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Abstract

In this paper, we study the admissible solutions of the nonlinear system of difference equations

xn+1 =
yn

xn
, yn+1 =

yn

ǎxn + b̌yn
, n = 0,1, . . . ,

where ǎ, b̌ are real numbers and the initial values x0,y0 are nonzero real numbers. In case b̌ < 0 and

ǎ2 <−4b̌, we show that there are eventually periodic solutions when either tan−1
√
−4b̌−ǎ2

ǎ ∈]π
2
,π[

(with ǎ < 0) is a rational multiple of π or tan−1
√
−4b̌−ǎ2

ǎ ∈]0, π

2
[ (with ǎ > 0) as well.

1. Introduction

Difference equations and systems of difference equations occur in the applications of mathematics in growth and decay models,
physics, economics, biology, circuit analysis, dynamical systems and other fields. It can be appeared as an approximation to
solutions of differential equations. To study the behavior of the solutions to systems of difference equations, we may be able
derive its solutions otherwise, we can investigate its long-term behaviors via the stability of its equilibrium points.

In [1], Kudlak et al. studied the existence of unbounded solutions of the system of difference equations

xn+1 =
xn

yn
, yn+1 = xn + γnyn, n = 0,1, . . . ,

where 0 < γn < 1 and the initial values are positive real numbers.

Camouzis et al. [2], studied the global behavior of the system of difference equations

xn+1 =
α1 + γ1yn

xn
, yn+1 =

β2xn + γ2yn

B2xn +C2yn
, n = 0,1, . . . , (1.1)

with nonnegative parameters and positive initial conditions. They studied the boundedness character of the system (1.1) in its
special cases.

In [3], Camouzis et al. studied the solutions of the system

xn+1 =
yn

xn
, yn+1 =

γ2yn

A2 +B2xn + yn
, n = 0,1, . . . ,

with nonnegative parameters and positive initial conditions.

Cinar [4], studied the positive solutions of the system of difference equations

xn+1 =
1
yn
, yn+1 =

yn

xn−1yn−1
, n = 0,1, . . . ,
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where the initial values x0,y0,x−1 and y−1 are positive real numbers.

Clark and Kulenovic [5], studied the global stability properties and asymptotic behavior of solutions of the system of difference
equation

xn+1 =
xn

a+ cyn
, yn+1 =

yn

b+dxn
, n = 0,1, . . . ,

where a,b,c,d are positive real numbers and the initial values x0,y0 are nonnegative real numbers. For more on difference
equations, see [6]-[27] and the references therein. For more on systems of difference equations that are solved in closed form,
see [28]-[33] and the references therein.

In this paper, we study the admissible solutions of the nonlinear system of difference equations

xn+1 =
yn

xn
, yn+1 =

yn

ǎxn + b̌yn
, n = 0,1, . . . , (1.2)

where ǎ, b̌ are real numbers and the initial values x0,y0 are nonzero real numbers.

Consider the kth-order difference equation

xn+1 = h(xn,xn−1, ...,xn−k+1), n = 0,1, .... (1.3)

where the initial values x0,x−1, ..., and x−k+1 are real numbers. The set

H = {(x0,x−1, ...,x−k+1) ∈ Rk : xn is undefined for some n ∈ N},

is called the Forbidden set to Equation (1.3). The complement of the Forbidden set is called the Good set. Any solution
{xn}∞

n=−k+1 to Equation (1.3) with initial values belongs to the Good set is well-defined or admissible solution to Equation
(1.3).

2. Case ǎb̌ = 0

In this section, we shall investigate the case ǎb̌ = 0.

Assume that ǎ = 0. Then the solution of system (1.2) is

x2n =
x0

b̌y0
,n = 1,2, ...,

x2n+1 =
y0

x0
,n = 1,2, ...,

yn =
1
b̌

,n = 1,2....

(2.1)

It is clear that, every admissible solution of system (1.2) is eventually 2-periodic.

In fact, for any admissible solution {(xn,yn)}∞
n=0 of system (1.2), we have

(x2n+1,y2n+1) = (x2n−1,y2n−1) =

(
y0

x0
,

1
b̌

)
, n = 1,2, ...,

and

(x2n+2,y2n+2) = (x2n,y2n) =

(
x0

b̌y0
,

1
b̌

)
, n = 1,2, ....

Now assume that b̌ = 0. Then the solution of system (1.2) is
xn =

1
ǎ

,n = 2,3, ...,

yn =
1
ǎ2 ,n = 2,3, ....

