1 is unstable if C1 > 1
and locally asymptotically stable if C1 < 1 < C0.

Theorem 5 Assume that C1 > 1.

(i) G⋆
2 is locally asymptotically stable for all m ∈ (0, 1] if C1 (C3C2 −C1)−C2

3C0 > 0, where Ci (i = 0, 1, 2, 3)
are defined by Eq. (9).

(ii) G⋆
2 is locally asymptotically stable for all m ∈ (0, 1

3 ) if D4(G⋆
2 ) < 0, where D4(G⋆

2 ) is given by Eq. (10).
Additionally, if we combine the preceding condition with the hypotheses C2 = C3C0

C1
+ C1

C3
, then G⋆

2 is
locally asymptotically stable for all m ∈ (0, 1).

Proof The characteristic polynomial of the Jacobian matrix (3) at G∗
2 is

λ4 + C3λ3 + C2λ2 + C1λ + C0 = 0, (8)

where

C3 = µ1 + µ3 + σ + ρQ⋆
2 +

β1P⋆
2

1 + α1Q⋆
2
+

β2N ⋆
2

1 + α2Q⋆
2
+

β1M⋆
2P⋆

2
N ⋆

2
(
1 + α1Q⋆

2
) ,

C2 = µ4ρQ⋆
2 + µ1

(
µ3 + ρQ⋆

2 +
β1M⋆

2P⋆
2

N ⋆
2
(
1 + α1Q⋆

2
))+ (µ2 + µ3 + ρQ⋆

2)

(
β1P⋆

2
1 + α1Q⋆

2
+

β2N ⋆
2

1 + α2Q⋆
2

)
,

C1 = µ4ρQ⋆
2

(
µ1 +

β1M⋆
2P⋆

2
N ⋆

2
(
1 + α1Q⋆

2
))+

(
β1P⋆

2
1 + α1Q⋆

2
+

β2N ⋆
2

1 + α2Q⋆
2

)
(µ4ρQ⋆

2 + µ2 (µ3 + ρQ⋆
2))

+θvQ⋆
2

(
α1β1M⋆

2P⋆
2(

1 + α1Q⋆
2
)2 +

α2β2M⋆
2N ⋆

2(
1 + α2Q⋆

2
)2

)
, (9)

C0 = µ1µ4ρQ⋆
2

β1M⋆
2P⋆

2
N ⋆

2
(
1 + α1Q⋆

2
) + µ2µ4ρQ⋆

2

(
β1P⋆

2
1 + α1Q⋆

2
+

β2N ⋆
2

1 + α2Q⋆
2

)
+µ1θvQ⋆

2

(
α1β1M⋆

2P⋆
2(

1 + α1Q⋆
2
)2 +

α2β2M⋆
2N ⋆

2(
1 + α2Q⋆

2
)2

)
.

(i) It is clear that C0 > 0, C1 > 0, C2 > 0 and C3 > 0. For C1 (C3C2 −C1)−C2
3C0 > 0, it follows by
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the Routh-Hurwitz criterion, that all roots λj (j = 1, 2, 3, 4) of (8) have negative real part, which
means that

∣∣arg(λj)
∣∣ > π

2 ≥ mπ
2 . The equilibrium G∗

2 is therefore locally asymptotically stable
as stated by Lemma 1 in [26].

(ii) Let D4(G⋆
2 ) represent the discriminant of the polynomial (8), then

D4(G⋆
2 ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 C3 C2 C1 C0 0 0
0 1 C3 C2 C1 C0 0
0 0 1 C3 C2 C1 C0
4 3C3 2C2 C1 0 0 0
0 4 3C3 2C2 C1 0 0
0 0 4 3C3 2C2 C1 0
0 0 0 4 3C3 2C2 C1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(10)

= 18C2
3C2C1C0 − 27C4

3C
2
0 − 4C3

3C
3
1 − 4C2

3C
3
0C4 + C2

3C
3
2C

3
1 + 144C2

3C2C
2
1

−6C2
3C

2
1C0 − 80C3C

2
2C1C0 + 18C3C2C

3
1 − 192C3C2C

2
0 + 16C4

2C0 − 4C3
2C

2
1

−128C2
2C

2
0 + 144C3C

2
2C0 − 27C4

1 + 256C3
0.

