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Abstract— Localization of teeth is a prerequisite task for most of the computerized methods for dental images such as 

medical diagnosis and human identification. Classical deep learning architectures like convolutional neural networks 

and auto-encoders seem to work well for tooth detection, however, it is non-trivial because of the large dental image 

size. In this study, a coarse-to-fine stacked auto-encoder architecture is presented for detection of teeth in dental 

panoramic images. The proposed architecture involves cascaded stacked auto-encoders where sizes of the input patches 

are increased with the successive steps. Only the detected candidate tooth patches are fed into the successive layers, 

thus the irrelevant patches are eliminated. The proposed architecture decreases the cost of detection process while 

providing precise localization. The method is tested and validated on a dataset containing 210 dental panoramic images 

and the tooth detection accuracy of the system is 91%. 
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Büyükten Küçüğe Oto-Kodlayıcılar ile Dişlerin 

Konumlandırılması 
 

Özet— Dişlerin lokalizasyonu, bilgisayar destekli gerçekleştirilen diş görüntülerden insan kimliklendirme ve medikal 

tanı için bir ön şarttır. Konvolüsyonel sinir ağları ve oto-kodlayıcılar gibi klasik derin öğrenme mimarileri diş tanıma 

işlemi için başarılı gözükse de dental görüntülerin çok büyük olması nedeniyle tüm arama uzayının taranması mümkün 

gözükmemektedir. Bu çalışmada, büyükten-küçüğe yığınlanmış bir oto-kodlayıcı yapısı ile dental görüntülerden dişleri 

tanıyan bir sistem sunulmuştur. Önerilen mimari, girdi görüntü yamalarının boyutlarının her kademede arttığı bir 

kademeli yığınlanmış oto-kodlayıcı yapısı içerir. İlerdeki katmanlara sadece bulunan aday diş yamaları verilir; böylece 

alakasız yamalar elimine edilmiş olur. Önerilen mimari tanıma aşamasındaki maliyeti düşürmekle beraber hassas 

konumlandırma imkanı sunar. Geliştirilen metot, 210 dental panoramik görüntü içeren bir veri kümesi üzerinde test 

edilmiştir ve %91 doğruluk ile çalışmıştır. 

 

Anahtar Kelimeler—Büyükten –küçüğe oto-kodlayıcı, tanıma, derin öğrenme, panoramik dental görüntü 

 

 

1. INTRODUCTION 

Detection of teeth from dental images [1] is the first step 

of most computerized dental applications like medical 

diagnosis [2] and human identification [3]. However, it is 

a challenging task because of the imaging artifacts and 

noise, large variation, and dental restorations. An example 

of a panoramic dental image is shown in Figure 1-a. 

In the literature, most of the studies for tooth detection are 

performed with low-level vision techniques for intra-oral 

dental images that include a few teeth [4], [5]. There also 

exist machine learning based systems with hand-crafted 

features for tooth identification. For example, Mahoor and 

Abdel-Mottaleb [6] employed a Bayesian classifier to 

classify the teeth in bitewing images. Then, the labels of 

the teeth are determined using the spatial relationships 

between the teeth. The system presented in [7] 

implements the watershed algorithm to segment the 
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panoramic images into small regions and runs a fitness 

function with a set of features of each region for tooth 

detection. In the study of [3], support vector machines are 

used with several geometrical properties of the teeth for 

classification of the molar and the premolar teeth. Support 

vector machines are also employed for tooth classification 

and labeled them with the Markov Chain Model [8]. 

Recently, deep learning has been widely used in many 

computer vision applications and the state of the art 

results have been improved with the usage of training 

large amount of data [9], [10]. However, it is difficult to 

get such large training data (like 200M training images 

for face recognition [11]) for medical imaging 

applications. First of all, it is very hard to gather huge 

amount of real medical data from voluntary subjects with 

ethical approvals. In addition, it is very time-consuming 

to mark/delineate the images by an expert for obtaining 

the ground truth data. Also, the structures in medical 

images have high variability according to the illnesses, 

pathologies, etc. Despite these difficulties, there are many 

successful medical imaging applications based on deep 

learning in literature [12], [13] that produce successful 

results. 

 
 

(a) 

 

 
(b) 

Figure 1. (a) An example of a dental panoramic image.  

(b) Cropped dental image where mouth gap, floor of nasal 

cavity and teeth are labeled. 

