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 Water quality is an essential component in managing surface and groundwater resources and 

for various uses; it is considered a necessary principle in planning. This study aims to map the 

groundwater quality of the Qazvin Plain aquifer in Iran for agricultural use based on the 

Wilcox classification method. For this purpose, the parameters of electrical conductivity (EC) 

and sodium adsorption ratio (SAR) of wells in the years 2015-2018 have been used. For 

interpolation, the inverse distance weighting (IDW) method with optimal power and Kriging 

geostatistical techniques were used based on spherical, exponential, and Gaussian semicircle 

algorithms. Electrical conductivity and SAR maps were drawn in the GIS platform after 

selecting the best interpolation method due to minor errors. The Wilcox method was used to 

classify the water quality of the studied wells. In most cases, the IDW method with optimal 

power was selected as the superior interpolation method. During the study, the results 

obtained from the water quality maps showed that the level attributed to the "high 

salinity" water class increased from 25.98 to 36.44, and the level attributed to the 

"slightly salty" water class decreased from 12.54 to 3.14. Finally, the results showed 

that the quality of underground water for agricultural purpose in the Qazvin Plain aquifer 

became more unfavourable during the studied period. 
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1. Introduction  
 

Groundwater is a vital freshwater source for agriculture, 
drinking water, and various industries. Nearly 30% of the 
global population relies on it for drinking water, highlighting its 
crucial role in sustaining human life and economic activity. [1, 
2]. Due to a combination of unfavourable climatic conditions, 
low rainfall, restricted surface water, and growing demand for 
water, the unsustainable use of groundwater in arid and semi-
arid countries is a major concern [3, 4, 5, 6]. Groundwater and 
surface water sources have become contaminated with 
nitrogen, heavy metals, and inorganic compounds due to 
population increase, industrialization, and agricultural 
practices. Surface and groundwater are severely damaged by a 
variety of contaminants created by industrial and agricultural 

activity. It is imperative to maintain groundwater and surface 
water and prevent contamination [7, 8, 9]. Groundwater quality 
is greatly impacted by a variety of human activities, such as 
urbanization, industrial and agricultural processes, and the use 
of chemical fertilizers and pesticides [10, 11]. Various 
pollutants are being released into groundwater as a result of 
these activities, including nitrates, volatile organic compounds, 
heavy metals, and emerging organic contaminants [12, 13]. Due 
to the uncontrolled withdrawal of groundwater, Aquifers in 
Iran are in a critical state [14]. Overexploitation of groundwater 
has led to severe consequences. Declining water tables, 
subsidence, and depleted aquifers are common [15]. Due to the 
imposition of system transfer costs down and thereby 
increased pumping energy, new problems have arisen such as 
the drying of water wells, limiting the discharge of rivers and 
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lakes, reducing the quality of water, and increasing the cost per 
cubic meter of water. 

It is, however, difficult and costly to diagnose water pollution 
and eliminate it. In agriculture and drinking water supplies, it is 
vital to measure and study changes in water quality [16, 17]. A 
variety of systems exist for categorizing the quality of surface 
and groundwater based on the type of water used. The Wilcox 
method [18] is one of the most commonly used methods for 
classifying agricultural water. In order to determine water 
quality using this method, it is necessary to select an 
appropriate interpolation model and map these parameters. 
For easier and faster analysis of data, Geographic Information 
Systems (GIS) software is increasingly used. The use of GIS can 
connect spatial data with descriptive information and can be 
applied to a variety of fields, such as mapping [19]. By analyzing 
the location of the measured points, the relationship between 
them, and the correlations among different properties, 
geostatistical methods are generally more efficient in 
describing spatial variability compared to classical statistical 
methods [20]. 

