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ABSTRACT 
This paper investigates the influence of the ion channel noise on the response of a Hodgkin-Huxley neuron in 

different stimulus regimes. Our results reveal that type of stimuli can induce emergence of various phenomena 
with the help of such an internal noise. In the case of DC current introduction, number of firings monotonically 

increase with high noise intensity, and firing behaviour is also irregular. Intermediate noise levels give rise to 

reduction of neural firings in spiking neuron, which is known as inverse stochastic resonance phenomenon. 

Moreover, firing behaviour of such neuron interestingly becomes highly irregular even up to higher noise 

intensities. On the other hand, we examine the influence of channel noise on the neural response to a periodic 

signal. We show that frequency of subthreshold signal has a significant effect on the response sensitivity whereas 

firing probability and regularity are in a close relationship depending on increasing noise intensity. Finally, firing 

behaviour in the case of suprathreshold periodic forcing is analysed. Up to a certain level of channel noise, it 

does not seriously affect number of firings which has a nonlinear relationship with increasing signal frequencies. 

It is also possible to see inverse stochastic resonance effect at the high frequency regions. Another interesting 

finding is that increasing channel noise cannot enhance the regularity at certain frequencies, yielding the 

presence of irregular response region at suprathreshold periodic inputs. This work contributes to a better 

understanding of the role of internal noise in the relation between incoming stimuli and neural response. 
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Farklı Uyartım Rejimlerinde Stokastik Hodgkin-Huxley Nöronunun 

Ateşleme Karakteristiğinin Sayısal İncelemesi 
 

ÖZ 
Bu makale, iyon kanal gürültüsünün farklı uyartım rejimlerinde Hodgkin-Huxley nöronunun tepkisi üzerindeki 

etkisini araştırmaktadır. Sonuçlarımız, uyartım tipinin içsel gürültü yardımıyla çeşitli olguların ortaya çıkmasına 

neden olabileceğini göstermektedir. DC akım uygulanması durumunda ateşleme sayısı yüksek gürültü 

yoğunluğuyla monoton bir şekilde artmakta ve ateşleme davranışı da düzensiz olmaktadır. Orta düzeydeki 

gürültü seviyeleri, ateşleyen nöronlardaki ateşleme sayılarının azalmasına, yani ters stokastik rezonans olayına 

yol açmaktadır. Üstelik bu nöronun ateşleme davranışı ilginç bir şekilde yüksek gürültü yoğunluklarında bile 

oldukça düzensiz olmaktadır. Öte yandan, kanal gürültüsünün periyodik bir sinyale verilen nöral cevap 

üzerindeki etkisini inceledik. Eşikaltı sinyal frekansının cevap hassasiyeti üzerinde önemli bir etkiye sahip iken, 

artan gürültü yoğunluğuna bağlı olarak ateşleme olasılığı ve düzenliliğin yakın bir ilişkide olduğunu 
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gösteriyoruz. Son olarak, eşik üstü periyodik uyartım durumunda ateşleme davranışı analiz edilmiştir. Belirli bir 

kanal gürültüsü seviyesine kadar, gürültü artan sinyal frekanslarıyla doğrusal olmayan bir ilişkiye sahip olan 

ateşleme sayısını ciddi şekilde etkilememektedir. Yüksek frekans bölgelerinde de ters stokastik rezonans etkisini 

görmek mümkündür. Bir diğer ilginç bulgu ise artan kanal gürültüsünün belirli frekanslarda düzenliliği 

arttıramamasıdır, ki bu eşik üstü periyodik sinyal uygulandığında düzensiz tepki bölgesinin varlığını ortaya 

çıkarmaktadır. Bu çalışma, gelen uyaranlar ile nöral cevap arasındaki ilişkide içsel gürültünün rolünün daha iyi 

anlaşılmasına katkıda bulunmaktadır. 

 

Anahtar Kelimeler: Kanal gürültüsü, ateşleme düzenliliği, ateşleme oranı, DC uyartım, periyodik girdi 

 

 

I. INTRODUCTION 
 

The nervous system is the most complicated system in humans, and how it maintains flawless 

functionality with high efficiency remain a mystery. This system undertakes essential functions like 

regulating internal processes, carrying out communication, and processing information. It is widely 

accepted that these tasks are accomplished through certain electrical signals known as action 

potentials, generated by neurons that are the fundamental units of the system. This also indicates that 

neurons are the vital biological components that receive and respond to environmental stimuli [1-2]. 

