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Abstract
We introduce and study a non-abelian tensor product of two algebras with bracket with
compatible actions on each other. We investigate its applications to the universal central
extensions and the low-dimensional homology of perfect algebras with bracket.
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1. Introduction
The non-abelian tensor product in various algebraic categories, such as groups, (Hom)-

Lie and (Hom)-Leibniz algebras, Lie superalgebras. etc., plays an essential role in the study
of homotopy theory, low-dimensional homology or universal central extensions (see [3, 7,
13–15,17,20,21]). It has also been used in the construction of low-dimensional non-abelian
homology of groups, Lie algebras and Leibniz algebras, having interesting applications to
the algebraic K-theory, cyclic homology and Hochschild homology, respectively [16–18].

In this paper, we choose to develop a non-abelian tensor product for a relatively new
algebraic structure called algebra with bracket, introduced in [8] as a kind of generalization
of the (non-commutative) Poisson algebra. It should be noted here that such a generaliza-
tion of Poisson algebras originates in physics literature (see, e.g. [23]). Among other results
in [8], Quillen cohomology of algebras with bracket is described via an explicit cochain
complex. Further (co)homological investigations of algebras with bracket are carried out
in [4,6]. In particular, for our importance, we mention that in [4], a homology with trivial
coefficients of algebras with bracket is developed with applications to universal central
extensions. In [6], crossed modules for algebras with bracket are introduced, and the sec-
ond cohomology is interpreted as the set of equivalence classes of crossed extensions. The
eight-term exact cohomology sequence is also constructed.
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In the present paper, we continue the same line of homological study of algebras with
bracket. We fit the homology with trivial coefficients [4] into the context of Quillen
homology, introduce the non-abelian tensor product of algebras with bracket by generators
and relations, and give applications in universal central extensions and low-dimensional
homology.

The organization of this paper is as follows: after the introduction, in Section 2, we
present some definitions and results for the development of the paper. We briefly recall the
construction of homology for algebras with bracket from [4,8] and prove that it is consistent
with the context of Quillen’s homology theory (Theorem 2.6). In Section 3, we present
all the ingredients for developing the non-abelian tensor product later. In particular,
we define actions, semi-direct products and crossed modules of algebras with bracket.
Additionally, we show that the category of crossed modules is equivalent to the category
of cat1-algebras with bracket (Theorem 3.12). Section 4 contains the main results of the
paper. Here, we present the construction of the non-abelian tensor product of two algebras
with bracket acting compatibly on each other (Proposition 4.3) and study its properties.
Regarding trivial actions, we describe the non-abelian tensor product (Proposition 4.5).
We establish a right-exactness property of the non-abelian tensor product of algebras with
bracket (Theorem 4.6) and equip the non-abelian tensor product with crossed module
structures (Proposition 4.7). Finally, as an application, for a given perfect algebra with
bracket, we construct its universal central extension (Theorem 4.8) and a four-term exact
homology sequence (Theorem 4.11).

2. Algebras with bracket
Throughout the paper we fix a ground field K. All vector spaces and algebras are K-

vector spaces and K-algebras, and linear maps are K-linear maps as well. In what follows
⊗ means ⊗K.

2.1. Basic definitions
Definition 2.1 ([8]). An algebra with bracket, or an AWB for short, is an associative (not
necessarily commutative) algebra A equipped with a bilinear map (bracket operation)
[−,−] : A × A → A, (a, b) 7→ [a, b] satisfying the following identity:

[ab, c] = [a, c]b+ a[b, c] (2.1)
for all a, b, c ∈ A.

A homomorphism of AWBs is a homomorphism of associative algebras preserving the
bracket operation. We denote by AWB the respective category of AWBs.

The category AWB is a variety of Ω-groups [19], and therefore it is a semi-abelian
category [2, 22]: pointed, exact and protomodular with binary coproducts. So classical
lemmas such as the Five Lemma [25] hold for AWBs which we will use later on. Below we
give the definitions of ideal, center, commutator, action and semi-direct product of AWBs,
and of course these notions agree with the corresponding general notions in the context of
semi-abelian categories.

We now list some common examples of AWBs that will be discussed later. Other exam-
ples can be found in [5, 6, 8, 23].

Example 2.2.
(i) Any vector space A enriched with the trivial multiplication and bracket operation,

i.e. ab = 0 and [a, b] = 0 for all a, b ∈ A, is an AWB, called an abelian AWB. Hence,
the category of vector spaces is a full subcategory of AWB and the respective
inclusion functor Vect ↪→ AWB has a left adjoint, the so called abelianization
functor (−)ab : AWB → Vect, which will be described in Remark 2.3 (i) below.
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(ii) Any associative algebra A together with the trivial bracket operation can be re-
garded as an AWB. This defines the inclusion functor I : Ass → AWB, where Ass
denotes the category of associative algebras. The functor I has a left adjoint
(−)ass : AWB → Ass described in Remark 2.3 (ii) below.

(iii) Another way of considering an associative algebra A as an AWB is to define the
bracket operation by

[a, b] := ab− ba, a, b ∈ A .

This particular AWB is called the tautological AWB associated to the associative
algebra A and will be denoted by T (A).

Tautological AWBs constitute a full subcategory of AWB denoted by TAWB. The
correspondence T : Ass → TAWB, A 7→ T (A), is functorial, and it establishes an
isomorphism between the categories TAWB and Ass.

(iv) Any Poisson algebra is an AWB. In fact, the category Poiss of (non-commutative)
Poisson algebras is a subcategory of AWB. The inclusion functor Poiss ↪→ AWB
has as left adjoint the functor given by A 7→ APoiss, where APoiss is the maximal
quotient of A, such that the following relations hold: [a, a] ∼ 0 and [a, [b, c]] +
[b, [c, a]] + [c, [a, b]] ∼ 0.