The Wilcox diagram was calculated and plotted by Rahmani 
[21] using chemical parameters such as magnesium, calcium, 
electrical conductivity (EC), pH, sodium, and the regional 
sodium uptake ratio in Hamedan province of Iran. Results 
indicated that the quality of the water was good and average for 
the region. Based on geostatistical analysis, Ghafoori [22] found 
that the co-kriging method simulates better than any other 
method for all indicators of groundwater quality in Darab Plain 
in Iran. Using the simple co-kriging method, Sadeghi [23] 
mapped the quality of agricultural and drinking water in the 
Malayer Plain in western Iran. Schuler and Wilcox's [24] 
diagrams also revealed that the drinking water quality situation 
is classified into three categories: good, acceptable, and 
unsuitable, while in the agricultural industry, there are two 
categories: good and average. The Kriging interpolation 
method was introduced by Alavi [25] to analyze the 
groundwater quality of the Dez Plain of Iran. Based on Schuler 
and Wilcox diagrams, the results indicated that the area is 
suitable for agricultural purposes as well as good for drinking. 
By using geostatistical methods, Hassen [26] evaluated the 
quality of plain groundwater in Tunisia in terms of agriculture 
and drinking and drew the Wilcox and Richards diagrams to 
illustrate his findings. Water in the area was found to be in 
excellent condition for agricultural use. Based on the Kriging 
geostatistical method, Awais [27] analyzed the groundwater 
quality of the Punjab Plain in Pakistan using EC and sodium 
adsorption ratio (SAR) parameters. In terms of EC, the semi-
exponential model performed the best, and in terms of SAR, the 
spherical exponential model performed the best. Based on the 
M5 tree decision model and support vector regression (SVR), 
Sattari et al. [28] predicted the groundwater level of the Ardabil 
Plain in Iran over a 17-year period. As a result of the findings, it 
was found that the M5 tree decision model provided better 
results than the SVR model. Hosseininia and Hassanzadeh [29] 
in this study revealed that the groundwater quality in the 
Rafsanjan plain is largely unsuitable for domestic and 
agricultural purposes due to high salinity and sodium content. 
The concentration of major ions decreases from the southeast 
to the northwest and center of the plain, with most samples 
falling within the C4S4 and C4S3 classes, indicating a high risk 
of salinity and sodium hazards for agriculture and crop damage. 
According to El-Zeiny and Elbeih [30], the groundwater quality 
of the Dakhla Oases plain in Egypt was evaluated by 

interpolating the water quality index (WQI) using inverse 
distance weighted (IDW) methods. According to the results, the 
quality of the water for agricultural use is excellent. Using 61 
samples, Aravinthasamy et al. [31] calculated the WQI by 
analyzing the parameters of TDS, EC, pH, Ca, Mg, Na, K, HCO3, 
and Cl. Additionally, they plotted graphs such as Wilcox and 
USSL diagrams. The study concluded that 57% of the 
groundwater in the Shanmuganadhi River Basin in southern 
India is in poor condition and has poor quality for agricultural 
use. As part of a ten-year study conducted by Jeon et al. [32], He 
evaluated the regional groundwater in Korea in terms of 
agriculture and drinking water. Based on the water quality 
guidelines of the World Health Organization and the Korean 
Ministry of Environment, they drew Wilcox and USSL diagrams. 
According to the results, the water is of good quality for 
irrigation and drinking. According to Aryafar et al. [33], EC, SAR, 
Na%, and TDS parameters were used to evaluate the water 
quality of Birjand Plain in Iran. Results showed that the 
conventional kriging method was more accurate than the 
Gaussian variogram. Masmoudi et al. [34], investigated the 
hydrogeological quality of groundwater in the Western Zab 
area of Biskra, Algeria. Through the analysis of 35 water 
samples against the standards set by the World Health 
Organization and the Algerian authorities, the findings show 
that the overall water quality is low. Specifically, about 80% of 
the samples were classified as having poor quality and 17.14% 
as having very poor quality. Similarly, studies in Rajasthan, 
India, and Bosaso, Somalia, have found that groundwater in 
these regions is unsuitable for agriculture or drinking due to 
high salinity levels [35, 36]. 