The collective behaviours of neurons, especially their firing patterns in various brain regions, are 

linked to critical functions such as central pattern generation and working memory. Numerous studies 

have demonstrated that neural activities exhibit regular, irregular, and chaotic spiking regimes while 

performing vital functions [3-7]. 

 

In the cortex, neurons can respond to a variety of stimulus types, such as sensory stimuli (e.g. visual, 

auditory) [8], integrative stimuli from decision-making processes [9] and direct electrical currents 

[10]. Each type of stimulus produces different responses in cortical neurons. The nature of stimulus 

types that a neuron can respond to generally depends on its position, function, and connectivity within 

the brain [11-13]. However, regardless of its type, stimulus has a significant effect on the excitability 

of neurons. Any type of stimuli can profoundly impact the excitability of neurons by modulating 

membrane potential through depolarization or hyperpolarization, excitatory or inhibitory synaptic 

inputs, and through long-term plasticity mechanisms, thereby affecting how neurons process and 

respond to information signals [14-16]. 

 

As a part of neural information processing task, there are two fundamental encoding mechanisms in 

the nervous system: temporal and rate coding. These are two important information processing 

strategies by which the nervous system encodes and transmits information. Rate coding refers to the 

agreement that the frequency of action potentials or firing rate within a neuron encodes information 

about a stimulus [17-18]. In this strategy, a higher firing rate generally means a stronger stimulus, 

while a lower rate indicates a weaker one. This type of coding is relatively straightforward and has 

been extensively studied, particularly in sensory systems like vision and audition, where the intensity 

of a stimulus can be said to be directly correlated with the firing rate of specific neurons [19-21]. 

Temporal coding, however, is believed to be performed with the precise timing of action potentials. In 

this strategy, the timing of each spike, relative to other spikes, carries definite information [22]. 

Temporal coding can capture more complex information than rate coding, such as the fine temporal 

structure of an auditory input or the synchronization of spikes across different neurons in the same 

cortical or brain area [23-25]. This mechanism is particularly important in neural circuits where timing 

is crucial, such as in the auditory system for sound localization or in the hippocampus for encoding 

sequences of vital body functions. Both coding strategies often work together to enhance the brain's 

ability to process and interpret complex stimuli [26-29]. 

 

Extensive experimental and theoretical works manifest that neurons are continuously subjected to 

noise throughout all stages of information processing. In recent decades, significant progress has been 

made in understanding the effects of noise on neuron dynamics. A great number of neuroscience 

research has revealed that noise can induce a variety of complex behavioural patterns, including 
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stochastic resonance [30-32], coherence resonance [33-34], synchronization [35-36], bursting [37] and 

chaos [38]. These findings suggest that noise plays a crucial role in regular functioning of the brain, 

such as cognitive and perceptual mechanisms [39-40]. 

 

One of the main sources of noise in the nervous system is the ion channel noise. Channel noise refers 

to the variability and randomness that are inherent in the opening and closing processes of ion 

channels within neural membranes. This type of noise arises due to the stochastic nature of ion 

channel behaviour, where a single channel switches between open and closed states in an 

unpredictable manner [41]. Despite being a source of variability, channel noise can significantly 

influence neural functions, e.g. signal processing and information transmission [42-46]. It can impact 

the reliability and precision of action potential generation, affect synaptic transmission, and even 

contribute to the overall excitability of neurons. Interestingly, while channel noise might seem 

destructive, it can also play constructive roles, such as enhancing signal detection through mechanisms 

like stochastic resonance, where the presence of a proper noise level actually improves the ability of 
neurons to respond to weak inputs [47-48]. A deep understanding of channel noise is crucial for a 

comprehension of neural dynamics and the robustness of neural computations in the brain. 

 
In the present work, we investigate neural behaviour related to rate and temporal coding using 

spatiotemporal dynamics, i.e. spike number and firing regularity. With a holistic approach which 

considers different stimuli projections, we obtain a general view on firing behaviour of a single 

neuron. To do this, we use class II Hodgkin-Huxley neuron of which variability stems from the 

presence of internal noise, i.e. ion channel noise. We perform comprehensive simulations applying 

different stimulus types to the neuron (e.g. direct current stimulus, subthreshold and suprathreshold 

sinusoidal forcing). The rest of the paper is organized as follows: In the next section, we introduce the 

model, that is, a stochastic Hodgkin- Huxley neuron, and the methods used for the clarification of 

neural response to applied stimuli projections in terms of firing rate and regularity. In section III, we 

present the bifurcation diagram of deterministic Hodgkin-Huxley neuron model and give a brief 

analysis on its firing behaviour and excitability. Then, we demonstrate our main results regarding 

direct electric current, subthreshold weak signal input and suprathreshold periodic forcing cases. 