For D4(G⋆
2 ) < 0, and since Ci > 0, the only condition that can be met by applying the fractional

Routh-Hurwitz conditions in Theorem 6 in [43] is (iii), G∗
2 is therefore locally asymptotically

stable for m ∈ (0, 1
3 ). Furthermore, the condition (iv) in Theorem 6 in [43] is met if C2 =

C3C0
C1

+ C1
C3

. Therefore, for all m ∈ (0, 1), G⋆
2 is locally asymptotically stable.

Global stability

This subsection focuses on the global stability of the three equilibrium states. We shall employ
some appropriate Lyapunov functions and the fractional LaSalle’s invariant principle to this goal.

Theorem 6 If C0 ≤ 1, then G◦ is globally asymptotically stable for all m ∈ (0, 1].

Proof Let the following Lyapunov function

K◦(t) = M◦H
(
M(t)
M◦

)
+N (t) +

β1M◦

µ3
P(t) +

ρβ1M◦

vµ3
Q(t)

+
σ

2(µ1 + µ2)M◦ (M(t)−M◦ +N (t))2 ,

where H (v) = v − 1 − ln v, v > 0. Applying Lemma 2 and Lemma 3, we get

C
0 D

mK◦ ≤
(

1 −
M◦

M

)
C
0 D

mM+ C
0 D

mN +
β1M◦

µ3

C
0 D

mP +
ρβ1M◦

vµ3

C
0 D

mQ

+
σ

(µ1 + µ2)M◦ (M−M◦ +N )
(

C
0 D

mM+ C
0 D

mN
)

= (1 −
M◦

M )

(
Λ − µ1M−

β1MP
1 + α1Q

−
β2MN
1 + α2Q

+ σN
)
+

β1MP
1 + α1Q

+
β2MN
1 + α2Q

− (µ2 + σ)N +
β1M◦

µ3
(θN − µ3P − ρPQ)

+
σ

(µ1 + µ2)M◦ (M−M◦ +N ) (Λ − µ1M− µ2N )
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= −µ1
(M−M◦)2

M + σN
(

1 −
M◦

M

)
+

β1M◦P
1 + α1Q

+
β2M◦N
1 + α2Q

− (µ2 + σ)N

−
β1θM◦

µ3
N−β1M◦P −

µ4ρβ1M◦Q
vµ3

−
σ

(µ1 + µ2)M◦ (M−M◦ +M) (µ1 (M−M◦) + µ2N )

= −

(
µ1M◦ + σN +

σµ1M
µ1 + µ2

)
(M−M◦)2

MM◦ −
µ2σN 2

(µ1 + µ2)M◦ −
α1β1M◦PQ

1 + α1Q

−
µ4ρβ1M◦Q

vµ3
+ (µ2 + σ)N

(
β1θM◦

µ3 (µ2 + σ)
+

β2M◦

(1 + α2Q) (µ2 + σ)
− 1
)

≤ −

(
µ1M◦ + σN +

σµ1M
µ1 + µ2

)
(M−M◦)2

MM◦ −
µ2σN 2

(µ1 + µ2)M◦ −
α1β1M◦PQ

1 + α1Q

−
µ4ρβ1M◦Q

vµ3
+ (µ2 + σ) (C0 − 1)N .

Therefore, C0 ≤ 1 makes sure that C
0 D

mK◦ ≤ 0. Furthermore, it is straightforward to confirm that
{G◦} is the largest compact invariant set in

{
(M,N ,P ,Q) ∈ R4

+ : C
0 D

mK◦ = 0
}

. By Lemma 4.6
in [44], which is the fractional version of LaSalle’s invariance principle, we may conclude that G◦

is globally asymptotically stable if C0 ≤ 1. For the global stability of G⋆
1 , we presume that

P⋆
1

P −
1

1 + α1Q
≤ 0,

N ⋆
1

N −
1

1 + α2Q
≤ 0. (H1)

Theorem 7 If C1 ≤ 1 < C0 ≤ 1 +
µ2
σ and (H1) holds, then G⋆

1 is globally asymptotically stable for any
m ∈ (0, 1].

Proof Define a Lyapunov functional

K1(t) = M⋆
1H
(
M(t)
M⋆

1

)
+N ⋆

1 H
(
N (t)
N ⋆

1

)
+

β1M⋆
1P⋆

1
θN ⋆

1
P⋆

1H
(
P(t)
P⋆

1

)
+

ρβ1M⋆
1P⋆

1
vθN ⋆

1
Q(t)

+
σ

2(µ1 + µ2)M⋆
1
(M(t)−M⋆

1 +N (t)−N ⋆
1 )

2 .