Data mining techniques such as support vector regression, k-
nearest neighbour, Hoeffding tree, random forest, random tree, 
and REP (Reduced Error Pruning) tree were used by Sattari et 
al. [37] to classify water quality in the Aladag River, Turkey. The 
REP tree and support vector regression classifier produced the 
best results, according to the results obtained. Based on a study 
conducted on the Hableh River in Iran to evaluate drinking and 
agricultural water quality, Safari et al. [38] determined that the 
classification of EC and SAR was excellent. The Wilcox chart 
indicates that the water in the region is suitable for agriculture. 
The quality of drinking water is reduced by high levels of TDS 
and EC. Using water quality indexes, Sener et al. [39] examined 
31 well samples in the Aksehir region of Turkey. In order to 
evaluate the quality of drinking water and agricultural water, 
they developed GIS maps. According to the study, the 
groundwater in the studied areas is not suitable for drinking 
and the water quality in the northeastern region is unsuitable 
for agriculture. Based on Makki et al. [40]’s analysis of drinking 
and agricultural water quality indices with different 
parameters such as EC, pH, SAR, and SSP, this result showed 
that groundwater in central Iraq needs to be repaired and 
modified for use. The Azarshahr plain in Iran was studied by 
Ganjei et al. [41] based on Wilcox classification for zoning 
groundwater in agriculture. A Gaussian variogram was 
introduced as a superior method for SAR and EC parameters 
using the Kriging interpolation method. In the central basin of 
Chabahar and Kenark Iran, Mahmoudizadeh and Esmaeily [42] 
examined the quality of groundwater resources for agricultural 
use. While 61% of groundwater is suitable for agriculture 
according to the Wilcox classification, 39% is considered poor 
or unusable. Research in Pakistan, using electrical conductivity, 
sodium absorption ratio, and residual sodium carbonate 
indices, has indicated changes in groundwater quality in Multan 
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and its surrounding areas [43]. The results showed that 
groundwater pollution is especially high in terms of EC in 
Kabirwala region and water quality decreases from northeast 
to southwest [44]. Othman [45] used a deep learning model 
called CNN-biLSTM to simulate the complex groundwater 
system. Data from USGS was used for training and testing. 
Three models were employed using different algorithms and 
Bayesian optimization. The CNN model with SGDM showed the 
best results, effectively simulating time series data. Megahed et 
al. [46] integrated chemical analysis and geospatial modelling 
to multi-criteria assess groundwater quality in Egypt in their 
study. Thirty-one groundwater samples from wells were 
analysed over three time periods. According to the water 
quality spatial model, it was found that despite the decreasing 
trend in rainfall amount, expansion in agricultural areas and 
population growth, water quality in large areas of the study 
area is still suitable for human and farmer consumption. In a 
study by Raheja et al. [47], groundwater quality in Kurukshetra, 
Haryana, India, was assessed using data from 19 sites. Results 
showed 5.3% of samples had high limits, 68.42% average limits, 
and 26.28% low limits for irrigation. The Wilcox plot indicated 
78.9% of samples were in the excellent to good category. 
Principal component analysis (PCA) identified five components 
explaining 79.23% of the total variance in water quality. 
Mogaraju [48] used machine learning to analyze groundwater 
quality, finding RF and KNN models to be optimal. The water 
quality index assigned values of 1 or 2 to variables exceeding 
prescribed limits. 

A major objective of this study is to investigate the groundwater 
quality class of the Qazvin plain aquifer for agricultural 
purposes in Iran using the Wilcox classification method over a 
four-year period (2015-2018). A sub-objective of this study is 
to investigate and compare the accuracy of the IDW method 
with optimal power and kriging statistics based on spherical, 
exponential, and Gaussian semi-variograms when drawing 
groundwater quality maps. 