The following notions for AWBs are given in [4] and they agree with the corresponding
notions in semi-abelian categories. A subalgebra B of an AWB A is a vector subspace which
is closed under the product and the bracket operation, that is, B B ⊆ B and [B,B] ⊆ B.
A subalgebra B is said to be a left (respectively, right) ideal if A B ⊆ B, [A,B] ⊆ B
(respectively, B A ⊆ B, [B,A] ⊆ B). If B is both left and right ideal, then it is said to
be a two-sided ideal. In this case, the quotient A/B is endowed with an AWB structure
naturally induced from the operations on A.

Let A be an AWB and B,C be two-sided ideals of A. We denote by [[B,C]] the subspace
of A spanned by all elements of the form bc, cb, [b, c], [c, b], for all b ∈ B and c ∈ C. It
is easy to see that [[B,C]] is a two-sided ideal of A called commutator ideal of B and C.
Obviously [[B,C]] ⊆ B

∩
C. In the particular case B = C = A, one obtains the definition

of derived algebra [[A,A]] of A. An AWB A is said to be perfect if A = [[A,A]].

Remark 2.3.
(i) Given an AWB A, the quotient A/[[A,A]] is always an abelian AWB and will be

denoted by Aab. Abelian AWBs (i.e. just vector spaces) are abelian group objects
in the category AWB. The respective abelianization functor (−)ab : AWB → Vect,
which is left adjoint to the inclusion functor Vect ↪→ AWB, sends an AWB A into
Aab = A/[[A,A]].

(ii) To an AWB A, we associate the associative algebra Aass defined as the maximal
quotient of A such that the relation [a, a′] ∼ 0 holds, for a, a′ ∈ A. This cor-
respondence is functorial and satisfies the following universal property: given an
associative algebra B, any homomorphism of AWBs A → I(B) factors trough Aass,
where I : Ass ↪→ AWB is the inclusion functor as in Example 2.2 (iii). Thus, the
functor (−)ass : AWB → Ass, A 7→ Aass, is left adjoint to I.

Given an AWB A, the set

Z(A) = {a ∈ A | ab = 0 = ba, [a, b] = 0 = [b, a], for all b ∈ A}

is a two-sided ideal of A, and it is called the center of A. Note that an AWB A is abelian
if and only if A = Z(A).

A central extension of an AWB A is an exact sequence of AWBs 0 → M → B φ−→ A → 0
such that [[M,B]] = 0 (equivalently, M ⊆ Z(B)). It is said to be universal central extension
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if for every central extension 0 → N → C ψ−→ A → 0 there is a unique homomorphism of
AWBs α : B → C such that ψ ◦ α = φ.

The result immediately below is the analogue of classical results for universal central
extensions in the categories of groups, Lie algebras, etc., and agrees with the similar result
from [9] in the general framework of semi-abelian categories.

Theorem 2.4 ([4]). An AWB A admits a universal central extension if and only if A is
perfect. Moreover, the kernel of the universal central extension is isomorphic to the first
homology of A, HAWB

1 (A) (see the definition below).

2.2. Homology
In this subsection, we briefly review the homology of AWBs with trivial coefficients given

in [4, 8].
Let V be a vector space. Let R1(V ) = V and Rn(V ) = V ⊗n ⊕ V ⊗n, if n ≥ 2. In

order to distinguish elements from these tensor powers, we let a1 ⊗ · · · ⊗ an be a typical
element from the first component of Rn(V ), while a1 ◦ · · · ◦an from the second component
of Rn(V ).

Given an AWB A, we let
(
CAWB

∗ (A), d∗
)

be the chain complex defined by

CAWB
n (A) := Rn+1(A), n ≥ 0,

with the boundary maps dn : CAWB
n (A) → CAWB

n−1 (A), n ≥ 0, given by

dn(a1 ⊗ · · · ⊗ an+1) =
n∑
i=1

(−1)i+1a1 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an+1,

dn(a1 ◦ · · · ◦ an+1) =
n∑
i=1

a1 ⊗ · · · ⊗ [ai, an+1] ⊗ · · · ⊗ an +
n−1∑
i=1

(−1)ia1 ◦ · · · ◦ aiai+1 ◦ · · · ◦ an+1

The homology of the complex
(
CAWB

∗ (A), d∗
)

is called the homology with trivial coeffi-
cients of the AWB A and it is denoted by HAWB

∗ (A).
Easy computations show that there is an isomorphism

HAWB
0 (A) ∼= A/[[A,A]].

On the other hand, given a free presentation of A, that is, a short exact sequence of AWBs
0 → R → F → A → 0, where F is a free AWB, then there is an isomorphism

HAWB
1 (A) ∼= (R ∩ [[F,F]])/[[R,F]]

(see [4, Corollary 2.14]).

Remark 2.5. Let A be an associative algebra and consider the ground field K as a
trivial A-bimodule. Let CHoch

∗ (A) = CHoch
∗ (A,K) and Hoch∗(A) = Hoch∗(A,K) denote

the Hochschild complex and the Hochschild homology of A with coefficients in K [27],
respectively. Then CHoch

1 (A) = A = CAWB
0 (T (A)) and the natural injections

CHoch
n+1 (A) = A⊗(n+1) ↪→ A⊗(n+1) ⊕ A⊗(n+1) = CAWB

n (T (A)), n ≥ 1

gives rise to a morphism of chain complexes CHoch
∗+1 (A) ↪→ CAWB

∗ (T (A)). Thus, we have
an induced homomorphism in homology Hochn+1(A) → HAWB

n (T (A)) (n ≥ 0), which is
clearly an epimorphism for n = 1 and an isomorphism for n = 0.

