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Abstract
Inspired by the well-known result stating that if any iterate of a mapping is a Banach
contraction on a complete metric space, then the mapping itself possesses a unique fixed
point, we investigate that claim for a Kannan contraction but by retaining the left-hand
side of the inequality as per the mapping itself. With an additional assumption of k-
continuity, the existence and uniqueness of a fixed point is obtained for a new class of
contractions, m-Kannan contraction, on a complete metric space. Several examples are
given in order to substantiate many theoretical claims such as discontinuity at the unique
limit point of the iterative sequence or the ones testifying that this class is wider than the
class of Kannan mappings.
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1. Introduction
Banach fixed point theorem [1] has many valuable corollaries and generalizations. Start-

ing from the well-known corollary of Banach fixed point theorem that if an iterate of the
mapping is a Banach contraction, then a mapping itself possesses a unique fixed point,
we are investigating this claim for Kannan contractive condition. It is obvious that if nth
iterate of a mapping is a Kannan contraction, then, by the same approach as for Banach
contraction, the mapping obtaines a unique fixed point if the underlying metricc space
is complete. Hence, we present a modified approach in which the right-hand side of the
inequality presents original Kannan contractive condition imposed on the mapping.
The importance of Kannan fixed point theorem [7] can be seen through two significant
aspects-the lack of continuity request and through the carachterization of completeness
of an underlying metric space. The first aspect was noticed by Kannan in 1968. since
[7] contains an example of a mapping that is a Kannan contraction, but not continuous.
Conell [5] gave an example of a Banach contraction having a fixed point on a metric space
which is not complete, hence refuted the claim that a metric space (X, d) is complete if
and only if any Banach contraction on X possesses a fixed point. However, this claim was
proven valid for the class of Kannan contractions in 1975. by Subrahmanyam [10]. The
original idea of Kannan was thoroughly studied, extended and modified in numerous ways
and it is still an on-going research as can be seen in [2,3,6,9,11] among many others. We
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intend to study existence and uniqueness of a new class of contractive mappings that will
be named m-Kannan mappings fulfilling the condition

d(T mx, T my) ≤ q (d(x, Tx) + d(y, Ty))

on X for some q ∈
[
0, 1

2

)
and m ∈ N. Evidently, for m = 1 this mapping is a Kannan con-

traction so this problem will not be in the scope of this article. We will use different proof
techniques in the cases m = 2 and m > 2, but in order to obtain existence of the fixed
point some continuity assumptions are imposed. This is the main difference comparing
to Kannan contraction, but it also opens an interesting problem, does there always exists
some k ∈ N such that a Kannan contraction is a k-continuous mapping. The continuity
assumption is sufficient, but not necessary as can be seen through examples. Important
property of this class of mappings for any natural m is that the iterative sequence con-
verges and that the limit is uniquely determined for arbitrary initial point in a complete
metric space. Additionally, there are examples of mappings satisfying above mentioned
contractive condition and not possessing a fixed point in a complete metric space due to
being discontinuous.
The value of this approach may be seen through the fact that if we are talking about
non-expansive mappings with a convergent iterative sequence, then d(T nx, x) is decreas-
ing in some surrounding of the fixed point, so we can potentially obtain a wider class
of mappings. This is substantiated with the example of a mapping not being a Kannan
contraction, not having a second iterate as a Kannan contraction, but being 2-Kannan
contraction instead.
For the convenience of a reader, we collect basic definitions and results regarding this
topic. For more detailed informtations regarding terminology see [4].

Theorem 1.1. [1] Let (X, d) be a complete metric space and T : X 7→ X a mapping such
that there exists some q ∈ [0, 1) with the inequality

d(Tx, Ty) ≤ qd(x, y) (1.1)
fulfilled for all x, y in X. The mapping T has a unique fixed point in X and, for arbitrary
x ∈ X, the iterative sequence (T nx) converges to the fixed point of T .

The answer to important question of the existence of a fixed point of a mapping if its
iterate is a Banach contraction is given in the sequel:

Lemma 1.2. [8] Let (X, d) be a complete metric space and T : X 7→ X a mapping. If
there exists n ∈ N such that n-th iterate of a mapping T , T n, is a Banach contraction,
then the mapping T has a unique fixed point in X.