 

2. Material and methods 

2.1. Study area 

The study area, which covers 3733.68 km2, is located in the 
Qazvin Plain of Iran. The Qazvin Plain lies in the range of 
longitudes 49°25' to 50°35' E and latitudes 35°25' to 36°25' N. 
The plain consists of wide alluvial plains formed by sediments 
from surface streams in the mountains that surround around it. 
During the course of the plain, the height varies between 1150 
and 1500 meters, while the height of the mountainous areas 
varies from 2900 meters in the northeast to 2600 meters in the 
south. It is generally inclined towards the east, with a slope of 
3% in the foothill areas and less than 1% in the plain itself. 
During the past 10 years, the average annual rainfall in the 
province of Qazvin has been 306.3 mm and the average annual 
temperature has been 14.9 °C. Checking the monthly statistics 
of the stations in the province shows that in these stations, July 
and August are the hottest months while January and February 
are the coldest months. According to the annual temperature 
map of the province, the northeastern and northern elevations 
of the province, as well as the elevations of Shahr-Auj in the 
southwest of the province, have lower temperatures than other 
parts of the province. The lowest average annual temperature 
is 2 0C, which is observed in the northeastern peak and the 
highest average annual temperature is 18 0C, which can be seen 
in the low-altitude areas of the northwest around Sefid Rood 

Dam Lake. In addition, in the plain and inner parts of the 
province, in the eastern and southern border of Boyin Zahra 
city, the average temperature is 14.5 0C. The average annual 
rainfall in Qazvin province during the last 10 years has been 
306.3 mm. Also, the relative humidity is around 51%. This 
province is affected by Siberian and Mediterranean winds, 
which are very important factors in controlling the province's 
climate (Figure 1). According to the De Martonne classification, 
the region has a semi-arid climate. Climate diversity has 
provided favourable conditions for the cultivation of tropical 
crops in different parts of the study area. As a result of its fertile 
soil and access to sufficient surface and groundwater, Qazvin is 
renowned for its 33 species of grapes and vineyards. The 
growth of different plant species that can be seen in Qazvin 
province is the result of the climate diversity in this province. 
Most of the area of the province is covered by steppe 
(mountainous, foothills and desert), where most of its plants 
are: Milkvetch, Alhagi and Mugworts. Also, the pastures of this 
province include steppe territory and mountain meadows, 
which cover about 60% of its area. These pastures, together 
with the forests of the province, have great economic and 
environmental value, and it is necessary to preserve them. The 
province's groundwater resources provide approximately 72% 
of its agricultural water needs. Qazvin's alluvial soils have a 
high degree of permeability [49]. Due to the rainfall in the 
region, some of the wastes on the surface penetrate the ground 
and contaminate groundwater aquifers. 

Over the period of four years (2015-2018), the qualitative 
parameters of 23 wells, including salinity, EC, and SAR, have 
been evaluated. The location of the wells is depicted in Figure 
1. Also shown in Table 1 are the locations and geographical 
locations of piezometric wells in the Qazvin plain. 

 

Table 1. Geographical locations of wells in Qazvin plain 

1No Stations 2 UTMx 2 UTMy 

1 Farsjin 354746 3986834 
2 Spike 377877 3963817 

3 Danesfahan 385627 3961674 

4 Kahak 387143 3999591 

5 Velazjerd 388360 3984656 

6 Dolatabad 394787 4003142 

7 Abdul Rab Abad 396260 3980817 

8 Shireh Esfahan 397869 4010658 

9 Mahmudabadeh 
nomone 

400009 4017886 

10 Moin 403118 3994084 

11 Jamalabad 408134 4009103 

12 Gadimabad 408730 4004349 

13 Amirabad 410518 3955940 

14 Sagzabad 411041 3962960 

15 Mohammadabadkhareh 413461 3986215 

16 Papleyvasati 419743 3978907 

17 Elhabad 423262 3972676 

18 Khakali 425250 4003554 

19 Shahrabad 426019 3984227 

20 Fathabad 429199 3956289 

21 Zageh 440320 3995536 

22 Kazanchal 441011 3990831 

23 Nodeh 395393 3962940 
1 Number 
2 Universal Transverse Mercator 
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Figure 1. Location of the study area and distribution of selected wells 