Then, the Caputo fractional derivative of K1 along system (2) satisfies

C
0 D

mK1 ≤
(

1 −
M⋆

1
M

)
C
0 D

mM+

(
1 −

N ⋆
1

N

)
C
0 D

mN +
β1M⋆

1P⋆
1

θN ⋆
1

(
1 −

P⋆
1

P

)
C
0 D

mP

+
ρβ1M⋆

1P⋆
1

vθN ⋆
1

C
0 D

mQ+
σ

(µ1 + µ2)M⋆
1
(M−M⋆

1 +N −N ⋆
1 )
(

C
0 D

mM+C
0 DmN

)
=

(
1 −

M⋆
1

M

)(
Λ − µ1M−

β1MP
1 + α1Q

−
β2MN
1 + α2Q

+ σN
)

+

(
1 −

N ⋆
1

N

)(
β1MP

1 + α1Q
+

β2MN
1 + α2Q

− (µ2 + σ)N
)
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+
β1M⋆

1P⋆
1

θN ⋆
1

(
1 −

P⋆
1

P

)
(θN − µ3P − ρPQ) +

ρβ1M⋆
1P⋆

1
vθN ⋆

1
(vPQ− µ4Q)

+
σ

(µ1 + µ2)M⋆
1
(M−M⋆

1 +N −N ⋆
1 ) (Λ − µ1M− µ2M) .

Note that Λ = µ1M⋆
1 + β1M⋆

1P⋆
1 + β2M⋆

1N ⋆
1 − σN ⋆

1 , µ2 + σ =
β1M⋆

1P⋆
1

N ⋆
1

+ β2M⋆
1 and µ3 =

θN ⋆
1

P⋆
1

.
Therefore,

C
0 D

mK1 ≤ µ1

(
1 −

M⋆
1

M

)
(M⋆

1 −M) + σ (N −N ⋆
1 )

(
1 −

M⋆
1

M

)
+ β1M⋆

1P⋆
1

(
3 −

M⋆
1

M −
P
P⋆

1
+

P
P⋆

1

1
1 + α1Q

−
MN ⋆

1P
M⋆

1NP⋆
1

1
1 + α1Q

−
NP⋆

1
N ⋆

1 P

)
+ β2M⋆

1N ⋆
1

(
2 −

M⋆
1

M −
M
M⋆

1

1
1 + α2Q

+
N
N ⋆

1

1
1 + α2Q

−
N
N ⋆

1

)
+

ρβ1M⋆
1P⋆

1
vθN ⋆

1
(vP⋆

1 − µ4)Q

−
σ

(µ1 + µ2)M⋆
1
(M−M⋆

1 +N −N ⋆
1 ) (µ1 (M−M⋆

1) + µ2 (N −N ⋆
1 ))

= −

(
µ1M⋆

1 + σN − σN ⋆
1 +

σµ1M
µ1 + µ2

)
(M−M⋆

1)
2

MM⋆
1

−
σµ2

(µ1 + µ2)M⋆
1
(N −N ⋆

1 )
2

+ β1M⋆
1P⋆

1

(
4 −

M⋆
1

M − (1 + α1Q)−
MN ⋆

1P
M⋆

1NP⋆
1

1
1 + α1Q

−
NP⋆

1
N ⋆

1 P

)
+ α1β1M⋆

1P⋆
1

(
1 −

P
P⋆

1

1
1 + α1Q

)
Q+ α2β2M⋆

1N ⋆
1

(
1 −

N
N ⋆

1

1
1 + α2Q

)
Q

+ β2M⋆
1N ⋆

1

(
3 −

M⋆
1

M − (1 + α2Q)−
M
M⋆

1

1
1 + α2Q

)
+

ρβ1M⋆
1P⋆

1
vθN ⋆

1

(
µ4 +

µ1vθ

µ2µ3
M⋆

1

)
(C1 − 1)Q.

The arithmetic-geometric mean inequality enables us to deduce

4 −
M⋆

1
M − (1 + α1Q)−

MN ⋆
1P

M⋆
1NP⋆

1

1
1 + α1Q

−
NP⋆

1
N ⋆

1 P
≤ 0,

3 −
M⋆

1
M − (1 + α2Q)−

M
M⋆

1

1
1 + α2Q

≤ 0.