Finally, we summarize the main conclusions in section IV. 

 

 

II. MODEL AND METHOD 
 

In our study, stochastic Hodgkin-Huxley (H-H) neuron with ion channel noise dynamics is considered. 

The time variation of the membrane potential of stochastic H-H neuron is described by the following 

equations [49]: 

 

𝐶
𝑑𝑉

𝑑𝑡
= 𝐼𝑒𝑥 − 𝑔𝑁𝑎𝑚3ℎ(𝑉 − 𝐸𝑁𝑎) − 𝑔𝐾𝑛4(𝑉 − 𝐸𝐾) − 𝑔𝐿(𝑉 − 𝐸𝐿) (1) 

 

Here, 𝑉 is the membrane potential in millivolts. 𝐶 = 1 𝑢𝐹/𝑐𝑚2 represents the membrane capacitance 

of considered neuron. Maximum channel conductances are given as 𝑔𝑁𝑎 = 120 𝑚𝑆/𝑐𝑚2 for sodium, 

𝑔𝐾 = 36 𝑚𝑆/𝑐𝑚2 for potassium, and 𝑔𝐿 = 0.3 𝑚𝑆/𝑐𝑚2 for leakage currents. Correspondingly, the 

equilibrium potentials for these ion currents are determined as 𝐸𝑁𝑎 = 115 𝑚𝑉, 𝐸𝐾 = −12 𝑚𝑉, and 

𝐸𝐿 = 10.6 𝑚𝑉, respectively. Activation and inactivation of sodium gates are controlled by probability 

functions 𝑚 and ℎ, whereas activation of potassium gates is controlled by probability function 𝑛. The 

random motion of each ion gates creates stochastic effects on neuron dynamics. The change in gate 

probability functions over time with the presence of stochastic dynamics is modeled according to the 

Fox algorithm [50]: 

 
𝑑𝑥

𝑑𝑡
= 𝛼𝑥(𝑉)(1 − 𝑥) − 𝛽𝑥(𝑉)𝑥 + 𝜉𝑥(𝑡), 𝑥 = 𝑚; 𝑛; ℎ (2) 
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The 𝛼𝑥 and 𝛽𝑥 given in Equation (2) are rate functions showing the opening and closing of ion gates 

that vary depending on the membrane potential, and are calculated for each gate variable as follows: 

 

𝛼𝑚 = 0.1 
(25 − 𝑉)

𝑒𝑥𝑝[(25 − 𝑉)/10] − 1
 (3) 

𝛽𝑚 = 4 𝑒𝑥𝑝[−𝑉/10] (4) 

𝛼𝑛 = 0.01 
(10 − 𝑉)

𝑒𝑥𝑝[(10 − 𝑉)/10] − 1
 (5) 

𝛽𝑛 = 0.125 𝑒𝑥𝑝[−𝑉/80] (6) 

𝛼ℎ = 0.07 𝑒𝑥𝑝[−𝑉/20]  (7) 

𝛽ℎ =
1

𝑒𝑥𝑝[(30 − 𝑉)/10] + 1
 (8) 

 

The randomness in the sodium and potassium gates is described by white Gaussian noise whose 

autocorrelation function is as follows: 

 

〈𝜉𝑚(𝑡)𝜉𝑚(𝑡′)〉 =
2𝛼𝑚𝛽𝑚

𝑁𝑁𝑎(𝛼𝑚 + 𝛽𝑚) 
𝛿(𝑡 − 𝑡′) (9) 

〈𝜉ℎ(𝑡)𝜉ℎ(𝑡′)〉 =
2𝛼ℎ𝛽ℎ

𝑁𝑁𝑎(𝛼ℎ + 𝛽ℎ) 
𝛿(𝑡 − 𝑡′) (10) 

〈𝜉𝑛(𝑡)𝜉𝑛(𝑡′)〉 =
2𝛼𝑛𝛽𝑛

𝑁𝐾(𝛼𝑛 + 𝛽𝑛) 
𝛿(𝑡 − 𝑡′) (11) 

 