2.2. Irrigation water classification 

Agricultural water quality classes were determined using the 
Wilcox classification, one of the most widely used classifications 
in this field. Agricultural water is classified into four groups based 
on EC and SAR, with excellent, suitable, average, and unsuitable 
(Table 2) and 16 categories (Table 3) [50]. Annual rainfall time 
series of Qazvin Plain from 2010 to 2020 are given in Figure 2 
(May is the wettest, August is the driest month). 

In terms of agricultural water use, salinity and sodium 
parameters are the most important quality criteria. As well as 
affecting plant growth, they also determines the quality of 

irrigation water. In addition, it affects the permeability of the soil. 
The Wilcox diagram, which consists of two orthogonal axes, is 
generally used to classify water into different classes for 
agricultural use. In this diagram, the horizontal axis represents 
the electrical conductivity in micromhos per centimeter, while 
the vertical axis represents the SAR. There are 16 regions in the 
chart that are used to determine the amount of water [51]. There 
is a direct relationship between the electrical conductivity of 
groundwater and its total dissolved solids (TDS) and 
temperature. Due to the increase in these two factors, the salinity 
increases, and as a result, the quality of the water decreases. 

 
Table 2. Classification criteria in terms of agricultural water quality 

Classification SAR Classification EC (μS/cm) Water quality 
1S <10 C1 <250 Excellent 
2S 10-18 2C 250-750 Good 
3S 18-26 3C 750-2250 Average 
4S >26 4C >2250 unsuitable 

 
Table 3. Different classification of water and type of quality based on Wilcox classification 

Classification Water quality type for agricultural use No 
1S1C Clean - completely harmless to agriculture 1 

2S1, C2S2, C1S2C Slightly salty - almost suitable for agriculture 2 
3S1, C3S2, C1S3, C2S3, C3S3C Salinity - for agriculture with the necessary arrangements 3 

4S1, C4S2, C4S3, C4S4, C3S4, C2S4, C1S4C Too salty - harmful to agriculture 4 
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Figure 2. Annual rainfall time series of Qazvin Plain from 2010 to 2020  

 

 

2.3. GIS and Interpolation 

The amount of groundwater quality change at the aquifer level 
can be determined by mapping the region's groundwater quality 
with the aid of ESRI ArcGIS 10.4.1 software. These maps were 
created using interpolation techniques, which also estimated the 
effective parameters of the Wilcox method for non-sampled 
points. Existing techniques for interpolation in an Arc Map 
environment are in two forms deterministic and geostatistical. In 
specific methods for prediction, mathematical functions are used 
according to the type of interpolation; however, in geostatistical 
methods, in addition to mathematical functions, statistics are also 
used to predict unknown points. In the present study, specific 
IDW and kriging geostatistical methods were used. 

Because stochastic variables are viewed as independent in the 
analysis of data collected using classical statistics, the effect 
between neighbouring observations is neglected, but 
geostatistical methods are of great importance because of the 
spatial position of the data and their spatial structure. 
Interpolation and estimation of the desired variables are more 
accurate [52]. The most common geostatistical technique is 
kriging, which is based on a weighted moving average. Because it 
is a probabilistic, expressive method and the best unbiased linear 
estimator, the estimate's variance should be small and free of 
systematic errors. The absoluteness of the kriging estimation in 
interpolating points, and plotting equivalence lines using 
maximum points with known coordinates, is one of its main 
advantages [53]. Equation 1 shows the kriging method: 

Z∗ = ∑ λi Z(xi)
N
i=1                                                                            (1) 

Where n is the number of data points, Z* is the estimated spatial 
data value, Z(xi) is the observed data at point i, and λi is the 
sample weight at xi, which indicates the importance of point i in 
kriging calculations, and the sum of λi coefficients is 1 [54]. 