From (H1), we have

1 −
P
P⋆

1

1
1 + α1Q

=
P
P⋆

1

(P⋆
1

P −
1

1 + α1Q

)
≤ 0,

1 −
N
N ⋆

1

1
1 + α2Q

=
N
N ⋆

1

(N ⋆
1

N −
1

1 + α2Q

)
≤ 0.

Further, we have

µ1M⋆
1 − σN ⋆

1 =
Λ
C0

(
1 −

σ

µ2
(C◦ − 1)

)
.

Thus, C
0 D

mK1 ≤ 0 if C1 ≤ 1 < C0 ≤ 1 +
µ2
σ . Furthermore, the largest compact invariant
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set in
{
(M,N ,P ,Q) ∈ R4

+ : C
0 D

mK1 = 0
}

is
{
G⋆

1
}

, then G⋆
1 is globally asymptotically stable

if C1 ≤ 1 < C0 ≤ 1 +
µ2
σ .

For the global stability of G⋆
2 , we make an additional hypothesis as follows:

(Q−Q⋆
2)

(
1 + α1Q
1 + α1Q⋆

2
−

P
P⋆

2

)
≤ 0, (Q−Q⋆

2)

(
1 + α2Q
1 + α2Q⋆

2
−

N
N ⋆

2

)
≤ 0. (H2)

Theorem 8 If C1 > 1, M⋆
2 ≥ σ

µ1
N ⋆

2 and (H2) holds, then G⋆
2 is globally asymptotically stable for any

m ∈ (0, 1].

Proof Let K2 be the Lyapunov functional defined as

K2(t) = M⋆
2H
(
M(t)
M⋆

2

)
+N ⋆

2 H
(
N (t)
N ⋆

2

)
+

β1M⋆
2P⋆

2
θN ⋆

2
(
1 + α1Q⋆

2
)P⋆

2H
(
P(t)
P⋆

2

)
+

ρβ1M⋆
2P⋆

2
vθN ⋆

2
(
1 + α1Q⋆

2
)Q⋆

2H
(
Q(t)
Q⋆

2

)
+

σ

2(µ1 + µ2)M⋆
2
(M(t)−M⋆

2 +N (t)−N ⋆
2 )

2 .

Then, the Caputo fractional derivative of K2 along system (2) satisfies

C
0 D

mK2 ≤
(

1 −
M⋆

2
M

)
C
0 D

mM+

(
1 −

N ⋆
2

N

)
C
0 D

mN +
β1M⋆

2P⋆
2

θN ⋆
2
(
1 + α1Q⋆

2
) (1 −

P⋆
2

P

)
C
0 D

mP

+
ρβ1M⋆

2P⋆
2

vθN ⋆
2
(
1 + α1Q⋆

2
) (1 −

Q⋆
2

Q

)
C
0 D

mQ

+
σ

(µ1 + µ2)M⋆
2
(M−M⋆

2 +N −N ⋆
2 )
(

C
0 D

mM+C
0 DmN

)
=

(
1 −

M⋆
2

M

)(
Λ − µ1M−

β1MP
1 + α1Q

−
β2MN
1 + α2Q

+ σN
)

+

(
1 −

N ⋆
2

N

)(
β1MP

1 + α1Q
+

β2MN
1 + α2Q

− (µ2 + σ)N
)

+
β1M⋆

2P⋆
2

θN ⋆
2
(
1 + α1Q⋆

2
) (1 −

P⋆
2

P

)
(θN − µ3P − ρPQ)

+
ρβ1M⋆

2P⋆
2

vθN ⋆
2
(
1 + α1Q⋆

2
) (1 −

Q⋆
2

Q

)
(vPQ− µ4Q)

+
σ

(µ1 + µ2)M⋆
2
(M−M⋆

2 +N −N ⋆
2 ) (Λ − µ1M− µ2M) .