Now, we show that the homology of AWBs is fitted in the context of homology theory
developed by Quillen in a very general framework [26] (see also the earlier work by Barr
and Beck [1]). Let us recall that the Quillen homology of an object in an algebraic category
C is defined via the derived functors of the abelianization functor (−)ab : C → Cab from C
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to the abelian category Cab of abelian group objects in C. To specify this theory for AWBs,
we proceed as follows.

Given an AWB A, choose any free simplicial resolution F∗ of A, that is, an aspherical
augmented simplicial AWB F∗

ε−→ A (which means that all non-zero homotopies are trivial,
πn(F∗) = 0 for n ≥ 0, and ε induces an isomorphism π0(F∗) ∼= A) such that each component
Fn, n ≥ 0, is a free AWB. Then the n-th Quillen homology of A is defined by

HQ
n (A) = Hn(Fab

∗ ), n ≥ 0.

Here Fab
∗ is the simplicial vector space obtained by applying the functor (−)ab dimension-

wise to F∗.
In the proof of the theorem immediately below, we need to use the result from [8] that

if F is a free AWB, then the homology of the complex
(
CAWB

∗ (F), d∗
)

vanishes in positive
dimensions, that is,

HAWB
n (F) = 0, for n ≥ 1.

Theorem 2.6. Let A be an AWB. Then there is an isomorphism of vector spaces

HAWB
n (A) ∼= HQ

n (A), n ≥ 0.

Proof. First of all let us note that the homology chain complex CAWB
∗ is functorial in the

sense that a homomorphism A → A′ gives rise the chain map CAWB
∗ (A) → CAWB

∗ (A′) in
the canonical way.

Now, given a free simplicial resolution F∗ of A, by applying the functor CAWB
n dimension-

wise, and then taking the alternating sums of face homomorphisms, we get an augmented
chain complex of vector spaces CAWB

n (F∗) → CAWB
n (A). Since F∗ → A is an aspherical

simplicial AWB, we claim that CAWB
n (F∗) → CAWB

n (A) is acyclic chain complex for any
n ≥ 0. This is easy to confirm, since by forgetting AWB structure in the simplicial AWB
F∗ → A, we get a simplicial vector space having a linear left (right) contraction.

Then using the facts that HAWB
n (Fm) = 0 and HAWB

0 (Fm) = Fab
m for any n ≥ 1 and

m ≥ 0 it follows that both spectral sequences for the bicomplex CAWB
∗ (F∗) degenerate and

give the required isomorphism. □

3. Crossed modules of AWBs
3.1. Actions and semi-direct product
Definition 3.1. Let A and M be two AWBs. An action of A on M consists of four bilinear
maps

A × M → M, (a,m) 7→ a·m, M × A → M, (m, a) 7→ m·a,
A × M → M, (a,m) 7→ a∗m, M × A → M, (m, a) 7→ m∗a,

such that the following conditions hold:
(a1a2)·m = a1· (a2·m) , (a1·m)∗a2 = a1· (m∗a2) + [a1,a2]·m,

m·(a1a2) = (m·a1)·a2 , (m·a1)∗a2 = (m∗a2)·a1 +m·[a1,a2],

(a1·m)·a2 = a1· (m·a2) , (a1a2)∗m = a1· (a2∗m) + (a1∗m)·a2 , (3.1)
(m1m2)·a = m1(m· a

2 ), [m·a
1 ,m2] = m1 (a∗m2) + [m1,m2]·a,

a· (m1m2) = (a·m1)m2, [a·m1,m2] = a·[m1,m2] + (a∗m2)m1,

(m·a
1 )m2 = m1 (a·m2) , (m1m2)∗a = m1 (m2

∗a) + (m1
∗a)m2,

for all a, a1, a2 ∈ A, m,m1,m2 ∈ M. The action is called trivial if all these bilinear maps
are trivial, i.e. a·m = m·a = a∗m = m∗a = 0, for all a ∈ A and m ∈ M.
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Let us remark that if an action of an AWB A on an abelian AWB M is given, then all six
equations in the last three lines of (3.1) vanish. Among the remaining six equations, the
first three equations in the first column say that M is a bimodule over A, and then the first
three equations in the second column say that we get the definition of a representation M
of A (see [8]).

Example 3.2.
(i) If M is a representation of an AWB A thought as an abelian AWB, then there is an

action of A on the abelian AWB M.
(ii) If A is a subalgebra of some AWB B (maybe A = B) and if M is a two-sided ideal

of B, then the operations in B yield an action of A on M given by a·m = am,
m·a = ma, a∗m = [a,m], m∗a = [m, a], for all m ∈ M and a ∈ A.

(iii) If 0 → M i−→ B π−→ A → 0 is a split short exact sequence of AWBs, that is, there
exists a homomorphism s : A → B of AWBs such that π ◦ s = IdA, then there is an
action of A on M, given by:

a·m = i−1(
s(a)i(m)

)
, m·a = i−1(

i(m)s(a)
)
,

a∗m = i−1(
[s(a), i(m)]

)
, m∗a = i−1(

[i(m), s(a)]
)
,

for any a ∈ A, m ∈ M.
(iv) Any homomorphism of AWBs f : A → M induces an action of A on M in the

standard way by taking images of elements of A and operations in M, i.e. a·m =
f(a)m, m·a = mf(a), a∗m = [f(a),m] and m∗a = [m, f(a)], for m ∈ M, a ∈ A.