The spatial link between random variables is calculated using a 
semi-variograms. Equation 2 shows the relation of the 
experimental semi-variogram criterion γ(h). 

γ(ℎ) =
1

2 𝑛(ℎ)
 ∑ [𝑍(𝑥𝑖) − 𝑍(𝑥𝑖+ℎ)2]

𝑛(ℎ)
𝑖=1                  (2) 

In which n(h) is the number of points pairs in a particular class of 
distance and direction, Z(xi) and Z(xi+h) represent the location of 
Z, and γ(h) shows the values of the semi-experimental 
exponential change at distances h. In the Kriging interpolation 
method, it is necessary to replace the experimental discontinuous 
variogram with a theoretical continuous variogram. In the 
present study, Gaussian, exponential, and a hemi-spherical (half 
sphere) model have been used. These models are shown in 
Equations 3 to 5, respectively: 

γ(ℎ) = 𝑐. [1 − exp (−
ℎ2

𝑎2)                                            (3) 

γ(ℎ) = 𝑐. 𝐸𝑥𝑝 (
ℎ

𝑎
) = 𝑐. [1 − exp (−

ℎ

𝑎
)                         (4) 

𝛾(ℎ) = 𝑐. 𝑆𝑝ℎ (
ℎ

𝑎
) =

{
𝑐. [1.5

ℎ

𝑎
− 0.5(

ℎ

𝑎
)3, 𝑖𝑓(ℎ ≤ 𝑎)

𝑐, 𝑖𝑓(ℎ > 𝑎)
}                                        (5)                

In the all above equations, C demonstrates that C is the 

upper limit of the variogram. 

𝑅𝑀𝑆𝐸 = √
1

𝑛
 ∑ (𝑍(𝑥𝑖) − Ẑ(𝑥𝑖))2𝑛

𝑖=1                                   (6) 

In the above equation, n is the number of points, Z(xi) is the actual 
value of the point xi, Ẑ(xi) Is the estimated value, and s is the 
variance. For EC and SAR parameters, a variogram with less 
RMSE is considered the best variogram for each year. The IDW 
approach assumes that the degree of similarity and correlation 
between neighbours is inversely proportional to their distance, 
which can be defined as the distance from any neighbouring 
point. This method is used when the sample points are 
sufficiently well distributed at the local scale levels. In this 
method, each point in the calculation has weight, so the greater 
the distance, the less effective the known point in estimating the 
unknown point and the calculation of the mean, so the closer 
distances gain weight [55]. The formula for the IDW method is as 
follows [56, 57]. 
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𝑍0 =
∑ 𝑧𝑖𝑑𝑖

−𝑛𝑁
𝑖=1

∑ 𝑑𝑖
−𝑛𝑁

𝑖=1

                                                                                     (7) 

In which Z0 shows the estimate of the value of the variable z at 
point i, zi is the sample value at point i, di is the distance of the 
sample to the estimated point and n is the exponential power 
parameter that determines weight based on distance. 

On the other hand, using power in inverse distance, the influence 
of the degree of spatial dependence on data can be applied. Many 
scholars have used inverse power. Interpolation in this method is 
estimated so that the desired range is converted into a matrix 
with cells of the same size. The spatial coordinates of this matrix 
are clear and have a unit of measurement. For example, it has a 
50 x 50-meter cell. In this network, the variable's value is known 
in some cells in other words, it is measured, and in other cells, this 
amount is unknown. Cells whose value is unknown are estimated 
using the surrounding cells in a certain radius based on the 
following formula [58]: 

𝑍̂(𝑠0) = ∑ 𝜆𝑖
𝑁
𝑖=1 𝑍(𝑠𝑖)                                                                  (8) 

Where Z(si) is the value measured in the ith position and λi is the 
weight of the value measured in the ith position. S is the predicted 
position, and N is the number of points measured. λi is a function 
of the distance between them, or in other words, the shorter the 
distance, the greater the effect of the unknown point, so the 
inverse of the distances between them is used as a weight in the 
model. 