(2.2)

In this case, every admissible solution {(xn,yn)}∞
n=0 of system (1.2) converges to

(
1
ǎ
,

1
ǎ2

)
.
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3. Case ǎb̌ > 0

In this section, we shall derive the admissible solutions of system (1.2) and investigate the global stability of its equilibrium
points when ǎb̌ > 0.

3.1. Case ǎ > 0 and b̌ > 0

Assume that ǎ and b̌ are positive real numbers. For system (1.2), we can write

un+1 = ǎ+
b̌
un

, n = 0,1, ..., (3.1)

where
un =

xn

yn
, with u0 =

x0

y0
.

Solving Equation (3.1) and substituting in system (1.2), we can write the admissible solution of system (1.2) as
xn =

b̌y0θn−2 + x0θn−1

b̌y0θn−1 + x0θn
,n = 1,2, ...,

yn =
b̌y0θn−2 + x0θn−1

b̌y0θn + x0θn+1
,n = 1,2...,

(3.2)

where θ j =
t j
1− t j

2√
ǎ2 +4b̌

, t1 =
ǎ+
√

ǎ2 +4b̌
2

and t2 =
ǎ−
√

ǎ2 +4b̌
2

, j =−1,0, ....

The forbidden set for system (1.2) can be written as

F1 =
2⋃

j=1

{(v1,v2) ∈ R2 : v j = 0}∪
∞⋃

n=1

{(v1,v2) ∈ R2 : v1 =−
θn

θn+1
b̌v2}.

The equilibrium points of system (1.2) satisfy the equations

x̄ =
ȳ
x̄

and ȳ =
ȳ

ǎx̄+ b̌ȳ
.

Then we have two equilibrium points E1(x̄1, ȳ1) and E2(x̄2, ȳ2), where x̄1 and x̄2 are the solutions of the equation

b̌x2 + ǎx−1 = 0.

Consider the associated system of system (1.2)

G1(x,y) = (y/x,y/(ǎx+ b̌y)). (3.3)

The Jacobian matrix corresponding to system (3.3) at an equilibrium point of system (1.2) is

JG1(x̄, ȳ) =

(
−1

1
x̄

−ǎȳ ǎx̄

)
.

For more results on the stability of difference equations, see [24].

Theorem 3.1. The following statements are true:

1. The equilibrium point E1(x̄1, ȳ1) of system (1.2) is locally asymptotically stable.
2. The equilibrium point E2(x̄2, ȳ2) of system (1.2) is unstable (saddle point).

Proof. The eigenvalues of the Jacobian matrix JG1(x̄, ȳ) are λ1 = 0 and λ2 =−b̌ȳ. Then |λ2|= b̌ȳ = 1− ǎx̄.

1. For the equilibrium point E1(x̄1, ȳ1) of system (1.2) we have that

0 < x̄1 =−
ǎ
2b̌

+

√
ǎ2 +4b̌
2b̌

<
1
ǎ
.

This implies that
0 < λ2 = 1− ǎx̄1 < 1,

and the result follows.
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2. For the equilibrium point E2(x̄2, ȳ2) of system (1.2) there is nothing to say, since x̄2 =−
ǎ
2b̌
−
√

ǎ2 +4b̌
2b̌

< 0.

Theorem 3.2. The equilibrium point E1(x̄1, ȳ1) of system (1.2) is globally asymptotically stable.

Proof. Let {(xn,yn)}∞
n=0 be an admissible solution for system (1.2). Then using the solution form (3.2) we get

xn =
b̌y0θn−2 + x0θn−1

b̌y0θn−1 + x0θn

=
θn−2

θn−1

b̌y0 + x0
θn−1

θn−2

b̌y0 + x0
θn

θn−1

→ x̄1 as n→ ∞,

where
θn

θn−1
→ t1 as n→ ∞. Similarly,

yn =
b̌y0θn−2 + x0θn−1

b̌y0θn + x0θn+1

=
θn−2

θn

b̌y0 + x0
θn−1

θn−2

b̌y0 + x0
θn+1

θn

→ ȳ1 as n→ ∞.

Then the equilibrium point E1(x̄1, ȳ1) of system (1.2) is a global attractor of all admissible solutions of system (1.2). In view
of Theorem (3.1), we conclude that the equilibrium point E1(x̄1, ȳ1) of system (1.2) is globally asymptotically stable.