Kannan [7] presented a class of contractive mappings differing from the Banach con-
tractions and also containg some discontinuous mappings. The main result of [7] is the
following:

Theorem 1.3. [7] Let (X, d) be a complete metric space and T : X 7→ X a mapping such
that

d(Tx, Ty) ≤ q (d(x, Tx) + d(y, Ty)) (1.2)

holds for some q ∈
[
0, 1

2

)
and for all x, y in X. A mapping T has a unique fixed point x∗ ∈

X and the sequence (T nx) converges to the fixed point with the estimation d(T nx, x∗) ≤
K
(

q
1−q

)n−1
d(x, Tx) for any n ∈ N and any x ∈ X.

In the sequel we will use the notion of k-continuouity.

Definition 1.4. If (X, d) is a metric space and T : X 7→ X a mapping, then T is k-
continuous mapping for some k ∈ N if T k is a continuous mapping.
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Recall that on a metric space, continuity of a mapping is equivalent to sequential con-
tinuity. Also, continuous mapping is k-continuous for any k ∈ N, but reverse obviously do
not hold for k ≥ 2.

Example 1.5. If X = R is equipped with Euclidean metric d and T : X 7→ X defined by

Tx =
{

0, x ∈ R \ {1}
2, x = 1

,

then T is discontinuous on X, but it is 2-continuous mapping.

2. Main results
Based on difference between proof techniques, we will separate discussion on the iterates

of a mapping for n = 2 and n > 2.

Theorem 2.1. If (X, d) is a complete metric space and a mapping T is a k-continuous
mapping such that for any x, y ∈ X

d(T 2x, T 2y) ≤ q (d(x, Tx) + d(y, Ty)) (2.1)

holds for some q ∈
[
0, 1

2

)
, then T has a unique fixed point in X and for arbitrary initial

point x ∈ X the iterative sequence (T nx) converges to the fixed point of the mapping T .

Proof. Observe a mapping T on a complete metric space (X, d) satisfying the contractive
condition (2.1) for some q ∈

[
0, 1

2

)
. Let x0 ∈ X be arbitrary and define xn = T nx0 for

any n ∈ N.
If q = 0, the mapping T 2 is a constant mapping and it has a unique fixed point in X
denoted with x∗. If Tx∗ = y, then T 2y = T (T 2x∗) = Tx∗ = y which asserts that y = x∗.
Moreover, for any x ∈ X, T nx = x∗ for n ≥ 2, so the iterative sequence (T nx) converges
to the fixed point x∗.
If q 6= 0, denote with dn a distance d(xn, xn+1). In order to estimate d(xn, xm) observe
that due to the inequality

d(xn, xm) ≤
m−1∑
i=n

di ≤
∞∑

i=n

di

it is sufficient to show that the series
∑

i di is convergent in order to claim that the sequence
(xn) is a Cauchy sequence.
Since

dn ≤ q(dn−1 + dn−2)
we can observe that the upper bound for dn is q(dn−1 + dn−2) and since all arguments
are non-negative, the sum

∑∞
i=0 di is maximal if the sequence (dn) satisfies the recurrence

relation
an = q(an−1 + an−2)

for any n ≥ 2 and initial conditions determined by d0 and d1. After solving this linear
difference equation, it follows that

an = A

(
q +

√
q2 + 4q

2

)n

+ B

(
q −

√
q2 + 4q

2

)n

where

A = −−2d1 + qd0 −
√

q(4 + q)d0

2
√

q(4 + q)

B = d0 + −2d1 + qd0 −
√

q(4 + q)d0

2
√

q(4 + q)
.
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Hence,
∞∑

n=0
dn ≤

∞∑
n=0

an

=
∞∑

n=0

(
A

(
q +

√
q2 + 4q

2

)n

+ B

(
q −

√
q2 + 4q

2

)n)

= −A
2

−2 + q +
√

q(4 + q)
+ B

2
2 − q +

√
q(4 + q)

= d0(1 − q) + d1
1 − 2q

< ∞

since 2q − 1 6= 0.
Consequently, (xn) is a Cauchy sequence in a complete metric space, so there exists some
x∗ ∈ X such that lim

n→∞
xn = x∗.