 

Unsupervised learning of the tooth features seems to work 

well for detection with deep learning. Hierarchical tooth 

features can be learnt in an unsupervised manner with a 

deep architecture like stacked auto-encoders and teeth can 

be localized with a sliding window technique. However, 

the number of sliding windows would be very large 

during testing due to the big dental image sizes and 

rotational differences. For example, a dental panoramic 

image of 1500x2500 pixels size will have nearly 4M 

windows for each different window size and rotation 
which is intractable The dental image can be scaled down 

to smaller sizes as a solution but this process would be too 

coarse for precise localization. 

 

In this paper, we propose a coarse-to-fine stacked auto-

encoder framework for the detection of teeth in panoramic 

dental images. The proposed framework proposes an 

efficient way to detect the candidate tooth positions with 

cascading auto-encoders. The tooth candidates are 

coarsely determined at the first steps and the final 

localizations are performed at the final steps at finer 

resolutions. Thus, the running time decreases dramatically 

with the decreased searched space and detection is 

performed in a more controlled and tractable way. 

 

Similar architectures that generate features at multiple 

resolutions are used for precise localization of objects. 

Honari et al. [14] stated that the max-pooling process 

discards spatial information for creating more robust 

features and proposed Recombinator Networks for facial 

keypoint localization. Their architecture employs a 

network that aggregates information from features across 

different levels of the network using concatenation. The 

studies [15], [16] proposed convolutional networks for 

localization and segmentation that generate features at 

different resolutions and combined these features to 

produce the final features. Zhang et al. [17] use coarse-to-

fine auto-encoders for face alignment by using cascaded 

auto-encoders. 

 

For panoramic dental images, it is intractable to detect all 

of the teeth simultaneously with a deep architecture 

because of the large image size. In addition, simultaneous 

detection of all teeth is difficult because of the missing 

teeth, dental restorations, and their repetitive structure. 

Therefore, we first find the possible tooth area in the 

images with a basic pre-processing steps. After reducing 

the search area, the teeth are detected with the cascaded 

stacked auto-encoders. The proposed system is tested on a 

dataset containing 200 images and the detection results 

are promising. 

2. DENTAL PANORAMIC IMAGES AND 

PREPROCESSING 

A panoramic dental image is an X-ray image (Figure 1-a) 

that includes the whole mouth. Normally, there are 8 teeth 

in each quarter q of mouth where the upper left, upper 

right, lower left, and lower right quarters are shown by the 

symbols 𝑞 ∈ {┘└ ┐┌ }, respectively. We use Palmer's 

dental notation system where each tooth 𝑡𝑖, 1 ≤ 𝑡𝑖 ≤ 8, is 

numbered beginning from the mouth center with the 

quarter symbol q. For example, the upper right central 

incisor has the label 1┘, while the upper left canine tooth 

has the label └3. Figure 1-b shows the label of each tooth 

and the other structures floor of nasal cavity and mouth 

gap- in a panoramic dental X-ray image.  
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The panoramic images include structures like jaws, 

sinuses, etc. besides teeth. In order to reduce the size of 

the search space for detection of teeth, we first detect the 

possible placement of teeth according to the mouth gap. 

While a panoramic dental image is taken, the subject bites 

a plastic plate with front teeth to ensure that mouth is 

open and to fix the head position. Thus, the mouth gap 

center is close to the vertical center of the image. 

Consider I as an image of size mxn. Let 𝜙(𝑤𝑖,𝑗) be a 

function that gives the location of the minimum value of 

horizontal projection histogram of the window w centered 

at the image location I(i,j). The mouth gap center 

𝑚𝑐(𝑛/2) is found by 

 

𝑚𝑐 (𝑗 =
𝑛

2
) =  𝜙 (𝑤𝑖,

𝑛

2) , 𝑗 = 𝑛/2          (1) 

 

where n is the length of the image I. In order to 

automatically determine i, we use the floor of nasal cavity 

f which is the brightest part of I on the upper front teeth. 

The maximum value of the projection histogram of the 

window centered at i=m/4 and j=n/2 is detected as the 

floor of nasal cavity. 

 

The mouth gap mc is detected for the i > f +𝜏 where 𝜏 is a 

threshold. Detection of mouth gap center with respect to 

the f prevents the false detection of the sinuses (which are 

also dark pixels) as mouth gap. After finding the mouth 

gap center mc(n/2), the whole mouth gap is found 

iteratively to left and right by Eq. 2 and Eq. 3, 

respectively. 