Note that

Λ = µ1M⋆
2 +

β1M⋆
2P⋆

2
1 + α1Q⋆

2
+

β2M⋆
2N ⋆

2
1 + α2Q⋆

2
− σN ⋆

2 ,

µ2 + σ =
β1M⋆

2P⋆
2

N ⋆
2
(
1 + α1Q⋆

2
) + β2M⋆

2
1 + α2Q⋆

2
,

µ3 =
θN ⋆

2
P⋆

2
− ρQ⋆

2, µ4 = vP⋆
2 .
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Therefore,

C
0 D

mK2 ≤ µ1

(
1 −

M⋆
2

M

)
(M⋆

2 −M) + σ (N −N ⋆
2 )

(
1 −

N ⋆
2

N

)
+

β1M⋆
2P⋆

2
1 + α1Q⋆

2

(
3 −

M⋆
2

M −
P
P⋆

2
+

P
P⋆

2

1 + α1Q⋆
2

1 + α1Q
−

MN ⋆
2P

M⋆
2NP⋆

2

1 + α1Q⋆
2

1 + α1Q
−

NP⋆
2

N ⋆
2 P

)
+

β2M⋆
2N ⋆

2
1 + α2Q⋆

2

(
2 −

M⋆
2

M −
M
M⋆

2

1 + α1Q⋆
2

1 + α2Q
+

N
N ⋆

2

1 + α1Q⋆
2

1 + α2Q
−

N
N ⋆

2

)
−

σ

(µ1 + µ2)M⋆
2
(M−M⋆

2 +N −N ⋆
2 ) (µ1 (M−M⋆

2) + µ2 (N −N ⋆
2 ))

= −

(
µ1M⋆

2 − σN ⋆
2 + σN +

σµ1M
µ1 + µ2

)
(M−M⋆

2)
2

MM⋆
2

−
σµ2

(µ1 + µ2)M⋆
2
(N −N ⋆

2 )
2

+
β1M⋆

2P⋆
2

1 + α1Q⋆
2

(
4 −

M⋆
2

M −
1 + α1Q
1 + α1Q⋆

2
−

MN ⋆
2P

M⋆
2NP⋆

2

1 + α1Q⋆
2

1 + α1Q
−

NP⋆
2

N ⋆
2 P

)
+

β1M⋆
2P⋆

2
1 + α1Q⋆

2

(
−1 −

P
P⋆

2
+

P
P⋆

2

1 + α1Q⋆
2

1 + α1Q
+

1 + α1Q
1 + α1Q⋆

2

)
+

β2M⋆
2N ⋆

2
1 + α2Q⋆

2

(
3 −

M⋆
2

M −
1 + α2Q
1 + α2Q⋆

2
−

M
M⋆

2

1 + α2Q⋆
2

1 + α2Q

)
+

β2M⋆
2N ⋆

2
1 + α2Q⋆

2

(
−1 −

N
N ⋆

2
+

N
N ⋆

2

1 + α2Q
1 + α2Q⋆

2
+

1 + α2Q⋆
2

1 + α2Q

)
.

The arithmetic-geometric mean inequality enables us to deduce

4 −
M⋆

2
M −

1 + α1Q
1 + α1Q⋆

2
−

MN ⋆
2P

M⋆
2NP⋆

2

1 + α1Q⋆
2

1 + α1Q
−

NP⋆
2

N ⋆
2 P

≤ 0,

3 −
M⋆

2
M −

1 + α2Q
1 + α2Q⋆

2
−

M
M⋆

2

1 + α2Q⋆
2

1 + α2Q
≤ 0.

From (H2), we have

−1 −
P
P⋆

2
+

P
P⋆

2

1 + α1Q⋆
2

1 + α1Q
+

1 + α1Q
1 + α1Q⋆

2
=

α1 (Q−Q⋆
2)

1 + α1Q

(
1 + α1Q
1 + α1Q⋆

2
−

P
P⋆

2

)
≤ 0,

−1 −
N
N ⋆

2
+

N
N ⋆

2

1 + α2Q
1 + α2Q⋆

2
+

1 + α2Q⋆
2

1 + α2Q
=

α2 (Q−Q⋆
2)

1 + α2Q

(
1 + α2Q
1 + α2Q⋆

2
−

N
N ⋆

2

)
≤ 0.

Thus, C
0 D

mK2 ≤ 0 if C1 > 1 and M⋆
2 ≥ σ

µ1
N ⋆

2 . Additionally,
{
G⋆

2
}

is the largest compact invariant

set in
{
(M,N ,P ,Q) ∈ R4

+ : C
0 D

mK2 = 0
}

, then G⋆
2 is globally asymptotically stable.

5 Numerical simulations and discussion

Here in this section, we will present different numerical simulations to show numerically the
stability of each equilibrium point under the biological parameters of model (2) which given in
Table 1.