Note that for an arbitrary initial point y0 ∈ X the sequence of successive approxima-
tions (T ny0) is convergent as previously discussed but its limit is also x∗ because of the
estimation

d(T n+1x0, T n+1y0) ≤ d(T n−1x0, T nx0) + d(T n−1y0, T ny0)

that yields to the conclusion that x∗ = lim
n→∞

T ny0.
Accordingly,

lim
n→∞

T nx∗ = x∗. (2.2)

If T is a k-continuous mapping, then lim
n→∞

T k(xn) = T kx∗ but on the other side

lim
n→∞

T k(xn) = lim
n→∞

T n+kx0 = x∗,

and T kx∗ = x∗. If k = 1, then T has a fixed point x∗ in X as well as T 2. If k = 2
the mapping T 2 has a fixed point x∗ and for this case as well for k ≥ 3 we make further
estimations. By taking into the account T nkx∗ = x∗ for any n ∈ N, it follows

d(x∗, Tx∗) = d(T nkx∗, T nk+1x∗)

≤ d(T nk−2x∗, T nk−1x∗) + d(T nk−1x∗, T nkx∗)

and as n → ∞, we conclude that Tx∗ = x∗.
Further, assume that Ty = y, then

d(x∗, y) ≤ q (d(x∗, Tx∗) + d(y, Ty)) = 0.

Consequently, the mapping T has a unique fixed point x∗ in X and, as already was proven,
the iterative sequence (T nx) converges to x∗ for any initial point x ∈ X.

□

Remark 2.2. The mapping T fulfilling the condition (2.1) has a unique fixed point if and
only if T 2 has a unique fixed point. Evidently, the set of fixed points of a mapping T is a
subset of the set of fixed point of a mapping T 2 due to

T 2x∗ = T (Tx∗) = Tx∗ = x∗.

For the converse inclusion observe that if z ∈ X is such that T 2z = z, then

T nz =
{

z, if n is even
Tz, if n is odd
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for any n ∈ N. But, (T nz) is convergent sequence according to initial considerations, so it
must be Tz = z.

Example 2.3. Very well-known example testifying the independence of Banach contrac-
tion from Kannan contraction is a mapping T : [0, 1] 7→ [0, 1] defined by Tx = x

2 for any
x ∈ [0, 1] while the domain is equipped with Euclidean metric and thus complete metric
space.
If x = 0 and y = 1, then

d(Tx, Ty) = 1
2

= d(x, Tx) + d(y, Ty),

so T is not a Kannan contraction on X.
Apart from that, for any x, y ∈ [0, 1],

d(T 2x, T 2y) =
∣∣∣∣x4 − y

4

∣∣∣∣
= 1

3

∣∣∣∣3x

4
− 3y

4

∣∣∣∣
≤ 1

3

(3x

4
+ 3y

4

)
= 1

3
(d(x, Tx) + d(y, Ty))

implying that T is a 2-Kannan contraction on [0, 1] for q = 1
3 .

Meanwhile, any Kannan contraction is a 2-Kannan contraction.

Remark 2.4. Assume that a mapping T is a Kannan contraction on a metric space (X, d)
for some contractive constant q ∈

[
0, 1

2

)
. Let x, y ∈ X be arbitrary and recall that

d(Tz, T 2z) ≤ q

1 − q
d(z, Tz)

for any z ∈ X. Then,

d(T 2x, T 2y) ≤ qd(Tx, T 2x) + qd(Ty, T 2y)

≤ q2

1 − q
(d(x, Tx) + d(y, Ty)) .

In addition, q2

1−q ≤ q < 1
2 for q ∈

[
0, 1

2

)
.

Theorem 2.5. If (X, d) is a complete metric space and a mapping T is such that for any
x, y ∈ X the inequality (2.1) holds for some q ∈

[
0, 1

2

)
, then for arbitrary initial point

x ∈ X the iterative sequence (T nx) converges in (X, d) to the same point x∗ ∈ X and
Fix(T ) ⊆ {x∗}.