Here, the parameters 𝑁𝑁𝑎 and 𝑁𝐾 represent the total sodium and potassium channel numbers on the 

membrane surface, respectively. The total channel numbers are calculated for a membrane area of 𝐴 

with the equations 𝑁𝑁𝑎 = 𝜌𝑁𝑎𝐴 and 𝑁𝐾 = 𝜌𝐾𝐴. In these equations, the values given as 𝜌𝑁𝑎 =
60 𝜇𝑚−2 and 𝜌𝐾 = 18 𝜇𝑚−2 indicate related channel densities. Thus, 𝐴 becomes a parameter that 

determines the level of noise originated from ion channels. Literally, the membrane area and the 

effective ion channel noise amplitude are inversely proportional. Accordingly, since many ion 

channels are involved in the system dynamics for a large membrane area, it can be said that the 

stochastic contribution of individual ion channels becomes negligible. Lastly, 𝐼𝑒𝑥 = 𝐼𝑏 + 𝑆 sin(2𝜋𝑓𝑡 ) 

is the total input applied to the neuron externally. 𝐼𝑏 is the bias current that also determines the 

excitability of the neuron. 𝑆 sin(2𝜋𝑓𝑡 ) is the sinusoidal input current, which is used for different 

forcing regimes, i.e. subthreshold or suprathreshold stimulus state. 

 

One of the characteristic features of cortical neurons is that the spike trains they emit are irregular at a 

certain level and different neuron types at distinct brain layers exhibit regularity at different degrees. 

We examine the firing regularity via the coefficient of variation (𝐶𝑉). This method is defined as the 

ratio of the standard deviation of the interspike intervals (𝐼𝑆𝐼) in the entire spike train to the mean 𝐼𝑆𝐼 

and is calculated at trial 𝑖 as follows [51]: 

 

 

𝐶𝑉𝑖 =
𝜎𝐼𝑆𝐼

〈𝐼𝑆𝐼〉
 (12) 

𝜎𝐼𝑆𝐼 = √〈𝐼𝑆𝐼2〉 − 〈𝐼𝑆𝐼〉2 (13) 

〈𝐼𝑆𝐼〉 = ∑
𝑡𝑠+1 − 𝑡𝑠

𝑝 

𝑝−1

𝑠=1
 (14) 
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〈𝐼𝑆𝐼2〉 = ∑
(𝑡𝑠+1 − 𝑡𝑠)2 

𝑝 

𝑝−1

𝑠=1
 (15) 

 

where 𝑝 indicates total number of spikes in a single simulation and 𝑡𝑠  denotes occurrence time of 𝑠𝑡ℎ 

spike. As 𝐶𝑉 value approaches zero, it represents regularity, and as it takes values close to one and 

even larger values, it serves as irregularity. In completely irregular firing sequences, 𝐶𝑉 can be greater 

than one [52]. 

 

To further characterize spiking behaviour quantitatively, we calculate the mean firing rate that is 

averaged over trials for a given parameter set. We first randomly select initial conditions for the 

neuron with uniform probability within the range from −10 to 80 𝑚𝑉  for the membrane voltage 

variable 𝑉, and within the range from 0 to 1 for the gating variables 𝑚, 𝑛, and ℎ. After a transient time 

for 1 𝑠, we count the number of spikes 𝐹𝑅𝑖 generated by the neuron and calculate the regularity 

measure 𝐶𝑉𝑖 at trial 𝑖 within the following examination time 𝜏 = 30 𝑠. To obtain statistical accuracy, 

these procedures are repeated 𝐿 = 50 times for any parameter set, and the mean firing rate and the 

mean 𝐶𝑉 are calculated as follows: 

 

𝐹𝑅 =
1

𝜏𝐿
∑ 𝐹𝑅𝑖

𝐿

𝑖=1
 (16) 

𝐶𝑉 =
1

𝐿
∑ 𝐶𝑉𝑖

𝐿

𝑖=1
 (17) 

 

Numerical simulation of the system is integrated using the forward Euler algorithm with a time step 

10 𝜇𝑠. 

 

 

III. RESULTS AND DISCUSSION 
 

 

   
 

Figure 1. Bifurcation diagram of deterministic Hodgkin-Huxley neuron. Black solid (dashed) line represents 

stable (unstable) fixed point that the neuron exhibits resting behaviour. Blue (red) solid circles show stable 

(unstable) limit cycle which the neuron is at spiking mode. The limit cycles are born at Ib=6.26 with saddle-node 

bifurcation. As Ib increases, unstable limit cycle shrinks and collapses to an unstable fixed point at Ib=9.78 with 

subcritical Andronov–Hopf bifurcation. The interval between these two points defines the range of bistability 

where there is an unstable limit cycle that separates coexisting stable limit cycles and fixed points. 
 

In this study, we investigate firing behaviour of stochastic H-H neuron through the analysis of firing 

frequency and regularity under effect of channel noise modulations and different stimuli projections. 