Appropriate power is closely related to the role of distance in 
estimating unknown points, in other words, increasing power 

increases the effect of distance in interpolation. This means that 
the similarity of the unknown points to the nearer known 
neighbours rises with increasing power in the model. When the 
power is zero (ρ = 0), the role of the distance becomes the same, 
and the unknown value is obtained from the average of the 
neighbouring points [59]. 

 
3. Results and discussion 
 

Qualitative studies of the Qazvin plain aquifer have been 
conducted on 23 wells over a four-year period between 2015 and 
2018, which used EC and SAR parameters. IDW and Kriging 
methods were applied via a GIS platform for the interpolation of 
EC and SAR parameters. The RMSE metric was used to validate 
each year, and its values are presented in Table 4. Table 4 
indicates that the method with the lowest RMSE is selected as the 
superior interpolation method. 

In Table 4, for all years, the IDW method has optimal capacities in 
the range of 1.3 to 1.59. Regarding the SAR, in 2016 and 2017, the 
IDW method had an optimal power of 2.05 and 2.5, respectively; 
in 2015, the spherical variogram and also in 2018, the 
exponential variogram were selected as the superior 
interpolation methods. 

Figures 3 and 4 illustrate the interpolation of EC and SAR 
parameters using superior methods. 

 

 

 

Table 4. The parameters and the interpolation techniques results 

Parameters Year 
Optimal 

Power 
IDW 

Kriging 

Spherical Exponential Gaussian 

EC 

2015 1.59 1391.84 1478.3 1569.23 1427.68 

2016 1.48 1337.58 1423.68 1442.9 1412.85 

2017 1.37 1595.81 1674.97 1684.14 1654.37 

2018 1.30 1871.07 1941.96 1938.21 1932.91 

SAR 

2015 2.60 2.14 2.07 2.16 2.13 

2016 2.05 2.19 2.38 2.2 2.35 

2017 2.50 2.14 2.25 2.17 2.23 

2018 1.79 3.13 3.17 3.1 3.21 
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Figure 3. Map of spatial changes of EC in Qazvin Plain in the period of 2015-2018 
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Figure 4. Map of spatial variation of SAR in Qazvin Plain in the period of 2015-2018 
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Figure 5. Groundwater quality map for agriculture in Qazvin plain based on Wilcox method 

 

 

Figure 5 shows the groundwater quality map for agriculture 
based on the Wilcox method (Tables 2 and 3), which is obtained 
from the overlap of spatial change maps of groundwater quality 
criteria based on this method (Figures 3 and 4). 

According to Figure 5, a small portion of the north, northeast, and 
west of the Qazvin Plain in 2015 had slightly saline water and was 
almost suitable for agriculture. According to Figure 2, the amount 
of slightly saline water in the region decreased from 2015 to 
2018, as a result of the relative increase in rainfall in the region. 
Groundwater quality can also be improved by reducing the 
cultivation of irrigated crops. There is highly saline groundwater 
in the southern and southeastern parts of the aquifer, which is 
detrimental to agriculture. In 2015, six out of 23 wells were 
classified as high saline water wells, which increased to nine 
wells in 2018. In the Qazvin Plain, there is no part that has fresh 
groundwater that is entirely harmless to agriculture due to a 

reduction in rainfall compared to the average, and this may be 
one of the factors contributing to the increase in the amount of 
high saline water. Over the past four years, the percentage of 
slightly saline water has decreased, while the percentage of high 
saline water, which occupies about 40% of the aquifer area, has 
increased. 