Proof. The first part of the claim of the theorem is based on the first part of the proof
of Theorem 2.1 where, as already mentioned, continuity presumption was not utilised in
any manner. The claim regarding the set of fixed points of the mapping T is then obvious
since the iterative sequence initiated by a fixed point is constant. □

Corollary 2.6. The 2-Kannan contraction on a complete metric space has at most one
fixed point.
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Example 2.7. Let X = [0, 1] and a mapping T : X 7→ X defined by

Tx =
{

x
4 , x ∈ (0, 1]
1
4 , x = 0

.

The mapping T is not a Kannan contraction as can be seen through observing x = 0 and
yn = 1

2n for n ∈ N \ {1}. Indeed,

d(Tx, Tyn) = 1
4

− 1
2n+2 = 2n − 1

2n+2

and

d(x, Tx) + d(yn, T yn) = 1
4

+ 3
2n+2 ,

so it is impossible to find a constant q ∈
[
0, 1

2

)
such that

1
4

− 1
2n+2 ≤ q

(1
4

+ 3
2n+2

)
as n → ∞ since q ≥ 2n−1

2n+3 for n ≥ 2. Already for n = 3 we have

d(Tx, Ty3) = 7
32

≥ 1
2

(d(x, Tx) + d(y3, T y3))

= 11
64

.

Hence, we will investigate the properties of its second iterate T 2 determined by

T 2x =
{

x
16 , x ∈ (0, 1]
1
16 , x = 0

.

In order to estimate the distance d(T 2x, T 2y), we discuss on several different options and
assume that q = 1

4 .
(1) If x, y ∈ (0, 1], then

d(T 2x, T 2y) = |x − y|
16

= 1
4

|x − y|
4

≤ 1
4

x + y

4
≤ 1

4
(d(x, Tx) + d(y, Ty)) .

(2) If x = 0 and y ∈ (0, 1], or equivalently vice-versa, then

d(T 2x, T 2y) = 1 − y

16

= 1
4

(1
4

− y

4

)
≤ 1

4
d(x, Tx)

≤ 1
4

(d(x, Tx) + d(y, Ty)) .

Consequently, for any x, y ∈ X the inequality (2.1) holds, but neither T nor T 2 possess a
fixed point in a complete metric space (X, d).
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It is also sufficient to assume that the mapping T is continuous (or 2-continuous) at the
limit of iterative sequences and thus following conclusion holds.

Corollary 2.8. If 2-Kannan contraction on a complete metric space does not have a fixed
point, then the unique limit point of all iterative sequences (T nx) for any x ∈ X is the
point of discontinuity of the mapping T .

Example 2.9. Analyzing the Example 2.7 we observe that x = 0 is a point of discontinuity
of the mapping T and at the same time the limit of any iterative sequence since for x ∈ (0, 1]
we have T nx = x

4n for any n ∈ N while for x = 0 we get T nx = 1
4n , n ∈ N. Either-way,

lim
n→∞

T nx = 0.

Basically what can be seen from the proof of Theorem 2.1 that it is sufficient for T 2 to
be continuous at the limit of iterative sequence (T nx) in order to have the fixed point. In
general, it is not a necessary assumption.

Example 2.10. Let X = [0, 1]∪{2, 3} be equipped with Euclidean metric and T : X 7→ X
a mapping defined by

Tx =


2, x = 1

2n , n ∈ N
3, x = 1

2n−1 , n ∈ N
0, x ∈ [0, 1] \ { 1

n | n ∈ N}
2
3 , x ∈ {2, 3}

.

Obviously,

T 2x =
{

2
3 , x = 1

n , n ∈ N
0, x ∈ ([0, 1] ∪ {2, 3}) \ { 1

n | n ∈ N}
.

It is relevant to observe d(T 2x, T 2y) only if x = 1
n for some n ∈ N and y ∈ ([0, 1] ∪ {2, 3})\

{ 1
n | n ∈ N} (or vice-versa due to the symmetry) since this distance is equal to zero in all

other cases. Let q = 4
9 ∈

[
0, 1

2

)
.