To obtain a theoretical understanding for underlying process of emitting spikes, we first look at the 
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system behaviour of a deterministic H-H neuron. For this aim, we present two parameter bifurcation of 

H-H neuron model in figure 1 where panel a and panel b show long and zoomed-in version of the 

diagram. As a response to applied DC bias current, H-H neuron exhibits subcritical Andronov-Hopf 

bifurcation, which is a clear indication of class II excitability and a non-zero firing frequency. H-H 

neuron shows bistability between 𝐼𝑏 = 6.26 and 𝐼𝑏 = 9.78, implying that there are both stable limit 

cycle and stable fixed point at the same time in this interval, and it has an unstable limit cycle 

separating the two stable focuses. Fluctuations in neuron dynamics, such as noisy input currents, can 

force the neuron to oscillate or become silent by pushing towards the two attractors. Neurons is 

excitable, where there exists only stable fixed point, before the bistability interval. On the contrary, H-

H is a pacemaker neuron that continuously fires at a constant frequency after above-mentioned interval 

where there are stable limit cycle and unstable fixed point.  

 

  
 

Figure 2. Firing behaviour of class II H-H neuron depending on ion channel noise variations at different bias 

current levels. Panels show both (a) firing rate and (b) CV measure for corresponding bias current cases with 

same-coloured lines. It is seen that excitable neuron exhibits only spontaneous irregular spiking activity. 

However, when the neuron is bistable, it shows regular spiking behaviour in lower noise regions, and while 

noise intensity increases, inverse stochastic resonance effect emerges with a high irregularity. 

 

The level of DC input applied to the neuron can be considered as a bias current which determines the 

subthreshold and suprathreshold regimes. When 𝐼𝑏 > 6.26, the neuron may exhibit firing behaviour 

depending on the initial conditions and environmental factors. We now examine the effects of internal 

noise on firing behaviour and regularity of neural firing patterns in subthreshold and suprathreshold 

regimes. The noise governed by the Fox algorithm is modulated with the membrane surface area in 

order to control the internal noise level occurring in the ion channels. Accordingly, when the 

membrane area is small, random ion movements cause too much noise in the total membrane 

potential. Otherwise, the randomness in ion movements spreads over a much larger membrane area 

and fluctuations in membrane potential becomes minimal. Connected with these assumptions, the 

average firing numbers as a function of membrane area and the regularity in the firing patterns were 

calculated in the presence of increasing bias current. The obtained results are given in the figure 2. 

 

Figure 2a shows that the excitable neuron (𝐼𝑏 < 6.26) can fire spontaneously if channel noise with a 

high intensity is present. On the other hand, according to 𝐶𝑉 measure in figure 2b, an irregular firing 

pattern emerges in the size of the area where the neural firings first begin to occur, and as the size of 

surface area decreases, relatively more regular firings occur due to the increasing noise intensity. 

When the bias current applied to the neuron is taken as 𝐼𝑏 = 7, the neuron exhibits channel noise-

induced inverse stochastic resonance phenomenon, and this continues to occur at the suprathreshold 

excitation regions. When the stimulation is enough for the neuron to emit spikes (i.e. 𝐼𝑏 > 6.26), low 

channel noise has a limited effect on firing regularity and H-H neuron exhibits a regular firing activity 

with a constant firing rate. However, due to the stronger channel noise arising from membrane size in 

intervals where the ISR effect occurs, although the neuron is exposed to a stimulation current 

sufficient to fire, such a level of noise can prevent the neuron from firing or even push it to the silent 
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state. The main reason behind this fashion of spiking is that the neuron exhibits bistable behaviour in 

the range of 6.26 < 𝐼𝑏 < 9.78, and the unstable attractor separating these two stable states narrows as 

𝐼𝑏 increases. Thus, it makes easier to explain the behavior of regular firings with constant rates over a 

wider range due to increasing channel noise for the cases in this bias current interval. 

  
 

Figure 3. Firing behaviour of H-H neuron as a response to subthreshold periodic input signal. Panel a and 

panel b show firing rate (spike probability) and variation of CV as a function of ion channel noise for different 

signal frequencies. Legends in panel b are also valid for panel a. To obtain subthreshold regime, signal 

amplitude is fixed as S=1.4. 
 