3.2. Case ǎ < 0 and b̌ < 0

Assume that ǎ and b̌ are negative real numbers. We can write ǎ =−a and b̌ =−b for some positive reals a and b.
For system (1.2), we can write

un+1 =−a− b
un

, n = 0,1, ..., (3.4)

where
un =

xn

yn
, with u0 =

x0

y0
.

We shall consider three cases:
Case a2 > 4b
Solving Equation (3.4) and substituting in system (1.2), we can write the solution of system (1.2) as

xn =
by0ψn−2− x0ψn−1

by0ψn−1− x0ψn
,n = 1,2, ...,

yn =
by0ψn−2− x0ψn−1

by0ψn− x0ψn+1
,n = 1,2...,

(3.5)

where ψ j =
t j
+− t j

−√
a2−4b

, t+ =
−a+

√
a2−4b

2
and t− =

−a−
√

a2−4b
2

, j =−1,0, ....

The equilibrium points of system (1.2) satisfy the equations

x̄ =
ȳ
x̄

and ȳ =− ȳ
ax̄+bȳ

.

Then we have two equilibrium points L+(x̄+, ȳ+) and L−(x̄−, ȳ−), where x̄+ and x̄− are the solutions of the equation

bx2 +ax+1 = 0.

Theorem 3.3. The following statements are true:

1. The equilibrium point L+(x̄+, ȳ+) of system (1.2) is locally asymptotically stable.
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2. The equilibrium point L−(x̄−, ȳ−) of system (1.2) is unstable (saddle point).

Proof. Consider the associated system of system (1.2)

G2(x,y) = (y/x,−y/(ax+by)). (3.6)

The Jacobian matrix corresponding to system (3.6) at an equilibrium point of system (1.2) is

JG2(x̄, ȳ) =

(
−1

1
x̄

−aȳ −ax̄

)
. (3.7)

The eigenvalues of the Jacobian matrix JG2(x̄, ȳ) are λ1 = 0 and λ2 =−1−ax̄.

1. For the equilibrium point L+(x̄+, ȳ+) of system (1.2) we have that

−2
a
< x̄+ =− a

2b
+

√
a2−4b

2b
<−1

a
.

This implies that
0 < λ2 =−1−ax̄+ < 1,

and the result follows.
2. For the equilibrium point L−(x̄−, ȳ−) of system (1.2), we have

x̄− =− a
2b
−
√

a2−4b
2b

<−2
a
.

Then
λ2 =−1−ax̄− > 1.

Therefore, the equilibrium point L−(x̄−, ȳ−) of system (1.2) is unstable (saddle point).

Theorem 3.4. The equilibrium point L+(x̄+, ȳ+) of system (1.2) is globally asymptotically stable.

Proof. Let {(xn,yn)}∞
n=0 be an admissible solution for system (1.2). For the global attractivity of the equilibrium point

L+(x̄+, ȳ+), it is sufficient to see that
ψn

ψn−1
→ t− as n→ ∞.

In view of Theorem (3.3), we conclude that the equilibrium point L+(x̄+, ȳ+) of system (1.2) is globally asymptotically
stable.

Case a2 = 4b
Suppose that a2 = 4b. Solving Equation (3.4) and substituting in system (1.2), we can write the solution of system (1.2) as

xn =−
2
a

ay0(n−2)+2x0(n−1)
ay0(n−1)+2x0n

,n = 1,2, ...,

yn =

(
−2

a

)2 ay0(n−2)+2x0(n−1)
ay0n+2x0(n+1)

,n = 1,2....

(3.8)

Theorem 3.5. The unique equilibrium point L
(
−2

a
,

4
a2

)
of system (1.2) is nonhyperbolic point.

Proof. There is nothing to say except that, the eigenvalues of the Jacobian matrix (4.8) are

λ1 = 0 and λ2 =−1−ax̄ =−1−a
(
−2

a

)
= 1.
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From the solution form (3.8), we conclude that, every admissible solution for system (1.2) converges to the unique equilibrium

point L
(
−2

a
,

4
a2

)
.

Case a2 < 4b
Suppose that a2 < 4b. Solving Equation (3.4) and substituting in system (1.2), we can write the solution of system (1.2) as

xn =
1√
b

√
by0 sin(n−2)α− x0 sin(n−1)α√

by0 sin(n−1)α− x0 sinnα
,n = 1,2, ...,

yn =
1
b

√
by0 sin(n−2)α− x0 sin(n−1)α√

by0 sinnα− x0 sin(n+1)α
,n = 1,2...,

(3.9)

where α = tan−1−
√

4b−a2

a
∈]π

2
,π[.