(v) If µ : M → A is a surjective homomorphism of AWBs and the kernel of µ is contained
in the center of M, i.e. Ker(µ) ⊆ Z(M), then there is an action of A on M, defined
in the standard way, i.e. by choosing pre-images of elements of A and taking
operations in M.

Definition 3.3. Let A and M be AWBs with an action of A on M. The semi-direct product
of M and A, denoted by M⋊A, is the AWB whose underlying vector space is M⊕A endowed
with the operations

(m1, a1)(m2, a2) =
(
m1m2 + a1·m2 +m1

·a2 , a1a2
)
,

[(m1, a1), (m2, a2)] =
(
[m1,m2] + a1∗m2 +m1

∗a2 , [a1, a2]
)

for all m1,m2 ∈ M, a1, a2 ∈ A.

Given an action of an AWB A on M, straightforward calculations show that the sequence
of AWBs

0 −→ M i−→ M ⋊ A π−−→ A −→ 0
where i(m) = (m, 0), π(m, a) = a, is exact. Moreover M is a two-sided ideal of M ⋊ A and
this sequence splits by s : A → M ⋊ A, s(a) = (0, a). Then, as in Example 3.2 (iii), the
above sequence induces another action of A on M given by

a·m = i−1(
(0, a)(m, 0)

)
, m·a = i−1(

(m, 0)(0, a)
)
,

a∗m = i−1[
(0, a), (m, 0)

]
, m∗a = i−1[

(m, 0), (0, a)
]
,

which actually matches the given one.

3.2. Crossed modules
Definition 3.4. A crossed module of AWBs is a homomorphism of AWBs µ : M → A
together with an action of A on M such that the following identities hold:
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(CM1)
µ(m·a) = µ(m)a, µ(a·m) = aµ(m),
µ(m∗a) = [µ(m), a], µ(a∗m) = [a, µ(m)];

(CM2)
µ(m)·m′ = mm′ = m·µ(m′),

µ(m)∗m′ = [m,m′] = m∗µ(m′)

for all m,m′ ∈ M, a ∈ A.

Definition 3.5. A morphism of crossed modules
(
M µ−−→ A

)
→

(
M′ µ′

−−→ A′
)

is a pair

(α, β), where α : M → M′ and β : A → A′ are homomorphisms of AWBs satisfying:
(a) β ◦ µ = µ′ ◦ α.
(b)

α(a·m) = β(a)·α(m), α(m·a) = α(m)·β(a) ,

α(a∗m) = β(a)∗α(m), α(m∗a) = α(m)∗β(a)

for all a ∈ A, m ∈ M.

It is clear that crossed modules of AWBs constitute a category, denoted by XAWB.

The following lemma is an easy consequence of Definition 3.4.

Lemma 3.6. Let µ : M → A be a crossed module of AWBs. Then the following statements
are satisfied:

(i) Ker(µ) ⊆ Z(M).
(ii) Im(µ) is a two-sided ideal of A.
(iii) Im(µ) acts trivially on Z(M), and so trivially on Ker(µ). Hence Ker(µ) inherits an

action of A/Im(µ) making Ker(µ) a representation of the AWB A/Im(µ).

Example 3.7.
(i) Let A be an AWB and B be a two-sided ideal of A, then the inclusion B ↪→ A is a crossed
module, where the action of A on B is given by the operations in A (see Example 3.2 (ii)).
Conversely, if µ : B → A is a crossed module of AWBs and µ is an injective map, then B is
isomorphic to a two-sided ideal of A by Lemma 3.6 (ii).

(ii) For any representation M of an AWB A, the trivial map 0: M → A is a crossed module
with the action of A on the abelian AWB M described in Example 3.2 (i).
Conversely, if 0: M → A is a crossed module of AWBs, then M is necessarily an abelian
AWB and the action of A on M is equivalent to M being a representation of A.

(iii) Any homomorphism of AWBs µ : M → A, with M abelian and Im(µ) ⊆ Z(A), provides
a crossed module with A acting trivially on M.

(iv) If 0 → N → M µ−→ A → 0 is a central extension of AWBs, then µ is a crossed module
with the induced action of A on M (see Example 3.2 (v)).

Proposition 3.8. Let µ : M → A be a crossed module of AWBs. Then the maps
(i) (µ, IdA) : M ⋊ A → A ⋊ A,
(ii) (IdM, µ) : M ⋊ M → M ⋊ A,
(iii) ϕ : M ⋊ A → M ⋊ A given by ϕ(m, a) = (−m,µ(m) + a),

are homomorphisms of AWBs.

Proof. (i) is a direct consequence of equalities in (CM1) of Definition 3.4, (ii) follows from
equalities in (CM2), whilst (iii) requires both (CM1) and (CM2). □
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Remark 3.9. The functors I and T given in Example 2.2 (ii) and (iii) preserve actions
and crossed modules in the sense of the following assertions:

(i) Any action of an associative algebra A on another associative algebra M, A × M →
M, (a,m) 7→ a ·m and M ×A → M , (m, a) 7→ m · a (see [10,12]) defines an action
of the AWB I(A) on I(M) (resp. of T (A) on T (M)), by letting

a·m = a ·m, m·a = m · a, a∗m = 0, m∗a = 0,(
resp. a·m = a ·m, m·a = m · a, a∗m = a ·m−m · a, m∗a = m · a− a ·m

)
for all a ∈ A and m ∈ M.

(ii) If µ : M → A is a crossed module of associative algebras (see again [10,12]), then the
homomorphisms of AWBs I(µ) : I(M) → I(A) and T (µ) : T (M) → T (A), together
with the actions of I(A) on I(M) and of T (A) on T (M), are crossed modules of
AWBs.