The virus-clear equilibrium stability

If we put the value parameters in Table 1, we get that in this case, the dynamical behavior of
model (2) converges to virus-clear equilibrium G◦ = (10, 0, 0, 0) for different values of m and
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Table 1. The parameter definitions of model (2) with their values

Parameter Definition Value Sources

Λ The indicates rate 1 Assumed
µ1 Death rate of M 0.1 Assumed
β1 The infection rate 0.01 [16]
β2 The infection rate 0.001 Assumed
α1 The non-lytic immune rate 0.1 [16]
α2 The non-lytic immune rate 0.01 Assumed
σ The healing rate 0.01 [16]
µ2 Death rate of N 1 [16]
θ The designates the produce ratio 2.9 [16]

µ3 Death rate of P 1 [16]
ρ The neutralizing rate 0.006 [16]
ν The growth rate of Q 0.1 [16]

µ4 Death rate of Q 0.3 [16]

C0 = 0.283 < 1. The condition of Theorem 3 concerning the stability of G◦ is satisfied. This result
is drawn by Figure 1. This numerical result demonstrates that the number of uninfected cells is
steadily increasing while the other variables are diminishing toward zero.
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Figure 1. The simulations of model (2) of equilibrium point G◦ for different m values and C0 = 0.283

The immunity-free equilibrium stability

We put β2 = 0.15 and keeping other parameters values in Table 1, we have C0 = 1.6887, C1 =

0.6255 and we remark that all the trajectories of model (2) converge to immunity-free equilibrium
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G⋆
1 for different value of m. This supports the stability result of G⋆

1 from Theorem 4. Figure 3
display this result. As may be seen from this figure, the antibodies are decreasing toward zero. In
contrast, the virus load, infected cells, and uninfected cells all converge toward a strictly positive
level.
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Figure 2. The simulations of model (2) of equilibrium point G∗
2 for different m values and C1 = 3.4082

The immunity-activated equilibrium stability

If Λ = 15 and keeping other parameters values in Table 1, we have C1 = 3.4082 and the dynamical
behavior of model (2) approaches to immunity-activated equilibrium G∗

2 for different value of m.
This validates the stability finding given by (i) in Theorem 5. This result is plotted by Figure 2
and Figure 4.

Impact of fractional derivative

We now investigate the impact of fractional derivatives on the infection dynamics. The thing
that catches our attention, in all of this numerical research, is that as the value of the fractional-
order m decreases, which defines long-term memory behavior, the solutions quickly reach steady
states. That is, the rate of convergence decreases as the fractional order is closer to one. Thus,
the convergence speed increases proportionally with the order. But, in all cases, solutions with
different values of m reaches steady states. Consequently, the fractional order m impacts the time
it takes to attain steady states but has no effect on the stability of the equilibria.
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The sensitivity analysis

Now, we discuss the impact of some parameters on the dynamics of model (2). According to the
formula of the basic reproduction number C0, we notice that C0 is increasing greater than one with
if one of the values of the parameters (β1, β2, θ, Λ) is increase. Otherwise, C0 is decreasing less
than one when one of the values of the parameters (σ, µ2, µ1, µ3) is increasing (see Figure 5).
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Figure 3. The simulations of G⋆
1 in model (2) for different m values and C0 = 1.6887, C1 = 0.6255

6 Conclusion

We have introduced and examined a fractional-order viral model including cell-to-cell transmission
in this work. In this model, both lytic and non-lytic immune responses have been taken into
account. We have established the suggested viral model’s existence, uniqueness, nonnegativity
and boundedness. Also, we have arrived at two threshold parameters: the basic reproduction
number C0 and the reproduction number of the humoral immunological response C1. The obtained
results indicate that the infection level gets reduced to zero for C0 < 1, whereas the infection
persists in the host body for C0 > 1. Based on Routh-Hurwitz’s judgment, we have derived the
requirements for the local asymptotic stability of the equilibria. LaSalle’s invariance principle and
Lyapunov functionals are used to generate adequate conditions that can guarantee the system’s
global asymptotic stability. Finally, a numerical simulation has been used to evaluate the outcomes
of our theoretical work and we have performed a sensitivity analysis of threshold parameter C0, see
Figure 5. It can be observed that with lower values of m, the components of our system converge
to equilibria more quickly. However, large values of m result in much slower convergence and
longer memory, see Figure 1, Figure 3 and Figure 2. In our next work, we would like to add
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Figure 4. The phase portrait of model (2) for different m values with C1 = 3.4082
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the effect of time delays [45, 46], vaccination [47] and stochastic [48, 49] on the dynamics of the
suggested model.
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