 

𝑚𝑐(𝑗 + 𝑘) = 𝑎𝑟𝑔𝑚𝑖𝑛[𝜙(𝑤𝑖,𝑗+𝑘) + 𝛿𝑚𝑐(𝑗 + 𝑘 − 1)], 𝑖𝑓 𝑗 > 𝑛/2    (2) 

 

𝑚𝑐(𝑗 − 𝑘) = 𝑎𝑟𝑔𝑚𝑖𝑛[𝜙(𝑤𝑖,𝑗−𝑘) + 𝛿𝑚𝑐(𝑗 + 𝑘 + 1)], 𝑖𝑓  𝑗 < 𝑛/2    (3) 

 

where k is the iteration step and 𝛿 is a weighting term. If 

the value of 𝜙  is greater than a threshold the algorithm 

stops. The final mouth gap is found by fitting a spline to 

the detected points. The dental images have different sizes 

and the images are resized according to the mouth gap 

length. This process reduces the need of using many 

sliding windows at different sizes. Then, the mouth 

quarters q {┘└ ┐┌} each containing 8 teeth are 

automatically detected. Each quarter has different tooth 

appearance because of rotation, so other 3 quarters {┘└ ┌ 

} are rotated and mirrored to make the similar appearance 

of teeth within the down left quarter ┐. Note that, this 

transformation provides training and testing all quarters 

together by eliminating the appearance differences 

between them. 

 

3. STACKED-AUTO ENCODERS  

 

Auto-encoders are neural networks that effectively learn 

the hierarchical representation of data. The stacked auto-

encoders are stacked versions of auto-encoders and they 

are trained bottom up in unsupervised manner and 

features learned at the top layer are used for supervised 

training and fine-tuning. 

 

Let 𝑤𝑖,𝑗 be an image window and 𝑥 ∈ ℝ𝑑
 be the pixels in 

the window. An auto-encoder is a neural network that has 

an input, a hidden h, and an output layer. It takes x as 

input and tries to find the optimal parameters Θ = (𝑊, 𝑏) 

by minimizing the amount of distortion between the input 

and output. The input x is mapped to a latent 

representation ℎ = (𝑊𝑥 + 𝑏) where the hidden layer h is 

a new feature representation of the input image x. Then, 

the output layer (decoder) is trained to reconstruct the 

input image patch from the hidden representation with 

reverse mapping training by back-propagation. After 

training, the weights W are used as the representation of 

data. The stacked auto-encoders are formed by stacking 

multiple auto-encoders by wiring output of each layer to 

the input of the successive layer. 

 

4. COARSE-TO-FINE STACKED AUTO-

ENCODERS  

In the proposed framework, a number of stacked auto-

encoders are cascaded to detect the teeth. The main 

objective of the architecture is making better detections at 

successive auto-encoders by the increasing image 

resolution and decreasing the running time. Only the 

candidates with better scores are evaluated at the 

successive layers which reduces the cost of detection. The 

architecture of the proposed framework is shown in 

Figure 2.  

 

The first stacked auto-encoder takes the image patches of 

as input x and extracts the feature representation h. These 

randomly selected patches are down-scaled into small 

patch sizes where kxk = x. After the representations are 

learned, supervised learning is performed with a neural 

network layer with soft-max classifier that produces a 

score 𝑠𝑖,𝑗 indicating the probability of being a tooth 

candidate. The candidates having the best scores are fed 

into the successive layers. The number of best candidates 

𝑛𝑙 with high scores at level l, that will be trained at the 

successive layer, are decreased while the size of the image 

patch is doubled. This allows to learn better tooth 

representations at successive layers and eliminates the 

non-tooth windows at the former stages. 

5. TOOTH LOCALIZATION  

In order to find the optimal final tooth positions 

T’={𝑡1
′ , … , 𝑡8

′ }, basic morphological operations are used. 

The n3 candidates are the final candidates and maximum 8 

teeth should be detected for each quarter. First, the 

detected pixels are grouped with labeling connected 

components and pixel groups are formed. A group gk has 

the average probability score  

 

𝑆𝑔𝑘 =
1

𝑛
∑ 𝑠𝑖,𝑗,                              (4) 

 

that is the sum of candidate scores 𝑠𝑖,𝑗 divided by number 

of pixels in the group. Let the location of the centroid of  

. 
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Figure 2. Framework of the proposed system 

 

the group be L(gk). We model the tooth positions with a 

chain graph with 8 nodes. The final tooth positions are 

determined by 

 

𝑇′ = max
𝑆

∑ 𝑆𝑔𝑘 +
|𝐿(𝑔𝑘)−𝜇(𝑡𝑖)|

2𝜎𝑡𝑖
2𝑡𝑖=1,…,8             (5) 

where 𝜇 is the mean and 𝜎 is the standard deviation of the 

Euclidean distance between tooth 𝑡𝑖 and its neighboring 

tooth 𝑡𝑖+1 which are calculated through the training set. 