If x = 1
2n for some n ∈ N, then d(x, Tx) ≥ 3

2 and if x = 1
2n−1 for some n ∈ N, then

d(x, Tx) ≥ 2. Anyway,

d(T 2x, T 2y) = 2
3

≤ qd(x, Tx)
≤ q (d(x, Tx) + d(y, Ty)) ,

implying that T is a 2-Kannan contraction on a complete metric space. The mapping
T has a unique fixed point x = 0, but neither T nor T 2 is continuous at x = 0 as we
may observe the sequence xn = 1

n for n ∈ N that converges to 0. The sequence (Txn) is
divergent, while (T 2xn) is a constant sequence and converges to 2

3 6= T 20.

Remark 2.11. If we use the conclusion of the proof of Theorem 2.1, which is obtained
without any continuity assumption, that any iterative sequence (T nx) converges to the
same limit point x∗, then we may observe a restriction of the mapping T on the orbit of
x∗.
Let O(x∗) = {T nx∗ | n ∈ N0} and T0 : O(x∗) 7→ O(x∗) is a restriction of the mapping T ,
i.e., T0x = Tx for any x ∈ O(x∗).
The mapping T is well-defined and the orbit O(x∗) is closed subset of the complete metric
space, hence complete itself with a restriction of metric d. It is easy to deduce that T has
a fixed point x∗ ∈ X if and only if T0 is a continuous mapping.
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Indeed, if T0 is continuous mapping, then

Tx∗ = T
(

lim
n→∞

T nx∗
)

= lim
n→∞

T n+1x∗

= x∗.

Converse, if x∗ is a fixed point of the mapping T , then O(x∗) = {x∗} and T0 is continuous
on O(x∗).

3. m-Kannan mapppings
Previously presented concept of 2-Kannan mappings has shown some interesting prop-

erties and can be further extended for arbitrary natural number m through the notion of
m-Kannan mappings.
Definition 3.1. If (X, d) is a metric space and T : X 7→ X a mapping such that there
exist some q ∈

[
0, 1

2

)
and m ∈ N fulfilling the inequality

d(T mx, T my) ≤ q (d(x, Tx) + d(y, Ty)) (3.1)
for any x, y ∈ X, then the mapping T is a m-Kannan mapping.

Note that the term of 1-Kannan contraction is equivalent to Kannan contraction. As
was seen for the case m = 2 in Example 2.3, not any m-Kannan contraction is a Kannan
contraction. Reverse statement do hold.
Example 3.2. If (X, d) is a metric space and T : X 7→ X a Kannan contraction for some
q ∈

[
0, 1

2

)
, then we will prove that for any n ∈ N and x, y ∈ X we have

d(T nx, T n+1x) ≤
(

q

1 − q

)n

(d(x, Tx) + d(y, Ty)) (3.2)

and consequently

d(T nx, T ny) ≤ qn

(1 − q)n−1 (d(x, Tx) + d(y, Ty)) . (3.3)

For that purpose we will use the principle of mathematical induction twice.
Evidently, (3.2) holds for n = 1 since

d(Tx, T 2x) ≤ q
(
d(x, Tx) + d(Tx, T 2x)

)
,

so suppose that (3.2) holds for some n ∈ N \ {1}. Further,

d(T n+1x, T n+2x) ≤ q
(
d(T nx, T n+1x) + d(T n+1x, T n+2x)

)
≤ q

1 − q
d(T nx, T n+1x)

≤
(

q

1 − q

)n+1
(d(x, Tx) + d(y, Ty))

asserts that (3.2) holds for any n ∈ N.
Kannan contractive condition is (3.3) for n = 1, so assume that (3.3) holds for some
n ∈ N \ {1} and notice that

d(T n+1x, T n+1y) ≤ q
(
d(T nx, T n+1x) + d(T ny, T n+1y)

)
≤ q

(
q

1 − q

)n

(d(x, Tx) + d(y, Ty))

≤ qn+1

(1 − q)n
(d(x, Tx) + d(y, Ty))
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further deduces that (3.3) holds for any natural n.
Therefore, if T is a Kannan contraction on X, it is a m-Kannan contraction for any natural
number m as qm

(1−q)m−1 ∈
[
0, 1

2

)
for any m ∈ N.