In [6] we proved equivalence of crossed modules of AWBs with internal categories in the
category of AWBs. Now we show their equivalence with cat1-AWBs. The following definition
of cat1-AWB is given in complete analogy with Loday’s original notion of cat1-groups [24].

Definition 3.10. A cat1-AWB (R,P, s, t) consists of an AWB R, together with a subalgebra
P and two homomorphisms s, t : R → P of AWBs satisfying the following conditions:

(a) s|P = t|P = IdP.
(b) Ker(s) Ker(t) = 0 = Ker(t) Ker(s).
(c) [Ker(s),Ker(t)] = 0 = [Ker(t),Ker(s)].

Definition 3.11. A morphism of cat1-AWBs (R,P, s, t) → (R′,P′, s′, t′) is a homomorphism
of AWBs f : R → R′ such that f(P) ⊆ P′ and s′ ◦ f = f |P ◦ s, t′ ◦ f = f |P ◦ t.

We let cat1−AWB denote the category of cat1-AWBs. Then we have the following
theorem.

Theorem 3.12. The categories cat1−AWB and XAWB are equivalent.

Proof. To a given cat1-AWB (R,P, s, t) we associate a crossed module µ = t|M : M →
P, where M = Ker(s) and the action of P on M is given by the operations in R (see
Example 3.2 (ii)). It is easy to see that µ : M → P is a crossed module of AWBs and the
assignment defines a functor Φ: cat1−AWB −→ XAWB.

Conversely, let µ : M → P be a crossed module of AWBs, then the associated cat1-AWB
is given by s, t : M ⋊ P → P, where s(m, p) = p, t(m, p) = µ(m) + p, m ∈ M, p ∈ P. It
is straightforward to see that this assignment is functorial and provides a quasi-inverse
functor for Φ. □

4. Non-abelian tensor product of AWBs
Definition 4.1. Let M and N be AWBs with mutual actions on each other. The actions
are said to be compatible if

m·(m′·n′) = m(m′·n′
), m·(n′·m′ ) = m(n′·m′),

m·(m′∗n′) = m(m′∗n′
), m·(n′∗m′

) = m(n′∗m′),

m∗(m′·n′) = [m,m′·n′ ], m∗(n′·m′ ) = [m,n′·m′],

m∗(m′∗n′) = [m,m′∗n′ ], m∗(n′∗m′ ) = [m, n′∗m′], (4.1)
(m·n)·n′ = (m·n)n′, (n·m)·n′ = (n·m)n′,

(m∗n)·n′ = (m∗n)n′, (n∗m)·n′ = (n∗m)n′,
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(m·n)∗n′ = [m·n, n′], (n·m)∗n′ = [n·m, n′],
(m∗n)∗n′ = [m∗n, n′], (n∗m)∗n′ = [n∗m, n′],

and moreover, another 16 equations obtained by exchanging the roles of elements of M
and N in (4.1) are also valid.

Example 4.2.
(a) If M and N are two-sided ideals of an AWB A, then the mutual actions on each

other considered in Example 3.2 (ii) are compatible.
(b) Let µ : M → P and ν : N → P be two crossed modules of AWBs. Then the mutual

actions of M on N via µ and of N on M via ν are compatible.

Let M and N be AWBs with mutually compatible actions on each other. We denote by
M � N the vector space spanned by all symbols m � n, n � m and by M ⊛ N the vector
space spanned by all symbols m ⊛ n, n ⊛m, for m ∈ M, n ∈ N. Let M ⊠ N denotes the
quotient of (M � N) ⊕ (M ⊛ N) by the following relations:

λ(m ? n) = (λm) ? n = m ? (λn),
(m+m′) ? n = m ? n+m′ ? n, m ? (n+ n′) = m ? n+m ? n′,

m·n ? m
′·n′ = m·n ? m′·n′

, m·n ? n′·m′ = m·n ? n
′·m′,

n·m ? n′·m′ = n·m ?n
′· m′, n·m ? m

′·n′ = n·m ? m′·n′
,

m·n ? m
′∗n′ = m·n ? m′∗n′

, m·n ? n′∗m′ = m·n ? n
′∗m′,

n·m ? m
′∗n′ = n·m ? m′∗n′

, n·m ? n′∗m′ = n·m ? n
′∗m′,

m∗n ? m
′·n′ = m∗n ? m′·n′

, m∗n ? n′·m′ = m∗n ? n
′·m′,

n∗m ? m
′·n′ = n∗m ? m′·n′

, n∗m ? n′·m′ = n∗m ? n
′·m′, (4.2)

m∗n ? m
′∗n′ = m∗n ? m′∗n′

, m∗n ? n′∗m′ = m∗n ? n
′∗m′,

n∗m ? m
′∗n′ = n∗m ? m′∗n′

, n∗m ? n′∗m′ = n∗m ? n
′∗m′,

(m1m2) � n = m1 � (m2·n) , n� (m1m2) = (n·m1) �m2,

(m1m2) ⊛ n = m1 � (m2∗n) + (m1∗n) �m2,
m1·n⊛m2 = m1 � n∗m2 + [m1,m2] � n,

n·m1 ⊛m2 = n∗m2 �m1 + n� [m1,m2],
m1·n�m2 = m1 � n·m2 ,

and another 25 relations obtained by exchanging the roles of elements of M and N in (4.2),
where the symbol ? stands for either � or ⊛.