Theorem 3.6. Assume that a2 < 4b. If α =
l
k

π is a rational multiple of π (l and k are relatively positive prime integers) such

that
k
2
< l < k. Then every admissible solution {(xn,yn)}∞

n=0 of system (1.2) is eventually k-periodic.

Proof. Assume that α =
l
k

π is a rational multiple of π (l and k are relatively positive prime integers) such that
k
2
< l < k and

let {(xn,yn)}∞
n=0 of system (1.2). Then for n≥ 1, we have

xn+k =
1√
b

√
by0 sin(n+ k−2)α− x0 sin(n+ k−1)α√

by0 sin(n+ k−1)α− x0 sinn+ kα

=
1√
b

√
by0(−1)l sin(n+ k−2)α− x0(−1)l sin(n+ k−1)α√

by0(−1)l sin(n+ k−1)α− x0(−1)l sinn+ kα

=
1√
b

√
by0 sin(n−2)α− x0 sin(n−1)α√

by0 sin(n−1)α− x0 sinnα

= xn.

Similarly, we can see that yn+k = yn for all n≥ 1.
Therefore, the admissible solution {(xn,yn)}∞

n=0 of system (1.2) is eventually k-periodic (in fact except for the initial point
(x0,y0)).

The forbidden set for system (1.2) depends on the relation between a and b. For system (1.2) we have the following:

1. If a2 > 4b, then the forbidden set of system (1.2) is

F2 =
2⋃

j=1

{(v1,v2) ∈ R2 : v j = 0}∪
∞⋃

n=1

{(v1,v2) ∈ R2 : v1 =
θn

θn+1
bv2}.

2. If a2 = 4b, then the forbidden set of system (1.2) is

F3 =
2⋃

j=1

{(v1,v2) ∈ R2 : v j = 0}∪
∞⋃

n=1

{(v1,v2) ∈ R2 : v1 =−
n

n+1
(

a
2
)v2}.

3. If a2 < 4b, then the forbidden set of system (1.2) is

F4 =
2⋃

j=1

{(v1,v2) ∈ R2 : v j = 0}∪
∞⋃

n=1

{(v1,v2) ∈ R2 : v1 =
√

b
sinnα

sin(n+1)α
v2}.

4. Case ǎb̌ < 0

In this section, we shall derive the solution of system (1.2) and investigate the global stability of its equilibrium points when
ǎb̌ < 0.
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4.1. Case ǎ < 0 and b̌ > 0

Assume that ǎ =−a < 0 and b̌ = b > 0. Then we can write system (1.2) as

un+1 =−a+
b
un

, n = 0,1, ..., (4.1)

where
un =

xn

yn
, with u0 =

x0

y0
.

Solving Equation (4.1) and substituting in system (1.2), we can write the solution of system (1.2) as
xn =

by0θ́n−2 + x0θ́n−1

by0θ́n−1 + x0θ́n
,n = 1,2, ...,

yn =
by0θ́n−2 + x0θ́n−1

by0θ́n + x0θ́n+1
,n = 1,2...,

(4.2)

where θ́ j =
t́ j
1− t́ j

2√
a2 +4b

, t́1 =
−a+

√
a2 +4b

2
and t́2 =

−a−
√

a2 +4b
2

, j =−1,0, ....

The forbidden set of system (1.2) can be written as

F5 =
2⋃

j=1

{(v1,v2) ∈ R2 : v j = 0}∪
∞⋃

n=1

{(v1,v2) ∈ R2 : v1 =−
θ́n

θ́n+1
bv2}.

The equilibrium points of system (1.2) satisfy the equations

x̄ =
ȳ
x̄

and ȳ =
ȳ

−ax̄+bȳ
.

Then we have two equilibrium points É1( ¯́x1, ¯́y1) and É2( ¯́x2, ¯́y2), where ¯́x1 and ¯́x2 are the solutions of the equation

bx2−ax−1 = 0.

Theorem 4.1. The following statements are true:

1. The equilibrium point É1( ¯́x1, ¯́y1) of system (1.2) is unstable (saddle point).
2. The equilibrium point É2( ¯́x2, ¯́y2) of system (1.2)is locally asymptotically stable.