Different proof techniques will be applied in discussing existence and uniqueness of a
fixed point of a class of m-Kannan mappings for arbitrary m ∈ N.

Theorem 3.3. If (X, d) is a complete metric space and a mapping T is a k-continuous
mapping for some k ∈ N such that for some q ∈

[
0, 1

2

)
and m ∈ N \ {1, 2} the inequality

(3.1) holds for any x, y ∈ X , then T has a unique fixed point in X and for arbitrary initial
point x ∈ X the iterative sequence (T nx) converges to the fixed point of the mapping T .

Proof. For arbitrary x0 ∈ X define a sequence xn = T nx0 for n ∈ N. The proof will be
divided in three phases, to prove that (xn) is a Cauchy sequence, that it converges to the
fixed point of the mapping T while in the third part uniqueness of the fixed point will be
addressed.
Denote with a(x) the sum

∑m−1
i=0 d(T ix, T i+1x) for any x ∈ X. We will prove that

d(T nm+lx, T nm+l+1x) ≤ 2n−1qna(x) (3.4)

holds for all n ∈ N and l ∈ {0, . . . , m − 1}.
To apply the principle of mathematical induction we need to confirm that this inequality
holds for n = 1.
For l ∈ {0, . . . , m − 2}, we have

d(T m+lx, T m+l+1x) ≤ q
(
d(T lx, T l+1x) + d(T l+1x, T l+2x)

)
≤ qa(x),

while for l = m − 1

d(T m+lx, T m+l+1x) ≤ q
(
d(T lx, T l+1x) + d(T l+1x, T l+2x)

)
≤ qd(T m−1x, T mx) + q2

(
d(x, Tx) + d(Tx, T 2x)

)
≤ qa(x).

Note that the assumption of m > 2 is important for the last conclusion.
In order to prove that (3.4) holds for any n ∈ N and l ∈ {0, . . . , m − 1}, observe that

d(T (n+1)m+lx, T (n+1)m+l+1x) ≤ q
(
d(T nm+lx, T nm+l+1x) + d(T nm+l+1x, T nm+l+2x)

)
≤ q(2n−1qna(x) + 2n−1qna(x))
= 2nqn+1a(x)

holds for any l ∈ {0, 1, . . . , m − 2}.
If l = m − 1, then

d(T (n+1)m+lx, T (n+1)m+l+1x) ≤ q
(
d(T (n+1)m−1x, T (n+1)mx) + d(T (n+1)mx, T (n+1)m+1x)

)
≤ q2n−1qna(x) + q2d(T nmx, T nm+1x)
+ q2d(T nm+1x, T nm+2x)
≤ 2n−1qn+1a(x) + q2(2n−1qna(x) + 2n−1qna(x))
= 2n−1qn+1(1 + 2q)a(x)
< 2nqn+1a(x).

Consequently, by the principle of mathematical induction, we conclude that (3.4) holds
for any n ∈ N and l ∈ {0, . . . , m − 1}.
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Let n1, n2 ∈ N and n2 ≥ n1, ki =
[ni

m

]
and ni = kim + li where li ∈ {0, 1, . . . m − 1} for

i = 1, 2, then:

d(T n1x, T n2x) ≤
n2−1∑
i=n1

d(T ix, T i+1x)

≤ 2k1−1qk1(m − l1)a(x) +
k2−1∑

i=k1+1
2i−1qima(x) + 2k2−1qk2(l2 + 1)a(x)

≤
k2∑

i=k1

2i−1qima(x)

≤
+∞∑
i=k1

2i−1qima(x).

However, the series
∑+∞

i=1 2i−1qi converges, so lim
n1,n2→∞

d(xn1 , xn2) = 0. As any Cauchy
sequence in a complete metric space converges, notice x∗ ∈ X such that lim

n→∞
xn = x∗.

Additionally, if y ∈ X is arbitrary then we will in a same manner obtain that (T ny) is a
convergent sequence and

d(xnm, T nmy) ≤ qd(x(n−1)m, x(n−1)m+1) + qd(T (n−1)my, T (n−1)m+1y),

leads to the conclusion that (T ny) converges to the same limit point x∗ ∈ X for any y ∈ X.
Recall that the mapping T is k-continuous, so

lim
n→∞

T k(xn) = T k( lim
n→∞

xn) = T kx∗.