Proposition 4.3. The vector space M⊠N endowed with the product and bracket operations
given on the generators by

(m� n)(m′ � n′) = (m·n) � (m′·n′), (m� n)(n′ �m′) = (m·n) � (n′·m′),

(n�m)(m′ � n′) = (n·m) � (m′·n′), (n�m)(n′ �m′) = (n·m) � (n′·m′
),

(m� n)(m′ ⊛ n′) = (m·n) � (m′∗n′), (m� n)(n′ ⊛m′) = (m·n) � (n′∗m′),

(n�m)(m′ ⊛ n′) = (n·m) � (m′∗n′
), (n�m)(n′ ⊛m′) = (n·m) � (n′∗m′

),

(m⊛ n)(m′ � n′) = (m∗n) � (m′·n′), (m⊛ n)(n′ �m′) = (m∗n) � (n′·m′),

(n⊛m)(m′ � n′) = (n∗m) � (m′·n′), (n⊛m)(n′ �m′) = (n∗m) � (n′·m′
),

(m⊛ n)(m′ ⊛ n′) = (m∗n) � (m′∗n′), (m⊛ n)(n′ ⊛m′) = (m∗n) � (n′∗m′),
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(n⊛m)(m′ ⊛ n′) = (n∗m) � (m′∗n′), (n⊛m)(n′ ⊛m′) = (n∗m) � (n′∗m′
),

[m� n,m′ � n′] = (m·n) ⊛ (m′·n′), [m� n, n′ �m′] = (m·n) ⊛ (n′·m′),

[n�m,m′ � n′] = (n·m) ⊛ (m′·n′), [n�m,n′ �m′] = (n·m) ⊛ (n′·m′
),

[m� n,m′ ⊛ n′] = (m·n) ⊛ (m′∗n′), [m� n, n′ ⊛m′] = (m·n) ⊛ (n′∗m′),

[n�m,m′ ⊛ n′] = (n·m) ⊛ (m′∗n′), [n�m,n′ ⊛m′] = (n·m) ⊛ (n′∗m′
),

[m⊛ n,m′ � n′] = (m∗n) ⊛ (m′·n′), [m⊛ n, n′ �m′] = (m∗n) ⊛ (n′·m′),

[n⊛m,m′ � n′] = (n∗m) ⊛ (m′·n′), [n⊛m,n′ �m′] = (n∗m) ⊛ (n′·m′
),

[m⊛ n,m′ ⊛ n′] = (m∗n) ⊛ (m′∗n′), [m⊛ n, n′ ⊛m′] = (m∗n) ⊛ (n′∗m′),

[n⊛m,m′ ⊛ n′] = (n∗m) ⊛ (m′∗n′), [n⊛m,n′ ⊛m′] = (n∗m) ⊛ (n′∗m′
),

has the structure of an AWB.

Proof. Straightforward calculations show that, under the conditions of compatible ac-
tions (4.1), by using the relations in (4.2), the described operations on M ⊠ N satisfy the
fundamental identity (2.1). □
Definition 4.4. The structure of AWB on M⊠N provided by Proposition 4.3 is called the
non-abelian tensor product of the AWBs M and N.

In particular, if the actions are trivial, the non-abelian tensor product can be described
as follows.

Proposition 4.5. If M and N are two AWBs with trivial actions on each other, then there
is an isomorphism of abelian AWBs

M⊠N ∼=
(
Mab ⊗K Nab

)
⊕

(
Nab ⊗K Mab

)
⊕

(
Mab ⊗K Nab

)
⊕

(
Nab ⊗K Mab

)
.

Proof. Equations in Proposition 4.3 show us easily that M⊠N is abelian in the case of
trivial actions. The defining relations (4.2) of the non-abelian tensor product say that the
vector space M⊠N is the quotient of (M ⊗K N) ⊕ (N ⊗K M) ⊕ (M ⊗K N) ⊕ (N ⊗K M) by the
relations

0 = (m1m2) ⊗ n = [m1,m2] ⊗ n

= n⊗ (m1m2) = n⊗ [m1,m2]
= m⊗ (n1n2) = m⊗ [n1, n2]
= (n1n2) ⊗m = [n1, n2] ⊗m

for all m,m1,m2 ∈ M, n, n1, n2 ∈ N. This provides the required isomorphism. □
The non-abelian tensor product of AWBs is functorial in the following sense: let f : M →

M′ and g : N → N′ be homomorphisms of AWBs together with mutually compatible actions
of M and N, also M′ and N′ on each other such that f , g preserve these actions, i.e.
f(n·m) = g(n)·f(m), f(m·n) = f(m)·g(n), f(n∗m) = g(n)∗f(m), f(n∗m) = g(n)∗f(m),

g(m·n) = f(m)·g(n), g(n·m) = g(n)·f(m), g(m∗n) = f(m)∗g(n), g(m∗n) = f(m)∗g(n).
for all m ∈ M, n ∈ N, then there is a homomorphism of AWBs

f ⊠ g : M ⊠ N −→ M′ ⊠ N′

defined by
(f ⊠ g) (m� n) = f(m) � g(n), (f ⊠ g) (n�m) = g(n) � f(m),
(f ⊠ g) (m⊛ n) = f(m) ⊛ g(n), (f ⊠ g) (n⊛m) = g(n) ⊛ f(m).
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The non-abelian tensor product of AWBs has a kind of right-exactness property presented
in the following theorem.

Theorem 4.6. Let 0 −→ M1
f−→ M2

g−→ M3 −→ 0 be a short exact sequence of AWBs. Let N
be an AWB together with compatible actions of N and Mi (i = 1, 2, 3) on each other and f ,
g preserve these actions. Then there is an exact sequence of AWBs

M1 ⊠N f⊠IdN−−−−→ M2 ⊠N g⊠IdN−−−−→ M3 ⊠N −→ 0.

Proof. It is clear that the composition (g ⊠ IdN) (f ⊠ IdN) is the trivial map, i.e. Im (f ⊠ IdN) ⊆
Ker (f ⊠ IdN) and at the same time f ⊠ IdN is an epimorphism.