As shown in Table 5, different groundwater qualities are assigned 
to different areas and percentages. According to Table 5, a 
significant percentage of the aquifer area contains saline water, 
which can be used for agricultural purposes by changing 
cultivation patterns and using saline-irrigated crops and plants. 
Between 2015 and 2018, the percentage of highly saline 
groundwater increased from 25.98 to 36.44, while the percentage 
of slightly saline groundwater decreased from 12.54 to 3.14. This 
has resulted in a reduction in the groundwater quality of the 
Qazvin aquifer. 
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4. Conclusions 

The EC is an important factor in determining the appropriate 
quality of water for agricultural use. However, irrigation with 
high salinity can cause a significant increase in salt levels in the 
soil, resulting in crop damage. In contrast, high sodium levels in 
water due to changes in soil properties adversely affect 
agricultural lands and sensitive crops. The Iranian groundwater 
resources are exploited in unfavourable conditions, leading to a 
decline in groundwater levels as a result of improper extraction 

practices. Aquifer inputs were reduced as a result of improper 
pollution management. 

In contrast, the water quality class is becoming increasingly 
unsuitable. Based on a 4-year statistical period (2015-2018), EC 
and SAR parameters were mapped using the kriging 
geostatistical technique, and the IDW method was selected in the 
Qazvin plain aquifer. Among the three variograms of the Kriging 
method and the optimal power of the IDW method, the IDW 
method was selected for EC, the IDW method for SAR in 2016 and 
2017, and semi-spherical and exponential changes in 2015 and 
2018, respectively. 

 
 
 

Table 5. Area and percent of water quality in the years 2015 to 2018 

Year Quality 
Area 

(km2) 
Percent 

(%) 

2015 

Low saline-slightly suitable for agriculture 226.35 12.54 

Saline-suitable for agriculture with special conditions 2460.34 61.48 

High saline-Not suitable for agriculture 1046.84 25.98 

2016 

Low saline-slightly suitable for agriculture 158.58 4.25 

Saline-suitable for agriculture with special conditions 2457.59 65.82 

High saline-Not suitable for agriculture 1117.36 29.93 

2017 

Low saline-slightly suitable for agriculture 145.24 3.89 

Saline-suitable for agriculture with special conditions 2425.73 64.97 

High saline-Not suitable for agriculture 1162.56 31.14 

2018 

Low saline-slightly suitable for agriculture 117.34 3.14 

Saline-suitable for agriculture with special conditions 2255.82 60.42 

High saline-Not suitable for agriculture 1360.37 36.44 

 
 

With the increase in rainfall from 2015 to 2018, it appears that 
the amount of slightly saline and saline water has decreased, 
while the amount of highly saline water has increased. As a result 
of these findings, it can be concluded that the quality of 
groundwater in the Qazvin aquifer is declining, with about 40% 
of the aquifer containing highly salty and harmful water for 
agriculture. Therefore, it is recommended that in relatively low 
saline areas, the existing cultivation pattern be changed to saline-
friendly plants and irrigation efficiency, be increased, so that less 
water is drawn from the aquifer, and highly saline and harmful 
areas are prohibited from harvesting groundwater. 

This study's findings, primarily based on the Wilcox diagram, 
align with previous research within Iran [22, 23, 24], indicating a 
widespread decline in groundwater quality for both drinking and 
agricultural purposes across many Iranian plains. Similarly, 
comparisons with studies outside Iran, such as in Pakistan [26], 
Southern India [31], Korea [32], and USA [60] reveal that 
spatiotemporal analysis and geostatistical methods using GIS 
have been employed to assess groundwater quality in urban 
areas for drinking and in rural areas for irrigation, yielding 
comparable results to this study.  

In assessing the current quality and contamination risk of 
groundwater, it is essential to take into account environmental 
factors as well as agricultural ones [61, 62, 63]. It is essential to 
note that the findings of this study may not be directly 

extrapolated to other plains. A comprehensive study 
encompassing all Iranian plains is recommended. Further 
investigation into long-term trends in water quality, considering 
variations in rainfall and groundwater extraction rates, is crucial 
for a thorough understanding of this issue. 
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