Neurons constantly receive various stimuli in distinct nature from inner neural medium and 

environmental sources. Regarding this fact, we now investigate firing behaviour of stochastic H-H 

neuron exposed to sinusoidal inputs. We first explore how increasing channel noise shapes the neural 

response to the sinusoidal forcing signal that is subthreshold for deterministic H-H neuron. To do this, 

we measured number of firings and calculated regularity due to 𝐶𝑉 as a function of membrane area for 

different weak signal frequencies. Obtained results are depicted in figure 3. Basically, if internal 

channel noise arises from very narrow and large membrane patch areas, it has a similar effect on firing 

probability of neuron. This can be clearly seen from figure 3a. In these cases, regardless of varying 

weak signal frequencies, all sinusoidal inputs are subthreshold for deterministic H-H neuron to emit a 

spike and large area roughly makes membrane potential insensitive to ion fluctuations. On the other 

hand, very small membrane area produces highly intense ion channel noise, and this forces the neuron 

to fire spontaneously with a certain average frequency level. Apart from these extreme points, 

intermediate channel noise levels obtained through relative membrane areas induce different firing 

behaviours for varying weak signal frequencies. According to [53], threshold for spike generation 

shows the presence of a nonlinear relation between amplitude and frequency of sinusoidal forcing. 

Under the light of this evidence, the neuron receiving signal with a fixed amplitude 𝑆 = 1.4 at a given 

frequency 𝑓 = 30 and even 𝑓 = 100 needs more excitation to switch to firing mode than the cases of 

frequencies in between, such as 𝑓 = 60. Our results confirm that with inherent stochastic dynamics 

strong enough, sensitivity to subthreshold signal frequency for entering firing regime follows the same 

distance with the previous findings in presence of relative channel noise intensity. 

 

Furthermore, we explore how the regularity of neural firings is affected by internal noise if 

subthreshold signal oscillates at given different frequencies. In figure 3b, by comparing with figure 3a, 

it can be obviously inferred that behaviours of firing rate and regularity is in a close relationship. 

Notice that 𝐶𝑉 values are calculated only if there is a spiking activity. Since a sinusoidal input with 

𝑓 = 60 Hz makes the neuron more excitable to respond with an action potential, and lower or higher 

frequencies such as 𝑓 = 30 Hz or 𝑓 = 100 Hz make it harder, corresponding channel noise levels 

initially give rise to emergent irregular firing activity. The figure shows that if input signal is set with 

𝑓 = 60 Hz, i.e. frequency value which make it easier for neuron to respond, increasing channel noise 

intensity helps to more easily get through more regular spiking behaviour. The figure also 
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demonstrates that channel noise with high intensity coalesces the values of spiking regularity induced 

by different signal frequencies at a fairly decent 𝐶𝑉 level.  

 

  
 

Figure 4. Variation of (a) firing rate and (b) CV values as a function of weak signal frequencies for different ion 

channel noise intensities. Signal amplitude is subthreshold with S=1.4. Notice that legends in panel b are also 

valid for panel a. 
 

Our results show that a certain level of ion channel noise can trigger spiking events as a neural 

response to the subthreshold signal, and the frequency of the weak sinusoidal signal can modulate this 

level and precision of firing behaviour. To further illustrate the effect of frequency, we now present 

illustrations of firing rate and 𝐶𝑉 as functions of signal frequency at different noise levels. The results 

are shown in figure 4. Here we consider that no bias DC current is applied to the neuron and sinusoidal 

forcing is subthreshold. Under these conditions, figure 4a and 4b show that our class II neuron exhibits 

spiking behaviour with a relatively high firing rate at all frequencies in the presence of high channel 

noise (𝐴 = 10), and in this case, the emergent firing patterns are fairly regular. On the other hand, it is 

seen that when there is a medium level of channel noise (see 𝐴 = 100), the neuron can still fire at all 

frequencies, but especially in the range of approximately 𝑓 = 30 Hz to 𝑓 = 100 Hz, the firing rate 

forms a bell-shaped curve with the help of this noise intensity. Furthermore, it is seen that when much 

lower noise levels are adjusted, it is possible for the neuron to fire in a much narrower frequency range 

and this effect becomes evident around 𝑓 = 60 Hz, and as the noise weakens, the number of firings 

also decreases. Firing regularity appears as an inverse resonance curve around 𝑓 = 60 Hz in the range 

of 40 < 𝑓 < 80 Hz for 𝐴 = 1000. This can also indicate that the firing regularity increases 

considerably especially in this frequency range and the weak signal encoding becomes easier. Similar 

dynamical behavior was reported in [54-57], where signal detection performance for a subthreshold 

external stimulus with a varying frequency exhibited resonance behaviours with the help of different 

stochastic or chaotic signal fluctuations at an appropriate intensity, and it was shown that the optimum 

range of weak signal frequencies for high efficiency lay between approximately 𝑓 = 40 and 𝑓 = 80 

Hz. Lastly, limited and irregular firing behaviour is observed with only very sparse firings for 𝐴 =
10000. 