Im (f ⊠ IdN) is generated by the elements of the form f(m1) � n, n� f(m1), f(m1)⊛ n
and n ⊛ f(m1), for all m1 ∈ M1, n ∈ N. Since f preserves actions of N, by the relations
given in Proposition 4.3, it is easily verified that Im (f ⊠ IdN) is a two-sided ideal of M2 ⊠N.
For instance, taking a generator of the form m2 � n′ in M2 ⊠N we have

(f(m1) � n) (m2 � n′) = f(m1)·n � m2·n′ = f(m·n
1 ) � m2·n′ ∈ Im (f ⊠ IdN) ,

(f(m1) ⊛ n) (m2 � n′) = f(m1)∗n � m2·n′ = f(m∗n
1 ) � m2·n′ ∈ Im (f ⊠ IdN) .

Then, there is a homomorphism of AWBs

α : (M2 ⊠N) /Im (f ⊠ IdN) −→ (M3 ⊠N)

induced by g ⊠ IdN, that is, defined on generators by

α (m2 � n) = g(m2) � n, α (n�m2) = n� g(m2),
α (m2 ⊛ n) = g(m2) ⊛ n, α (n⊛m2) = n⊛ g(m2).

where the overdrawn generator denotes the coset of the corresponding element. On the
other hand, we have well-defined homomorphism of AWBs

α′ : (M3 ⊠N) −→ (M2 ⊠N) /Im (f ⊠ IdN)

given on generators by

α′ (m3 � n) = (m2 � n) , α′ (n�m3) = n�m2,

α′ (m3 ⊛ n) = m2 ⊛ n, α (n⊛m3) = n⊛m2,

where m2 ∈ M2 is any element such that g(m2) = m3. Obviously α and α′ are inverse to
each other, i.e. α is an isomorphism. Then the required exactness follows. □

Proposition 4.7. Let M and N be AWBs with compatible actions on each other.

(a) There are homomorphisms of AWBs
ψM : M ⊠ N → M given by, ψM(m� n) = m·n, ψM(n�m) = n·m,

ψM(m⊛ n) = m∗n, ψM(n⊛m) = n∗m;
and ψN : M ⊠ N → N given by, ψN(m� n) = m·n, ψN(n�m) = n·m,

ψN(m⊛ n) = m∗n, ψN(n⊛m) = n∗m.
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(b) There are actions of M and N on the non-abelian tensor product M ⊠ N given, for
all m,m′ ∈ M, n, n′ ∈ N, by

m·(m′ � n′) = m� (m′·n′), m·(n′ �m′) = m� (n′·m′),

(m′ � n′)·m = (m′·n′) �m, (n′ �m′)·m = (n′·m′) �m,

m∗(m′ � n′) = m⊛ (m′·n′), m∗(n′ �m′) = m⊛ (n′·m′),

(m′ � n′)∗m = (m′·n′) ⊛m, (n′ �m′)∗m = (n′·m′) ⊛m,

m·(m′ ⊛ n′) = m� (m′∗n′), m·(n′ ⊛m′) = m� (n′∗m′),

(m′ ⊛ n′)·m = (m′∗n′) �m, (n′ ⊛m′)·m = (n′∗m′) �m,

m∗(m′ ⊛ n′) = m⊛ (m′∗n′), m∗(n′ ⊛m′) = m⊛ (n′∗m′),

(m′ ⊛ n′)∗m = (m′∗n′) ⊛m, (n′ ⊛m′)∗m = (n′∗m′) ⊛m,

and
n·(m′ � n′) = n� (m′·n′), n·(n′ �m′) = n� (n′·m′),

(m′ � n′)·n = (m′·n′) � n, (n′ �m′)·n = (n′·m′) � n,

n∗(m′ � n′) = n⊛ (m′·n′), n∗(n′ �m′) = n⊛ (n′·m′),

(m′ � n′)∗n = (m′·n′) ⊛ n, (n′ �m′)∗n = (n′·m′) ⊛ n,

n·(m′ ⊛ n′) = n� (m′∗n′), n·(n′ ⊛m′) = n� (n′∗m′),

(m′ ⊛ n′)·n = (m′∗n′) � n, (n′ ⊛m′)·n = (n′∗m′) � n,

n∗(m′ ⊛ n′) = n⊛ (m′∗n′), n∗(n′ ⊛m′) = n⊛ (n′∗m′),

(m′ ⊛ n′)∗n = (m′∗n′) ⊛ n, (n′ ⊛m′)∗n = (n′∗m′) ⊛ n.

(c) The homomorphisms ψM and ψN together with the actions described in the state-
ment (b) are crossed modules of AWBs.

Proof. This is straightforward but tedious verification. □
Theorem 4.8. If A is a perfect AWB, then ψA : A⊠A → A is the universal central extension
of A.
Proof. Clearly ψA : A⊠A → A is an epimorphism if A is perfect. Moreover, it is a crossed
module of AWBs by Proposition 4.7 (c). Then Lemma 3.6 (i) says that it is a central
extension.

To show the universal property, consider any central extension 0 → M → B φ−→ A → 0.
Since Ker(φ) ⊆ Z(B), we get a well-defined homomorphism of AWBs ϕ : A ⊠ A → B
given on generators by ϕ(a � a′) = b b′ and ϕ(a ⊛ a′) = [b, b′], where b and b′ are any
elements in φ−1(a) and φ−1(a′), respectively. Obviously φϕ = ψA. Moreover, since A is
perfect, it follows by the equalities in Proposition 4.3 that A⊠A is a perfect AWB as well.
Then [4, Lemma 3.1] implies that ϕ is the unique homomorphism satisfying the required
conditions. □

Bearing in mind that the universal central extension of a perfect AWB is unique up to
isomorphism, by [4, Theorem 3.5] we conclude that

HAWB
1 (A) ∼= Ker(ψA : A⊠A ↠ A).