Proof. Consider the associated system of system (1.2)

G3(x,y) = (y/x,y/(−ax+by)). (4.3)

The Jacobian matrix corresponding to system (4.3) at an equilibrium point of system (1.2) is

JG3(x̄, ȳ) =

(
−1

1
x̄

aȳ −ax̄

)
. (4.4)

The eigenvalues of the Jacobian matrix JG3(x̄, ȳ) are λ́1 = 0 and λ́2 =−1−ax̄.

1. For the equilibrium point É1( ¯́x1, ¯́y1) of system (1.2), we have

1+a ¯́x1 = 1+a(
a

2b
+

√
a2 +4b

2b
)> 1.

Then
|λ́2|= 1+a ¯́x1 > 1.

Therefore, the equilibrium point É1( ¯́x1, ¯́y1) of system (1.2) is unstable (saddle point).
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2. For the equilibrium point É2( ¯́x2, ¯́y2) of system (1.2) we have that

−2
a
< ¯́x2 =

a
2b
−
√

a2 +4b
2b

.

This implies that
0 < |λ́2|= |−1−a ¯́x2|< 1,

and the result follows.

Theorem 4.2. The equilibrium point É2( ¯́x2, ¯́y2) of system (1.2) is globally asymptotically stable.

Proof. Let {(xn,yn)}∞
n=0 be an admissible solution for system (1.2). For the global attractivity of the equilibrium point

É2( ¯́x2, ¯́y2), it is sufficient to see that
θ́n

θ́n−1
→ t́2 as n→ ∞.

In view of Theorem (4.1), we conclude that the equilibrium point É2( ¯́x2, ¯́y2) of system (1.2) is globally asymptotically
stable.

4.2. Case ǎ > 0 and b̌ < 0

Assume that ǎ = a > 0 and b̌ =−b < 0. Then we can write system (1.2) as

un+1 = a− b
un

, n = 0,1, ..., (4.5)

where
un =

xn

yn
, with u0 =

x0

y0
.

We shall consider three cases:
Case a2 > 4b
Solving Equation (4.5) and substituting in system (1.2), we can write the solution of system (1.2) as

xn =
by0ψ́n−2− x0ψ́n−1

by0ψ́n−1− x0ψ́n
,n = 1,2, ...,

yn =
by0ψ́n−2− x0ψ́n−1

by0ψ́n− x0ψ́n+1
,n = 1,2...,

(4.6)

where ψ́ j =
t́ j
+− t́ j

−√
a2−4b

, t́+ =
a+
√

a2−4b
2

and t́− =
a−
√

a2−4b
2

, j =−1,0, ....

The equilibrium points of system (1.2) satisfy the equations

x̄ =
ȳ
x̄

and ȳ =
ȳ

ax̄−bȳ
.

Then we have two equilibrium points Ĺ+( ¯́x+, ¯́y+) and Ĺ−( ¯́x−, ¯́y−), where ¯́x+ and ¯́x− are the admissible solutions of the equation

bx2−ax+1 = 0.

Theorem 4.3. The following statements are true:

1. The equilibrium point Ĺ+( ¯́x+, ¯́y+) of system (1.2) is unstable (saddle point).
2. The equilibrium point Ĺ−( ¯́x−, ¯́y−) of system (1.2) is locally asymptotically stable.

Proof. Consider the associated system of system (1.2)

G4(x,y) = (y/x,y/(ax−by)). (4.7)

The Jacobian matrix corresponding to system (4.7) at an equilibrium point of system (1.2) is

JG4(x̄, ȳ) =

(
−1

1
x̄

−aȳ ax̄

)
. (4.8)

The eigenvalues of the Jacobian matrix JG4(x̄, ȳ) are |λ1|= 0 and |λ2|= ax̄−1.
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1. For the equilibrium point Ĺ+( ¯́x+, ¯́y+) of system (1.2) we have that

¯́x+ =
a

2b
+

√
a2−4b

2b
>

a
2b

>
2
a
.

This implies that
|λ2|= a ¯́x+−1 > 1,

and the result follows.

2. For the equilibrium point Ĺ−( ¯́x−, ¯́y−) of system (1.2), we have
1
a
< ¯́x− =

a
2b
−
√

a2−4b
2b

<
2
a

.
Then

|λ2|= a ¯́x−−1 < 1.

Therefore, the equilibrium point Ĺ−( ¯́x−, ¯́y−) of system (1.2) is locally asymptotically stable.