Taking into the account that (T kxn) is a subsequence of a convergent sequence, it follows
that T kx∗ = x∗.
Moreover,

d(Tx∗, xmn) = d(T kmn+1x∗, xmn)

≤ q
(
d(T (kn−1)m+1x∗, T (kn−1)m+2x∗) + d(xm(n−1), xm(n−1)+1)

)
for arbitrary n ∈ N, thus

lim
n→∞

xmn = Tx∗ = x∗.

Accordingly, T has a fixed point x∗ ∈ X. For the uniqueness, let Ty = y. Then

d(x∗, y) =d(T mx∗, T my)
≤ qd(x∗, Tx∗) + qd(y, Ty)
= 0,

and x∗ is the unique fixed point of the mapping T . □

Theorem 3.4. If (X, d) is a complete metric space and a mapping T is such that for any
x, y ∈ X the inequality (3.1) for some q ∈

[
0, 1

2

)
and natural m > 2, then for arbitrary

initial point x ∈ X the iterative sequence (T nx) converges in (X, d) to the same point
x∗ ∈ X and Fix(T ) ⊆ {x∗}.

Proof. This conclusion is easily derived from the proof of Theorem 3.3 since in this part
the presumption of continuity was not utilised. □

Corollary 3.5. The m-Kannan contraction for m ∈ N\{1, 2} on a complete metric space
has at most one fixed point.
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Example 3.6. Let X = [0, 1] be equipped with Eucledean metric and a mapping T :
X 7→ X defined by

Tx =
{

x
2 , x ∈ (0, 1]
1
2 , x = 0

.

The mapping T is not a Kannan contraction because of, par example, x = 0 and y = 1
8

since d(Tx, Ty) = 7
16 but

d(x, Tx) + d(y, Ty) = 1
2

+ 1
16

= 9
16

so we have q ≥ 7
9 which is impossible.

Furthermore, T 2 is also not a Kannan contraction as discussed in Example 2.7 as

T 2x =
{

x
4 , x ∈ (0, 1]
1
4 , x = 0

.

However,

T 3x =
{

x
8 , x ∈ (0, 1]
1
8 , x = 0

,

satisfy (3.1). In order to prove that we will separately discuss case x, y ∈ (0, 1] and
x = 0, y ∈ (0, 1] (equivalently x ∈ (0, 1], y = 0).

(1) If x, y ∈ (0, 1], then

d(T 3x, T 3y) = |x − y|
8

= 1
4

|x − y|
2

≤ 1
4

x + y

2
≤ 1

4
(d(x, Tx) + d(y, Ty)) .

(2) If x = 0 and y ∈ (0, 1], and analogously x ∈ (0, 1], y = 0, then

d(T 3x, T 3y) = 1 − y

8

= 1
4

(1
2

− y

2

)
≤ 1

4
d(x, Tx)

≤ 1
4

(d(x, Tx) + d(y, Ty)) .

Consequently, T is a 3-Kannan contraction on a complete metric space (X, d) but none of
the iterates of T possess a fixed point in X which can be substantiated by the fact that
the limit of iterative sequence is 0 which is a point of discontinuity of T n for any n ∈ N.

4. Conclusion
Investigating the question of existence and uniqueness of mappings satisfying these types

of contractive condition naturally raises from very well-known and widely applicable result
regarding n-th iterate of a mapping being a Banach contraction. But when we discuss on
Kannan contraction, discontinuity is an important property that is potentially preserved
in the class of m-Kannan mappings for m ∈ N which can have at most one fixed point.
In order to claim the existence of a fixed point we do need a presumption of k-continuity
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for some k ∈ N independent from the choice of m. Moreover, examples testify on the
cases when lack of discontinuity at the limit point of iterative sequence, which is uniquely
determined for this class of mappings, brings non-existence of a fixed point. Question
that remains open is can the continuity assumption be replaced with some less restrictive
request.
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