Moreover, if 0 → R → F ρ−→ A → 0 is a free presentation of a perfect AWB A, then its
universal central extension is

0 −−→ R ∩ [[F,F]]
[[F,R]]

−−→ [[F,F]]
[[F,R]]

ρ∗
−−→ A −−→ 0
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(see [4]), hence

A ⊠ A ∼=
[[F,F]]
[[F,R]]

due to the uniqueness (up to isomorphisms) of the universal central extension.

Remark 4.9. The article [4] provides another description of the universal central exten-
sion of a perfect AWB A. In particular, it is shown that, given an AWB A, the quotient
A⊗2⊕A⊗2

IA
has an AWB structure, where IA is the image of the map d2 : A⊗3 ⊕ A⊗3 →

A⊗2 ⊕ A⊗2 in the homology chain complex
(
CAWB

∗ (A), d∗
)
, that is, IA is the subspace of

A⊗2 ⊕ A⊗2 spanned by the elements of the form
(a1a2) ⊗ a3 − a1 ⊗ (a2a3),
[a1, a2] ⊗ a3 + a1 ⊗ [a2, a3] − (a1a2) ◦ a3,

for any a1, a2, a3 ∈ A. Moreover, if A is a perfect AWB, then it gives the construction of
the universal central extension of A. As a consequence, we have the following isomorphism
of AWBs

A⊗2 ⊕ A⊗2

IA

∼=−→ A ⊠ A,

given by a1 ⊗ a2 7→ a1 � a2 and a1 ◦ a2 7→ a1 ⊛ a2.

Proposition 4.10. If M is a two-sided ideal of an AWB A, then there is the exact sequence
of AWBs

(M ⊠ A) ⋊ (A ⊠ M) σ−→ A ⊠ A τ−→ A/M ⊠ A/M → 0.

Proof. The functorial property of the non-abelian tensor product applied to the projection
A ↠ A/M induces the surjective homomorphism τ , and applied to inc : M → A and
Id : A → A provides the homomorphisms σ′ : M ⊠ A → A ⊠ A and σ′′ : A ⊠ M → A ⊠ A.

Define σ(x, y) = σ′(x) + σ′′(y), for all x ∈ M⊠A, y ∈ A⊠M. Im(σ) is a two sided ideal
of A ⊠ A spanned by the elements of the form m � a, a � m, m ⊛ a, a ⊛m for all a ∈ A
and m ∈ M.

By the identities in Proposition 4.3 and the relations (4.2) of the non-abelian tensor
product, τ induces a homomorphism of AWBs τ̄ : A⊠A

Im(σ) → A/M ⊠ A/M. Define τ ′ : A/M ⊠
A/M → A⊠A

Im(σ) by τ ′((a1 + M) � (a2 + M)
)

= a1 � a2 + Im(σ), τ ′((a1 + M) ⊛ (a2 + M)
)

=
a1 ⊛ a2 + Im(σ). It is easy to check that τ ′ is a well-defined homomorphism that is inverse
to τ̄ . □
Theorem 4.11. Let M be a two-sided ideal of a perfect AWB A. Then there is an exact
sequence of vector spaces

Ker(M ⊠ A ψM−−→ M) → HAWB
1 (A) → HAWB

1 (A/M) → M
[[A,M]]

→ 0

Proof. Due to Proposition 4.10 there is the following commutative diagram of AWBs with
exact rows

(M ⊠ A) ⋊ (A ⊠ M) σ //

ψ

��

A ⊠ A τ //

ψA
��

A/M ⊠ A/M //

ψA/M
��

0

0 // M // A π // A/M // 0
where
ψ

(
m1 � a1, a2 �m2

)
= m1a1 + a2m2, ψ

(
m1 � a1, a2 ⊛m2

)
= m1a1 + [a2,m2],

ψ
(
m1 ⊛ a1, a2 �m2

)
= [m1, a1] + a2m2, ψ

(
m1 ⊛ a1, a2 ⊛m2

)
= [m1, a1] + [a2,m2].
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The Snake lemma provides the exact sequence
Ker(ψ) → Ker(ψA) → Ker(ψA/M) → Coker(ψ) → 0.

By Theorem 4.8 Ker(ψA) = HAWB
1 (A), and since A /M is a perfect AWB as well, we also

have Ker(ψA /M) = HAWB
1 (A /M). Obviously Coker(ψ) = M

[[A,M]] . Then the fact that there
is a surjective map Ker(ψM) → Ker(ψ) completes the proof. □

4.1. Further investigation
As mentioned above, the category of AWBs is an example of a semi-abelian category.

In the paper [11], it is explained how, in the context of a semi-abelian category, internal
crossed squares can be used to set up an intrinsic approach to the non-abelian tensor prod-
uct. Namely, it is shown that the non-abelian tensor products form the internal crossed
squares in a semi-abelian category, in which the so-called “Smith is Huq” condition [11]
is fulfilled. This condition is sufficient to construct the non-abelian tensor product of two
objects acting compatibly on each other.

In future work, we plan to investigate the consistency of our constructions with the
categorical definitions from [11] and ultimately prove the following:

Conjecture 4.12. Let M and N be AWBs with mutually compatible actions on each other.
The definition of the non-abelian tensor product M ⊠ N as in Definition 4.4 agrees with
the categorical one (see [11, Definition 6.6]).
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