Theorem 4.4. The equilibrium point Ĺ−( ¯́x−, ¯́y−) of system (1.2) is globally asymptotically stable.

Proof. Let {(xn,yn)}∞
n=0 be an admissible solution for system (1.2). For the global attractivity of the equilibrium point

Ĺ−( ¯́x−, ¯́y−), it is sufficient to see that
ψ́n

ψ́n−1
→ t́+ as n→ ∞.

In view of Theorem (4.3), we conclude that the equilibrium point Ĺ−( ¯́x−, ¯́y−) of system (1.2) is globally asymptotically
stable.

Case a2 = 4b
Suppose that a2 = 4b. Solving Equation (4.5) and substituting in system (1.2), we can write the admissible solution of system
(1.2) as 

xn =
2
a

ay0(n−2)−2x0(n−1)
ay0(n−1)−2x0n

,n = 1,2, ...,

yn =

(
2
a

)2 ay0(n−2)−2x0(n−1)
ay0n−2x0(n+1)

,n = 1,2....

(4.9)

Theorem 4.5. The unique equilibrium point Ĺ
(

2
a
,

4
a2

)
of system (1.2) is nonhyperbolic point.

Proof. There is nothing to say except that, the eigenvalues of the Jacobian matrix (4.8) are

λ1 = 0 and λ2 = ax̄−1 = a(
2
a
)−1 = 1.

From the admissible solution form (4.9), we conclude that, every admissible solution for system (1.2) converges to the unique

equilibrium point Ĺ(
2
a
,

4
a2 ).

Case a2 < 4b
Suppose that a2 < 4b. Solving Equation (4.5) and substituting in system (1.2), we can write the solution of system (1.2) as

xn =
1√
b

√
by0 sin(n−2)β − x0 sin(n−1)β√

by0 sin(n−1)β − x0 sinnβ
,n = 1,2, ...,

yn =
1
b

√
by0 sin(n−2)β − x0 sin(n−1)β√

by0 sinnβ − x0 sin(n+1)β
,n = 1,2...,

(4.10)

where β = tan−1

√
4b−a2

a
∈]0, π

2
[.

Theorem 4.6. Assume that a2 < 4b. If β =
l
k

π is a rational multiple of π (l and k are relatively positive prime integers) such

that 0 < l <
k
2

. Then every admissible solution {(xn,yn)}∞
n=0 of system (1.2) is eventually k-periodic.

Proof. The proof is similar to that of Theorem (3.6) and is omitted.
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We end this subsection by introducing the forbidden set for system (1.2), which depends on the relation between a and b. For
system (1.2) we have the following:

1. If a2 > 4b, then the forbidden set of system (1.2) is

F6 =
2⋃

j=1

{(v1,v2) ∈ R2 : v j = 0}∪
∞⋃

n=1

{(v1,v2) ∈ R2 : v1 =
ψ́n

ψ́n+1
bv2}.

2. If a2 = 4b, then the forbidden set of system (1.2) is

F7 =
2⋃

j=1

{(v1,v2) ∈ R2 : v j = 0}∪
∞⋃

n=1

{(v1,v2) ∈ R2 : v1 =
n

n+1
(

a
2
)v2}.

3. If a2 < 4b, then the forbidden set of system (1.2) is

F8 =
2⋃

j=1

{(v1,v2) ∈ R2 : v j = 0}∪
∞⋃

n=1

{(v1,v2) ∈ R2 : v1 =
√

b
sinnβ

sin(n+1)β
v2}.

Conclusion

In this work, we derived and studied the admissible solutions of the nonlinear system of difference equations

xn+1 =
yn

xn
, yn+1 =

yn

ǎxn + b̌yn
, n = 0,1, . . . ,

where ǎ, b̌ are real numbers and the initial values x0,y0 are nonzero real numbers.

We discussed the linearized and global stability of the solutions for all nontrivial values of ǎ and b̌ as well as introduced the
forbidden sets.

We showed under certain conditions that, there exist eventually periodic solutions when ǎ < 0 and b̌ < 0 as well as when ǎ > 0
and b̌ < 0.

We conjecture that the same results can be obtained for the system

xn+1 =
yn−k

xn−k
, yn+1 =

yn−k

ǎxn−k + b̌yn−k
, n = 0,1, . . . ,

where ǎ, b̌ are real numbers and the initial points (x−i,y−i), where i = 0,1, ...,k are nonzero real numbers.
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