 

Brain operates in an inevitably noisy environment by generating action potentials which is the 

fundamental units of neural communication. One of main players in the nervous system are spiking 

neurons which are exposed to suprathreshold signals to emit a spike. These action potentials encode 

information not only in spike rate but also in their precise timing and pattern. Accordingly, through 

temporal and rate coding processes, neurons convey the strength and type of stimuli to target neurons 

or neural circuits. This ensures that sensory information is accurately represented and processed, and 

enables the nervous system to perceive and respond to stimuli with appropriate sensitivity and 

specificity [58-59]. Thus, suprathreshold signal encoding has a vital role in neural information 
processing and even perceptual decisions. 
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Figure 5. Firing behaviour of H-H neuron as a response to suprathreshold periodic forcing. Figure 

demonstrates firing rate in panel a and variation of CV in panel b as a function of ion channel noise for different 

frequencies (see same-coloured lines for the same frequency values). To obtain suprathreshold input, we set 

signal amplitude as S=4. 
 

Let us hereafter examine firing behaviour of stochastic H-H neuron exposed to suprathreshold signal 

under the effect of channel noise. We analysed firing rate with spiking numbers of neuron and 

regularity of spiking patterns via 𝐶𝑉 measure as functions of membrane area for different frequencies 

of suprathreshold signal whose amplitude is fixed as 𝑆 = 4. We selected our essential sample 

frequencies for suprathreshold regime from the interval that lays between 16.5 and 144 Hz for the 

given amplitude [60]. We demonstrate the results considering spike counts in figure 5a. When we look 

at firing rates for increasing frequency levels, all cases show us that each sinusoidal forcing is readily 

enough for the stochastic neuron to fire a spike. But firing rates do not increase completely parallel 

with varying signal frequency. In the firing rate scheme, it is possible to mention about two noise 

regions regarding spike counts in response to suprathreshold inputs: right and left side of 𝐴 ≈ 1000 to 

separate low and high channel noise intensities, respectively. When we analyse weak noise region, 

channel noise does not have any significant effect on the firing probability and the neuron exhibits 

nonlinear firing behaviour due to increasing signal frequency in here, such that firing mode emerges 

with a relatively low rate with 18 Hz and this continues to increase up to 100 Hz, then it non-

monotonically drops with a further increase of signal frequency. On the other hand, we see more 

intriguing firing behaviours in strong noise region. For instance, for 𝑓 = 100 and 𝑓 = 140 Hz, there 

appears inverse stochastic resonance effect whereby average firing activity of a neuron exhibits a 

depression with respect to noise. For 𝑓 = 70 Hz, it is seen that increasing channel noise still have no 

significant effect on firing probability of the neuron. Moreover, similar effect can be observed in the 

case of 𝑓 = 126 Hz only with a slight increase in firing rate. Furthermore, low values of selected 

suprathreshold signal frequencies show more stable firing behaviour in response to increasing noise 

intensity.  

 

To further investigate neural response behaviour in suprathreshold regime, stochastic H-H neuron is 

also analysed with regularity as a function of channel noise intensity. Figure 5b illustrates 

corresponding 𝐶𝑉 curves. It is apparent that while stochastic ion channel dynamics can change 

regularity at most cases, it remains very ineffective for suprathreshold signal with 𝑓 = 70 Hz and 𝑓 =
126 Hz. This can also imply that these frequency values cause principally irregular response of the 

neuron since also very low channel noise give rise to higher 𝐶𝑉 levels. On the other hand, extreme 

choices of suprathreshold signal frequency, i.e. lower and upper limit values 𝑓 = 18 Hz and 𝑓 = 140 

Hz, exhibit similar 𝐶𝑉 function due to channel noise modification. This is also valid for other 

remaining moderate values (𝑓 = 30 Hz and 𝑓 = 100 Hz). But regularity in the boundary 

circumstances changes faster than intermediate choices of suprathreshold signal frequency by 

increasing noise intensity. Furthermore, the last cases look like more advantageous in terms of regular 

spiking behaviour although high noise intensity cause irregular firing activity for all cases. 
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Figure 6. Variation of firing rate and CV depending on suprathreshold signal frequencies for deterministic and 

stochastic H-H neuron with different membrane areas (see same-coloured lines for the same noise levels). Signal 

amplitude is set as S=4. 
 