The first term in Eq. 5 includes the tooth representation 

found by the stacked auto-encoders. The second term is 

the geometric term that is the difference between the 

group center and the average position of the tooth 𝑡𝑖 

according to the training set. The geometric term prevents 

two neighboring teeth being very close or far. 

 

If the difference is greater than a threshold, the tooth is 

determined as a missing tooth. By solving Eq. 5 by 

dynamic programming, the optimal solution is found in 

polynomial time. 

6. EXPERIMENTS 

In order to evaluate the effectiveness of the proposed 

framework, a dataset including 210 dental panoramic 

images of 174 different subjects is used. The images are 

taken by 3 different dental panoramic X-ray machines and 

they have different image sizes which are 2871x1577, 

1435x791, and 2612x1244. The ground-truth bounding 

boxes for each tooth are delineated by an expert. There 

are 5568 teeth and number of missing teeth is 829. There 

are abnormalities like impacted tooth and many dental 

works like crowns, fillings, implants, and braces in the 

images.  

 

In the pre-processing step, the window size w for 

detection of the mouth gap is selected as 800x100 pixels. 

The weighting term 𝜆 is 0.2 and the threshold t is 150 

pixels. After the mouth gap is detected, all of the images 

are scaled to the maximum mouth gap length by 

preserving the aspect ratio. 

 

For training the system, 10 of images of 10 different 

subjects are used. 50000 patches that have image sizes 

between the minimum and maximum tooth sizes are 

randomly selected. All of the patches are down-scaled to 

32 by 32 pixels for the first level of the auto-encoders 

where k = 32. For the supervised soft-max classifier, 150 

windows that contain a whole tooth are used as positive 

samples and 300 images that contain at most 30% of a 

tooth are used as negative samples. The number of 

candidates n1 is 3000 windows for the first level, n2 = 

1500 for the second level and n3 = 500 for the third level. 

 
Figure 3. ROC of each auto-encoder level. 
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Table 1. Detection percentages for each tooth 
 

Tooth 

number 
1 2 3 4 5 6 7 8 

 

└ 
88 93 91 89 92 92 91 89 

┌ 

 
89 89 87 90 91 93 91 87 

 

┘ 
91 92 89 91 89 90 93 89 

┐ 

 
90 93 86 92 91 91 88 84 

 

In order to evaluate the effectiveness of our system, we 

first detect the accuracy of the each level at the coarse-to-

ne framework. A detection is evaluated as accurate if the 

window includes at least 50% of the box including the 

tooth delineated by the expert. The ROC curves of each 

level is shown in Figure 3. The accuracy rate increases at 

each level while the true positive rate is 0.81, 0.89, and 

0.91, at the levels 1, 2 and 3. The increasing true positive 

rates show the effectiveness of our system.  

 

In order to evaluate the final localization results of the 

post-processing step, we calculated the average detection 

accuracy. If the finally detected tooth t0 is fully inside the 

ground truth, it is evaluated as an accurate detection. The 

detection percentages for each tooth is shown in Table 1. 

The down first teeth have the lowest detection rates. This 

may cause because of the brightness of the plastic plate 

occluding the front teeth. Molar teeth numbered 6, 7, and 

8 have the highest percentages. The visual results are 

shown in Figure 4. Figure 4-a shows the tested panoramic 

dental image. Figure 4-b and Figure 4-b show the 

detection results of the first and second level, 

respectively. The detected pixels detected as teeth are 

refined in Figure 4-c and final localization results are 

shown in Figure 4-d. 

 

 

 
(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

Fig. 4: a) A dental panoramic image with missing teeth. b) 

shows the detection results of the first level and c) shows 

the detection results of the last level of coarse-to-fine 

auto-encoders. d) Final detection results. Note that, the 

left upper fifth tooth couldn't be detected. 

7. CONCLUSIONS 

In this paper, a coarse-to-fine stacked auto-encoder is 

presented for detection of teeth in dental panoramic 

images. The presented technique has three important 

advantages. First, the search space is reduced with the 

developed mouth gap based pre-processing technique. 

Also, transforming the mouth quarters into similar 

appearance provided more samples for training while 

eliminating the cost of training each quarter separately. 

Second, the cascaded auto-encoders with increasing input 

image sizes produced precise localization results while 

decreasing the search time. Third, the patches not 

involving a tooth are effectively eliminated at the first 

steps. In the future, we will use the detected teeth and 

their hierarchical features for human identification by 

comparing same subjects' dental images. 
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