To get a broader picture, we illustrate in figure 6 firing rate and regularity functions of deterministic 

and stochastic H-H neurons depending on suprathreshold driving frequency for different levels of 

channel noise intensities. When we analyse very intense noise conditions (see brown lines, case of 

𝐴 = 10) in both figure 6a and 6b, it gives rise to very variable spiking behaviour regardless of signal 

frequency as seen from variations of firing probability and regularity. Lower channel noise due to 

higher membrane area seems to be ineffective for firing rate of the neuron at most of the signal 

frequency range. On the other hand, one can infer that predominantly there is a linear relationship 

between input frequency and firing rate of deterministic and stochastic H-H neurons (except the 

previous case). But, by looking deterministic H-H neuron, it is reasonable to speculate that there is 

some inconstancy within the intervals of roughly 63 < 𝑓 < 77 Hz and 120 < 𝑓 < 133 Hz. It happens 

for the noiseless and low noise cases. Thus, this can imply the presence of some deterioration events in 

the condition of the neural system. When we examine the regularity via 𝐶𝑉 functions, it can be 

obviously seen that neuron exhibit considerably irregular firing behaviors in these situations. This 

irregular neural response also exists for stochastic H-H neuron due to random spikes arising from 

adequate noise fluctuations at the borders of suprathreshold frequency range. 

 

To detail these behaviours, we next present 𝐼𝑆𝐼 bifurcation of H-H neuron for deterministic and 

different levels of noise cases. To do this, we computed 𝐼𝑆𝐼 values and normalized to the driving 

signal period as a function of weak signal frequency. Figure 7 shows obtained results for deterministic 

(a) and stochastic H-H neuron with 𝐴 = 10000 (b), 𝐴 = 1000 (c) and 𝐴 = 100 (d). Figure 7a shows 

that our H-H neuron reproduce and essentially exhibits five different behaviours defined in [53] with 

respect to normalized 𝐼𝑆𝐼 distribution depending on the suprathreshold signal frequency. By 

introducing channel noise dynamics into the system equations, in figure 7b, H-H neuron begins to 

show irregularity at the spiking regime borders, i.e. around 𝑓 = 16 Hz and after 𝑓 = 130 Hz. Due to 

sensitivity of the neuron to fluctuations, this change in spiking behaviour becomes more apparent with 

the introduction of higher level of stochasticity with 𝐴 = 1000, as seen in figure 7c. In this case, 

irregularity in the neighbourhoods of limit frequency values and even in the irregular response regions 

is increased considerably. It is evident that channel noise has a prevailing effect on spiking behaviour 

of the neuron. This effect becomes even more obvious when the neuron has a narrower membrane 

area. When 𝐴 = 100, as shown in figure 7d, ion channel noise make irregularity within the regions 

mentioned in figure 7c increased and, furthermore, destroys regular spiking trends in the regions 

between them. Nevertheless, it is possible to indicate that response of stochastic H-H neuron is more 

sensitive to ion channel noise at the limits of suprathreshold signal frequency values and apparently 

irregular response region. 
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Figure 7. Bifurcation of normalized 𝐼𝑆𝐼 distribution over suprathreshold signal frequencies for deterministic (a) 

and stochastic H-H neuron with various membrane areas as the values of A=10000 (b), A=1000 (c), A=100 (d). 
 

 

IV. CONCLUSION 
 

We investigated the influence of ion channel noise on the firing characteristics of class II H-H neuron 

for different stimuli projections. We observed that for bias current input, neural firings in excitable 

neuron are only spontaneous and irregular due to channel noise fluctuations. However, the neuron 

within bistability range exhibits inverse stochastic resonance that emerge with spike skipping or 

termination. Moreover, we examined neural firing behaviour as a response to subthreshold weak 
signal under the influence of channel noise. We observed that in this case, frequency has a meaningful 

impact on the neural response depending on channel noise, and there is a close relationship between 

spike rate and regularity. Finally, we analysed the firing behaviour of stochastic H-H neuron in the 

case of suprathreshold signal input. We show that ion channel noise does not have significant effect on 

spiking rate up to a certain level, and that channel noise does not influence the regularity at certain 

ranges of signal frequencies where emergent firing behaviour is always irregular, implying the 

existence of irregular neural response region to suprathreshold periodic signals. Emerging neural 

response due to applied inputs has gained a more realistic scenario via introduction of channel noise 

into neuron dynamics. Therefore, for future direction, it is possible that this study can be carried out at 

network level with different synapse types and biologically meaningful topologies. 
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